
1

Formal Verification using Don’t-care and Vanishing

Polynomials
Cunxi Yu, Maciej Ciesielski

Department of Electrical Computer Engineering

University of Massachusetts, Amherst, MA, USA

Email: ycunxi@umass.edu, ciesiel@ecs.umass.edu

Abstract—The paper describes a method of verifying sequential
arithmetic circuits by adding a special type of redundancy,
called “Vanishing Polynomials” and “Don’t Care Polynomials”.
The proof of functional correctness consists in transforming the
polynomial expression at the primary outputs into a unique
polynomial in the primary inputs and comparing the com-
puted expression against the expected specification. Experimental
results show that the technique is efficient and scalable; for
example, a 512-bit serial squarer requiring over 2000 clock cycles
was verified in just 330 seconds. The runtime complexity is linear
and memory complexity is quadratic in the number of gates.

I. INTRODUCTION

Increased use of arithmetic modules in data-intensive appli-

cations makes arithmetic circuit verification is important. Even

if arithmetic components generated by synthesis tool can be

considered “correct by construction” , the problem of verify-

ing non-standard, highly bit-optimized, embedded arithmetic

circuits remains open. It becomes particularly important in

sequential, bit/word-serial arithmetic circuits, where the result

is computed over a fixed number of cycles. In such circuits,

the input is provided serially and the result is accumulated

over a number of cycles to produce an n-bit (or word-

level) result. The goal is to prove that the circuit computes

the required arithmetic function collected sequentially at the

primary outputs.

Even though functional verification of such arithmetic cir-

cuits can be cast as a combinational bounded model problem,

it is still challenging due to a large number of bits in practical

arithmetic circuits. Boolean logic techniques, based on binary

decision diagrams (BDDs) and satisfiability (SAT) solvers,

have limited application to arithmetic circuits as they require

flattening of the design into bit-level netlists, known as “bit-

blasting”. To cope with this issue, this paper addresses the

verification problem by modeling the circuit as an algebraic

system and proving that the polynomial word computed by the

circuit matches the design specification, expressed in terms of

the primary inputs.

An example of the type of circuits considered here is shown

in Figure 1. It is an n-bit serial adder built out of a single-bit

adder, which operates for n clock cycles to produce an (n+1)-

bit result. An equivalent combinational model is obtained

by unrolling the adder n times. The proof of functional

correctness consists in transforming the polynomial associated

with the result Z = zo + 21z1 + · · · 2nzn into a polynomial

expressed in primary inputs, {ai}, {bi}, applied to the circuit

serially; and checking if this polynomial indeed represents

the addition of two input operands: Z = A + B = (ao +
21a1+ · · · 2n−1an−1)+(bo+21b1+ · · · 2n−1bn−1). However,

as demonstrated in the paper, such a straightforward unrolling

may be inefficient from the verification point of view, and

special techniques are needed to make it effective and scalable.

Those techniques are the main focus of this paper.

A[n-1:0]

B[n-1:0]
+

Z[n:0]

FA

D

a0, a1,… an-1,

z0, z1,…zn-1b0, b1,… bn-1,

zn

Fig. 1: Sequential n-bit adder, Z = A+B.

II. PREVIOUS WORK

Several approaches have been proposed for formal verifica-

tion of logic circuits. Most of them are based on a canonical,

graph-based representation, such as Binary Decision Diagrams

(BDDs) [1] and their derivatives, and other hybrid diagrams

[2]. These diagrams helped improve the scalability of formal

methods, but as the size of modern designs grows they lead

to unavoidable memory explosion [3], [4]. To deal with these

issues, word-level canonical representations have been devel-

oped that provide a higher abstraction of the circuit, including

Binary Moment Diagrams (BMDs) [5], Taylor Expansion

Diagrams (TED) [6], and others. These representations offer a

better space complexity but require word-level information of

the design, which is often not available or is hard to extract

from bit-level netlists; for this reason they are not directly

applicable to sequential circuits.

