
Computing State Matching in Sequential Circuits
 in Application to Temporal Parallel Simulation

Dusung Kim1 Daniel Gomez-Prado1 Seiyang Yang2 Maciej Ciesielski1

1Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA-01003

{dukim, dgomezpr, ciesiel}@ecs.umass.edu
2Department of Computer Engineering

Pusan National University, Busan, Korea, 609-735
syyang@pusan.ac.kr

ABSTRACT

This paper addresses the problem of computing
relationship between the states of two designs,
specification and implementation. The problem is
considered here in the context of temporal parallel
simulation, where state matching is required to
determine the initial values of registers used as starting
points for individual simulation runs. This problem is
particularly challenging if the implementation design is
obtained from the specification design by a series of
retiming and re-synthesis transformations. We show
that the problem can be solved efficiently by
modifying inductive techniques of ABC for computing
signal correspondence.

General Terms: Design Validation, Verification.

Keywords: Parallel Simulation, Equivalence Checking,
State Matching.

1. Introduction

The need for finding relationship between the states of
different designs arises in several applications.
Typically it is a part of Sequential Equivalence
Checking (SEC), which attempts to prove equivalence
of two designs by matching internal equivalence points,
such as internal signals and registers. The problem is
particularly hard if one design has been obtained from
the other by sequential synthesis that involves retiming
[1] and re-synthesis. Such a process is known to
destroy a one-to-one register correspondence in the
designs. All SEC methods rely on establishing such
register correspondence, unless the transformation
history generated by synthesis is provided. To the best
of our knowledge, there is no general solution to the
SEC problem due to its high computational complexity.

In this paper, the state matching problem is considered
in the context of Temporal Parallel Simulation
(TPSim) [2], which combines formal methods with
simulation-based validation. Unlike other hybrid
validation techniques [3, 4], which concentrate on
increasing the simulation coverage, this approach
significantly improves efficiency and the overall
performances of both functional and timing simulation.
The next section briefly reviews the basic concept of
temporal parallel simulation.

1.1 Temporal Parallel Simulation

Fig 1. Concept of Temporal Parallel Simulation

Temporal Parallel Simulation, TPSim [2], is a
technique that parallelizes gate-level simulation into
temporal domain by using snapshots of states captured
during the reference (e.g., RTL) simulation, as shown
in Figure 1. In the following we assume that both the
reference and target designs are given as gate level
netlists. TPSim consists of two basic simulation steps:

1. Fast, functional zero-delay reference
simulation on a single processor that collects
design states and other meta information at
predetermined checkpoints.

2. Second, full-timing target simulation,
distributed to the individual processors.

It is known that functional gate-level simulation is
usually 10~50 times faster than full-timing gate level
simulation. Therefore, the functional simulation can
serve as an abstract reference of timing annotated
simulation because two simulations should be cycle-
by-cycle consistent.

In this approach, the design state at each checkpoint is
obtained from the functional reference simulation.
These states are restored for the target full-timing
simulation so that each slice between the consecutive
states can be simulated in parallel. Note that testbench
must be simulated from the beginning for each slice
because the testbench is unsynthesizable and does not
have explicit states.

1.2 Initializing States at Checkpoints

One of the essential elements of Temporal Parallel
Simulation is that it requires knowledge of the initial
states of individual simulation segments [2]. Rather
than finding functional relationship between the states
of two designs, we focus on finding register values of
the transformed (implementation) design assuming the
knowledge of register values of the original
(specification) design. In our case the values of
registers in the original design are obtained by initial
(reference) simulation of that design. While this
problem is easier than a general problem of proving
sequential equivalence of a sets of registers from the
two designs, it remains difficult if sequential
transformations (retiming and re-synthesis) are
involved in design generation. In this work the register
values of the matched states in the implementation
design are computed using induction based sequential
equivalence checking techniques (SEC) of ABC
software [5] with much smaller computational cost.