A comprehensive review of algebraic approach to verifi-

cation of combinational arithmetic circuits, applicable to our

work, has been provided in [7]. The sequential aspect of the

arithmetic circuit adds another dimension to the verification

problem since such circuits must be verified not only for

the entire range of input data but also for potentially long

computational sequences or iterations.

A lot of research has been done in sequential equivalence

checking, reachability analysis, state traversal, etc., applied

to control logic, but relatively little has been published on

functional verification of arithmetic circuits. Boolean satis-

fiability (SAT), which is an effective platform for encoding

2

many CAD problems [4], [8], [9], has been used in verification

of both control logic and arithmetic designs. SAT models for

sequential designs typically rely on an Iterative Logic Array

(ILA) representation by unrolling the combinational circuit

component over a bounded number of cycles. Unfortunately,

this technique when applied to modern industrial designs over

a large number of cycles often exceeds the available memory

resources [10].

A method for reducing sequential equivalence checking

(SEC) of sequential logic into an equivalent combinational

equivalence checking (CEC) is presented in [11]. The paper

theoretically investigates when SEC can be reduced to CEC. It

addresses the control part of large industrial designs, including

pipelines but does not discuss the sequential arithmetic circuit

verification. The work of [12] compares ATPG and SAT for

checking safety properties and shows that, for relatively small

circuits, two approaches are equally viable. Other analysis

shows that sequential ATPG-based bounded model checkers

outperform traditional SAT-based techniques, particularly for

large designs [13].

Some attempts have been made to model the arithmetic

circuit verification problem using satisfiability modulo theories

(SMT) techniques. In [14] the circuit is modeled as a bit-

level arithmetic (ABL) network composed of half-adders, rep-

resented as a set of polynomials B. The verification problem,

i.e., proving that the implementation satisfies the specification,

is posed as the reduction of the specification polynomial F
modulo B. The method is limited to combinational arithmetic

networks composed of half adders. In contrast to SAT, SMT

techniques depart from treating the problem in a strictly

Boolean domain and integrate different theories (Boolean

logic, bit vectors, integer arithmetic, etc.) into a DPLL-style

SAT decision procedure [15]. However, SMT solvers still

model the problem as a decision process and are not efficient

at verifying large arithmetic circuits.

Another group of verification methods is Theorem Provers,

deductive systems for proving that an implementation satisfies

the specification, using mathematical reasoning. The proof

system is based on a large and problem-specific set of axioms

and inference rules, such as simplification, term rewriting,

induction, etc. The success of verification using theorem

prover depends on the set of available axioms and rewrite

rules, and on the order in which the rules are applied during the

proof process, with no guarantee for a conclusive answer [16].

While theorem provers may be successful in well-structured

circuits, they are ineffective in handling synthesized designs,

especially the gate-level circuits considered in our work.

III. PRELIMINARIES

The functional verification method described in this paper

extends the combinational verification technique proposed in

[7] to sequential arithmetic circuits. It computes a unique bit-

level polynomial function implemented by the circuit directly

from its gate-level implementation. This is done by rewriting

the polynomial representing encoding of the primary outputs

(the output signature) into a polynomial expressed in terms of

the primary inputs (the input signature), using algebraic model

of the internal gates. The method uses an algebraic model of

the circuit, with logic gates represented by algebraic expres-

sions, while treating signals as strictly Boolean variables. The

following algebraic model is used to represent basic Boolean

gates.

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(1)

Input signature, denoted by Sigin, is a pseudo-Boolean

polynomial in primary input (PI) variables that uniquely rep-

resents an integer function computed by the circuit, i.e., its

specification. For example, input signature for an n-bit binary

adder is Sigin =
∑n−1

i=0 2iai +
∑n−1

i=0 2ibi.
Output signature, Sigout, of the circuit is similarly defined

as a pseudo-Boolean polynomial in the primary output (PO)

signals. Such a polynomial is uniquely determined by the

binary encoding of the output. For example, the output sig-

nature of an unsigned arithmetic circuit with output bits zi is

Sigout =
∑n−1

i=0 2izi.
The proof of functional correctness is based on successively

rewriting the output signature Sigout into a signature in the

primary inputs and comparing it with the expected input

signature Sigin. At each step of the procedure, an intermediate

polynomial generated by the rewriting corresponds to some cut

in the circuit, a set of signals separating primary inputs from

primary outputs. The rewriting process recursively applies Eq.

(1), followed by an algebraic simplification of polynomial

terms to arrive at a unique algebraic expression. It also applies

a Boolean reduction by reducing any occurrence of a nonlinear

term xk, to a single variable x. During rewriting of nonlinear

terms, the size of an intermediate polynomial representing a

cut may increase exponentially, which seriously impacts the

efficiency of the procedure. The size of the peak polynomial,

commonly called the “fat belly”, is a bottleneck for both the

performance (CPU time) and memory used by the procedure.

The choice of the cuts (or, equivalently, the order in which

the variables are eliminated by substitution) has big influence

on the size of the fat belly and the efficiency of the rewriting

process. A number of heuristics can be used to improve the

efficiency, including: efficient data structure in the search of

substituted variables; fast elimination of redundant terms; and

other heuristics to minimize the size of the fat belly [7]. These

techniques alone are not sufficient to avoid potential poly-

nomial size explosion and additional techniques are needed.

Some of them, specific to sequential arithmetic circuits, are

discussed in the remainder of the paper.

A. Vanishing Polynomials

Definition 1 Vanishing Polynomial (VP): Starting with a

Boolean signal v, the rewriting process generates a set of

pseudo-Boolean polynomials P = {p1, p2, ..., pi} (pi is the

polynomial when rewriting reaches PIs). If there is a subset

P ′={p1, p2, ..., pi} (2 < i < n) such that each p is non-

zero polynomial, and pi+1=pi+2=...=pn=0, P ′ are vanishing

polynomials.

Vanishing polynomials have been used to test if two fixed-

size datapaths F1, F2 are equivalent by testing whether or

3

not a difference polynomial, F1-F2, reduces to 0 over Zm
2

for the given bit-width [17]. Vanishing polynomials over

Zm
2 have also been used as an optimization technique in

high-level synthesis [18] by adding redundancy to the fixed

bit-width polynomial computation in order to minimize the

implementation. The vanishing polynomials in our work are

similar to those used in high-level synthesis, but serve a

different purpose. They are pseudo-Boolean expressions that

always evaluate to 0 and insertion of such polynomials into the

design will reduce the complexity of the verification process.

The use of vanishing polynomial in our work is illustrated

with a 2-bit squarer circuit in Figure 2(a), with mathematical

computation done by the circuit shown in Fig. 2(b).

z
3

z
2

z
1

z
0

a
1

a
0

x
1

x
2

x
3 x

4

f
1

f
2

f
3

f
0

x
5

a
1

a
0

z
3

z
"

z
#

z
0

a
0
a
�

a
1
a
0
a
0

a
1

a
1

a
0

a
1

a
0

(a) (b)

Fig. 2: A 2-bit combinational squarer circuit.

Close examination of the result shows that bit z1 = 0, as

it is a sum bit of two identical terms, a1a0 and a0a1. The

resulting carry out bit (if any) is shifted one bit to the left and

added to a1 to produce z2. Hence, with z1 = 0, the initial

starting point is Sigout = f0 = 8z3+4z2+z0 (without z1). It

is then transformed into f1 using substitutions z3 = x1x5 and

z2 = x1+x5−2x1x5 (c.f. Eq. 1). Subsequent rewriting, using

equation for x5 = x2x3, results in f2 = 4x1 + 4x2x3 + z0.

It is then transformed (using equations for the AND gates),

to produce Sigin = f3 = 4a1 + 4a1a0 + a0. Comparing this

result with the expected specification, Fspec = (2a1 + a0)
2 =

4a1 + 4a0a1 + a0, shows that the circuit correctly computes

the square function.