Sequential Equivalence Checking (SEC) of ABC relies
on induction-based techniques and does not require
structural matching points. It is very effective in
finding functional relationships between internal

combinational signals and registers. However, it is not
sufficiently scalable to deal with complex designs. In
our work, rather than proving circuit level equivalence
or finding relationship among the registers, we
consider a simpler problem, state matching, which
computes a target design state from a reference design
state.

(a)

(b)

Fig 2. Retimed and re-synthesized designs.

One of the difficulties is proper computation of initial
states. This point is illustrated in Figure 2(a), which
shows a simple backward retiming. While finding the
value of r1 from r2 and r3 is trivial because r1 r2r3,
finding r2 and r3 from r1 is not always possible. In
this case, unrolling the design over multiple time-
frames is required to compute the values of these
registers.

Figure 2(b) shows an example of retiming and re-
synthesis. Since a one-to-one correspondence does not
exist among registers, finding state matching or
relationship between the states is not trivial.

Our approach takes advantage of Signal
Correspondence (SC) algorithm implemented in ABC
[5]. We modified the original algorithm so that it can
compute a matched state at a lower computational cost
compared to the original algorithm. This reduction in
complexity is possible because constant values of the
registers in the original design are known from the
reference simulation, which dramatically reduces
constraints imposed on the SAT solver used by the
algorithm.

The general problem statement is presented in Section
2 and the technique of signal correspondence needed
to solve state matching is given in Section 3. Our
approach to state matching and its application to
parallel simulation are explained in Section 4.
Experimental results and conclusions are given in
Sections 5 and 6, respectively.

Fig 3. Time-frame model of two sequential circuits unrolled over a fixed number of clock cycles.

2. Problem Statement

Consider a pair of states, one (SA) from the original
design and the other (SB) from the target design. The
two states are considered matched if state SB is
obtained from state SA through sequential synthesis
(including retiming). While the two states are
considered equivalent, their respective register
functions may not be equivalent, if state SB was
obtained from state SA using retiming. In our work we
are concerned with registers values corresponding to
the two states, rather than with a general state
equivalence. For this reason we use the term state
matching.

Figure 3 represents a time-frame model of a general
sequential circuit. Fig. 3(a) represents a reference
design and Fig. 3(b) the target design. Assume that the
design in part (b) is a retimed and re-synthesized
version of design (a).

Given the original state SA
t at time frame t we want to

find a matching target state SB
t. In our approach, we

assume that SA
t-k (for a small constant k) is known from

the reference simulation.

3. Signal Correspondence

Signal correspondence (SC) is a computation of a set
of classes of sequentially equivalent nodes using k-step
induction [5] based on SAT solving. The k-step
induction is a gradual process that refines candidate
equivalence classes. If SC exists for all the registers in
the two designs, functional state relationship can be
established. However, finding such a correspondence
is not always possible because retiming and re-
synthesis breaks the initial one-to-one correspondence
between the registers.

The SC technique relies on structural similarity [6] of
two designs. Since retiming-based sequential synthesis
maintains a great degree of structural similarity (as it
moves registers across logic gates), the technique is
effective for sequential circuit verification.

SC can be computed by using inductive proof
technique [7, 8]. Van Eijk [6] applies the method in
equivalence checking by taking advantage of structural
similarity. Recent implementations of SC [5, 9]
combine other techniques such as SAT sweeping [10],
speculative reduction [11] and invariant identification
[9].

K-step induction involves multiple (k) frames, which
allows it to identify more invariants than a one-step
induction. The k-step-induction consists of the
following two steps [5]:

 Step 1: Base Case – The equivalent classes hold
for all inputs in the first k-1 frames starting from
the initial stage, and

 Step 2: Inductive Case – if, assuming to be true in
the first k-1 frames starting from any state, they
hold in the kth frame.

One of the most advanced implementations of the k-
step induction for the purpose of SEC has been done in
ABC. Base case contributes the initial refinement of
equivalence classes by using Bounded Model
Checking (BMC) from initial state. Inductive step is an
iterative process to make further refinement by
applying speculative reduction and SAT sweeping,
which merges all nodes of an equivalence class in each
of the first k time-frames onto its representative and
proves or disproves equivalence of nodes. All the
nodes that belong to the same equivalence class are
merged. If the merging process results in constant 0,

the two circuits are sequentially equivalent. Detailed
algorithm is described in [5].

4. State Matching

The basic idea of state matching is based on the
following steps: (1) compute signal correspondence
between the internal signals of the two designs; (2)
migrate the value of a given reference signal to the
corresponding signal in the target design; and (3)
propagate it in the target design to obtain other register
values.

While in principle we can use the original SC
algorithm of ABC, it is overkill because we don’t need
to prove equivalence of signals for all possible value
assignments. Instead, we need to find a specific
assignment for all the register values in the target
design based on the known value of the corresponding
reference state. For this reason we introduce a concept
of Constrained Signal Correspondence (CSC), which
is an SC valid in certain time-frames that satisfy
certain constraints. Our algorithm iteratively detects
CSCs by using reference state values as constant
invariants. Assigning values to those CSCs gradually
disregards unmatched time-frames as well as computes
the target state.

Figure 4 summarizes the main concept of our approach.
Assume that SA and SB are the matching states. An
initial state SA

-2 of the reference design (at two time
frames prior to some reference point) is given in Fig
4(a). All the reference signal values between SA

-2 and
SA are computed by simulation.

Fig 4. Progressive state matching.

Initially, as shown in Fig. 4(b), there is no candidate in
the target design that matches with the state in the
reference design in the required time-frame. Finding
the initial SCs allows us to migrate the corresponding
values from the reference frame (SA) to target.
Performing SC algorithm with the migrated values
detects CSCs, which allows further migration of signal

values. Recursive process of finding CSCs and value
migration successively filters out the unmatched time-
frames, see Fig. 4 (c),(d),(e). By iterating the process,
target state is gradually computed (see Fig. 4(d), (e)).
Note that our algorithm doesn’t care to which time-
frame the computed state belongs (Fig 4(e)).

4.1 State Matching Algorithm

We modified the original SC algorithm of ABC to
enable efficient state matching. Figure 5 shows the
algorithm, with the modified parts shown in bold.

Our algorithm starts by performing simulation of the
reference design for k time-frames of the reference
design (Figure 3.) The initial state for the simulation
comes from the reference design. Therefore, the values
of all the internal signals within the k time-frames are
known (from the reference simulation). Then, a miter
is added to the two designs to enable finding SCs.

aig runStateMatching(aig ref, aig impl, state r_state, int k,
int kmax) {

 //Find all signal values of reference design
 Vref = performSimulation(ref, r_state, k)
 aig N = addMiter(ref,impl);
 set of node subsets Classes = randomSimulation(N);

 //guided simulation if TB exists
 performGuidedSimulation(N,TB)
 //refine equivalences by BMC from the initial state
 refineClassesUsingBMC(N, k-1, Classes);
 //perform iterative refinement of candidate classes
 do {
 //do speculative reduction of k-1 uninitialized frames
 network NR = speculativeReduction(N, k-1);
 //derive SAT solver containing CNF
 //of the reduced frames
 solver S = transformAIGintoCNF(NR);

 //check equivalences and mark them with constants
 SatSweepingWithConstant (S, Classes, Vref);
 //try to compute target state
 state tg_state = simulate(N,k);
 if(tg_state is computed) return tg_state;
 }
 while (Classes are refined during SAT sweeping);

 //try additional value propagation up to kmax frame
 tg_state = simulate(N,kmax);
 if(tg_state is computed) return tg_state;
 return failure;
}

Fig 5. State matching using k-step induction

Generating accurate initial candidate equivalence
classes dramatically increases performance of the

induction algorithm. In general, the classes are
generated by a short period of random simulation. In
this paper, a guided simulation is also performed
because it provides a better chance to obtain initial
classes. For example, many sequential circuits require
special long term warm up process that needs special
input sequences. In this case, random simulation easily
leads to reset state. We use original BMC and
speculative reduction to establish base case and
assume stage of inductive case, respectively.