Now let us include the vanishing polynomial for z1, which

in terms of the immediate signal variables can be written as

z1 = x2+x3− 2x2x3. In the first step, f0 is transformed into

f1 as before. Then, f2 is obtained from f1 using equations

for x5 and z1, resulting in f2 = 4x1 + 2(x2 + x3) + z0.

Finally f3 is obtained by substituting variables x1, x2, x3, x4

with the corresponding equations for AND gates in terms of

the primary inputs, a0, a1. The result is the input signature

Sigin = f3 = 4a1 + 4a1a0 + a0. It also demonstrates that

this is a correct arithmetic function. However, note that the

intermediate form, f2 = 4x1 + 2(x2 + x3) + z0, is simpler

than the one computed without z1, as it does not contain any

nonlinear terms.

In general, vanishing polynomials contain terms that cancel

other monomials during the cut rewriting and keep them

smaller, especially for sequential arithmetic verification. This

is because that many internal signals evaluate to zero iff the

rewriting process reaches the PIs. These internal signals exit in

the cascade arithmetic functions which are created by unrolling

process. We demonstrate this using a Multiply-Accumulator in

Section 4.1.

B. Don’t-care Polynomials

Definition 2 Don’t-care Polynomial (DCP): Assuming

d is a Boolean signal and P={p1, p2, ..., pn} is a set of

polynomials of d which are generated by rewriting, if d

is included in the arithmetic algorithm but excluded in the

design, d and P are Don’t-care Polynomials.

Don’t-cares are critical in verification because they can

reduce the complexity of the netlist to be analyzed by equiv-

alence checking. For example, in [19],[20] it is demonstrated

that generating observability don’t-cares for node merging,

followed by SAT-based verification, greatly improves scala-

bility and performance over other solutions. The don’t-cares

in our work are similar to those in [19], [20]. In our case,

however, the role of don’t-cares is to minimize the size of

polynomials in each substitution step, rather than minimizing

the computational complexity of SAT solving.

For example, let’s assume that there is a 3-bit 2’s com-

plement adder, which the three LSBs x[2 : 0] are used in

the design. The MSB x3 is the sign bit of this addition.

Based on Definition 2, x3 can be used as a don’t care

polynomial. According to [7], the output signature should

be x0 + 2x1 + 4x2. However, we observe that the internal

expressions explore in the rewriting process without don’t care

signal, x3. We compare the internal expressions with/without

x3 in Figure 3. We can see that the peak size (i.e. the number

of monomials) of the internal expressions without x3 is twice

larger for a 3-bit adder. For larger designs, without the don’t

cares, the rewriting process will contain a 100x larger peak

internal expressions which causes memory explosion problem.

Including this bit as part of the arithmetic algorithm can

simplify the verification process because it contains potentially

cancelable monomials. Similarly, we are able to verify a n-bit

comparator by including the output bits [n − 2, 0] of a n-bit

subtractor.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

!" %" '" (")" $!" $%" $'" $(" $)" %!"

!
"
#
$
%
&'
(
)'
#
(
*
(
#
+,
-.
!

/%0&+1*2'.3%4!

05'6(*73'8,&%'

05('6(*73'8,&%'

Fig. 3: Compare the size of internal expressions with, without don’t
care polynomial x3.

Another type of don’t-care polynomials can be generated

in unbounded sequential circuits; they can be obtained by

expanding the reachable states to those are not actually reached

during the computation within the given range of input vectors

[11] (in our case, within the given number of serial bits).

A bit-serial squarer circuit, described in Section 4.2, will

demonstrate this type of don’t-care polynomial.

4

Including the vanishing and don’t-care polynomials

amounts to introducing redundancy into the original design,

with the goal to improve the verification performance and

scalability. This technique can be applied verbatim to formal

verification of hardware for cryptography applications, e.g.,

extension fields arithmetic circuits, used in Advanced Encryp-

tion Standard (AES).

IV. SEQUENTIAL VERIFICATION

In this section we show the application of VP and DCP to

several types of sequential arithmetic circuits.

A. Multiply-Accumulator (MAC)

Consider an n-bit unsigned MAC circuit shown in Figure 4.