SatSweepingWithConstant method is used for proving
stage of inductive case. It proves or disproves the
equivalence classes in kth time-frame. Unlike original
SatSweeping algorithm of ABC, the nodes subjected to
sweeping are not only merged into their representative
but are also marked with a constant value if one of the
nodes belongs to the reference design. The migration
of values from reference frame is done implicitly. The
marked constant values reduce constraints for proving
the equivalence of other nodes.

All the newly detected equivalences based on migrated
values are not SCs but CSCs. In other words, the
detected equivalences are valid only for the time-
frames having the same migrated value assignments.
Therefore, as CSCs are detected iteratively,
unnecessary time-frames are filtered out.

The algorithm terminates when all the register values
of the target frame are computed successfully. The
computation is done by simulation with the values of
CSCs. In the case when the induction algorithm cannot
find a target state, we try to find an alternate matching
between k and kmax by performing additional
simulation with the CSCs found by induction.

In conclusion, our approach is optimized for state
matching problem in the following sense:

 Assigning constants during SAT sweeping
reduces constraints by propagating constants

 The number of detected CSCs is much larger
compared to SCs. Therefore the refinement
process is faster.

4.2 TPSim with State Matching

Combining state matching technique with TPSim
makes it possible to handle sequential transformation
between reference design and target design. In this
case the values of state registers in the reference design
are provided by reference simulation. Our state
matching approach guarantees that the computed state
exists at the same distance from the initial state as in
the reference state. Therefore, restoring the matched
state for target simulation produces the same
simulation result as stand-alone target simulation.

The following are a few applications of TPSim with
state matching.

 Functional regression simulation for sequential
transformations

EC, especially SEC, is relatively less scalable
technique compared to simulation. Therefore,
simulation based regression test is still actively
used. Especially for repeated synthesis tasks,
quick simulation-based verification is more
realistic than EC. With our approach, once
reference design states are saved, regression
simulations can be parallelized.

 Fast dynamic timing verification of sequentially
optimized circuits.

In many practical cases retiming is used for fine
tuning of critical paths after delay annotation. This
type of try-and-fix process usually involves trivial
sequential transformation, yet it must assure the
correctness of functional as well as timing
verification.

The minimum value k to successfully compute a
matched state depends on the values of CSC.
Therefore, it may be possible that the initial state for
some simulation slice may not be computed. To
address this issue, we use k-tolerant model for TPSim
to remove such a block-out period. If k is not sufficient
to find a matching state for particular simulation slice,
the earliest slice having successfully matched state
provides backup by continuing its simulation beyond
its slice boundary (see Figure 6). S1A

-k and S2A
-k are

used to compute S1B and S2B, respectively. Assuming
that S2B fails to be computed, slice n+1 cannot be
simulated in parallel because its initial state is not
known. In order to achieve fully continuous simulation,
simulation from S1B must override slice n+1.

This approach prevents block-out periods caused by
failure to compute a matched state. It is a trade-off
between the cost of the slice simulation and
computation of the matching state.

Fig. 6 TPSim with state matching.

5. Experimental Results

We used aes_core (IWLS 2005 benchmarks) as a
benchmark for the experiments. The testbench for the
design was obtained from opencores [12].

 Matching
with SC

Matching
with

SC&CSC

Refining
SC

Refining
SC&CSC

retime 0.62s 0.47s 1.97s 1.21s

retime
&

refactor
1.41s 0.92s 5.42s 1.43s

Table 1. State Matching results.

Number of Cycles 1M

Conventional timing-annotated simulation 1226s

Functional reference simulation 329s

Timing-annotated Target simulation (1 out of
10 slice)

132s

Reference + Target simulation 461s

Table 2. Pre-layout timing simulation.

Table 1 shows the result for state matching. In this
case, the number of time frames for the induction is
fixed at 4. Both retiming (forward retiming with
minimum delay) and refactoring are done by ABC.

The first and second columns give the time to obtain
target state by using SCs and CSCs. The third and
forth columns represent the time to get final refinement
for both SC and CSC in the given four frames. The
result shows that refining CSC requires less
computational effort than SC. The performance of
state matching is also improved by taking advantage of
CSC. Finding matched state can be completed before
finishing the refinement process if enough migrated
values are generated to compute a target state.

Table 2 represents the performance of TPSim. The
original version of aes_core design is used for
reference simulation. Retimed and re-factored design
with the necessary pre-layout timing information was
used for target simulation. We used standard NC-
Verilog simulator as simulation engine; interfacing
with TPSim module was provided by PLI
(Programmable Language Interface). The initial state
for target slices was obtained by state matching. Since
each slice can be simulated in parallel, we obtained a
3x speedup compared to conventional standalone
simulation, while maintaining the same signal visibility.
Note that the overhead due to state matching is
included in the simulation time of target simulation
and such an overhead is small. Most of the overhead in

these experiments comes from the PLI implementation
to connect simulation core and the TPSim module. It
can be further improved by optimizing the
implementation.

More experimental results for TPSim are available in
[2].

6. Conclusions

Finding state relationship between two designs is in
general a hard problem. This paper introduces a
simpler, yet practical problem of state matching
between a design and its retimed and re-synthesized
version.

To compute a matched target state from a known
reference state, we modified the original SC algorithm
so that it requires much lower computational overhead.
During the iteration of equivalence class refinement,
the values of SCs and CSCs from the reference design
frame are progressively migrated to the corresponding
target design frame. These migrated values are used as
a seed values to compute target state.

We showed the application of signal correspondence
and state matching to temporal parallel simulation
(TPSim), a practical solution to design validation. It is
useful for fast dynamic timing verification as well as
functional regression simulation for verification of
sequential transformations. K-tolerant simulation
approach assures preventing block-out even in the case
when target state for some slices cannot be computed.

For future work, we are planning to investigate state
matching between RTL and gate level design, which is
of great practical interest. Under this model, TPSim is
expected to increase simulation performance
dramatically.

7. Acknowledgements

This work was supported in part by the US National
Science Foundation, award no. CCF-0702506.

8. References

[1] C, Leiserson and J. Saxe. “Retiming synchronous
circuitry.”, Algorithmica Vol 6, pp. 5-35, 1991.
[2] D. Kim, M. Ciesielski, K. Shim and S. Yang, “
Temporal parallel gate-level timing simulation”, High Level
Design Validation and Test Workshop (HLDVT), 2008, pp.
111 – 116.
[3] Pei Hsin Ho, Thomas Shiple, Kevin Harer, James
Kukula, Robert Damiano, Valeria Bertacco, Jerry Taylor,
and Jiang Long. Smart simulation using collaborative formal
and simulation engines. in Proc of ICCAD ’00, pp. 120–126,
Piscataway, NJ, USA, 2000. IEEE Press.

[4] S. Shyam and V. Bertacco. “Distance-guided hybrid
verification with guide.”, in Proc. of DATE ’06, pages 1211–
1216, 3001 Leuven, Belgium, Belgium, 2006. European
Design and Automation Association.
[5] A. Mishchenko et al. “Scalable and scalably-verifiable
sequential synthesis.”, in Proc. of The International
Conference on Computer-Aided Design (ICCAD), pp. 234 –
241, 2008
[6] C. A. J. van Eijk. Sequential equivalence checking
based on structural similarities, IEEE TCAD, 19(7), July
2000, pp. 814-819.
[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,
"Symbolic Model Checking without BDDs," in Proceedings
of TACAS, vol. 1579, LNCS, 1999.
[8] M. Sheeran, S. Singh, and G. Stalmarck, "Checking
Safety Properties using Induction and a SAT Solver," in
Proc. of FMCAD, 2000.
[9] F.Luand, T.Cheng. “IChecker : An efficient checker for
inductive invariants”. in Proc. HLDVT ’06, pp. 176-180.
[10] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,
"Improvements to combinational equivalence checking", in
Proc. ICCAD '06, pp. 836-843.
[11] H. Mony, J. Baumgartner, V. Paruthi, and R.
Kanzelman. “Exploiting suspected redundancy without
proving it”. in Proc. DAC’05.
[12] www.opencores.org