The circuit should compute the result R =
∑k

i=1 AiBi+C0 in

k cycles, for k sets of n-bit inputs, Ai[0...n−1], Bi[0...n−1],
where i = 1, ..., k, and with some carry input vector C0.

X

+

A0, A1,…

B0, B1,…

init

Accumulator

R

Fig. 4: Original MAC circuit: R =
∑

i
Ai ·Bi + C0.

Figure 5 shows the unrolled version of the circuit for n = 4
bits and k = 2 cycles. The proof of functional correctness is

obtained by transforming Sigout =
∑9

i=0 2
iri using algebraic

equations of internal gates of the circuit into an input signature,

using the rewriting technique discussed earlier. The resulting

input signature Sigin is a function of the 4-bit primary inputs

A0, B0, A1, B1 and C0.

+

X X

+

8 8

9
4

8-bit Adder 9-bit Adder

4

4

4

4

4-bit mult

A0

B0 B1

A1

init

4-bit mult

8

vanishing

9

vanishing

R [8:0]

MSB

MSB

Fig. 5: MAC circuit unrolled over two cycles.

Note that the bit-widths of the two inputs to the first adder

circuit in the unrolled model are different: they are 4-bit

and 8-bit wide. Similarly, the bit-widths of the second adder

are different (8 and 9 bits). This bit-width mismatch can be

adjusted by the sign extension applied at the shorter inputs.

Since the extension bits are all ”0”, the most significant bit,

i.e., the carry-out of the first adder, always evaluates to 0 (it is

a Vanishing Polynomial). This, combined with the mismatch

between the inputs to the second adder, cause the two MSBs

of the output to evaluate to 0 as well. Therefore, it may

seems logical to exclude the two most significant bits from

the computation to simplify the model.

However, such a straightforward application of the signature

rewriting scheme to this circuit is not efficient, as it may

result in a large number of product terms of the intermediate

signature before reaching the PIs. As a result, the CPU time

and memory consumption can be prohibitive. For example, it

takes more than 190 seconds of the CPU time and requires 2

GB memory to verify a 4-bit MAC circuit on our computing

platform (see the Results section).

To simplify and speed up the verification procedure, we

take advantage of the structure of the unrolled model by

identifying the Vanishing Polynomials associated with the 0-

function bits and adding them to the output signature Sigout.
As mentioned before, adding such a redundancy can simplify

the elimination and substitution procedure during signature

rewriting. Specifically, many cancellations will occur between

the terms of the vanishing polynomial and other terms of the

computed signature during the elimination and substitution

process. After adding the vanishing polynomials, we could

verify a 64-bit MAC in just 4 seconds, with only 142 MB

memory – compared to 190 seconds and 2 GB memory for

the 4-bit version of the circuit (see Table II).

B. Serial Squarer

+

4D

D

+

6D

D

D D

+

2D

D

D

+

D

D

D D D

a3, 0, a2, 0, a1, 0, a0
2D 2D2D

2D

2D

Fig. 6: A 4-bit Serial Squarer.

Another type of redundancy encountered in bit-serial arith-

metic circuits appears in a serial squarer circuit [21] which

computes a square value of an n-bit integer input. An example

of a 4-bit serial squarer is shown in Figure 6. The input

bits of an integer number are provided serially over a single

line, interleaved with 3 zeros, and outputs bits of the result

are collected serially at the single output line. The proof of

functional correctness is obtained by transforming the Sigout
using algebraic equations of internal gates of the circuit into

an input signature. The delay elements D are modeled by

unrolling each module 2n times. The fully unrolled model is

too large to be shown in the paper; a simplified model is shown

in Figure 7.

To make the verification efficient, we extend bit-widths

of the adder in the serial squarer circuit. Each of the four

1-bit adders is expanded over eight cycles, using standard

techniques, into a combinational 8-bit adder. The resulting 8-

bit adders as shown in Figure 7. The 8-bit input, B2, to the

5

+ +
A1

B1 B2

8

88

+

B3

8

+

B4

8

12

8
Z [7:0]

VPs

DP

DP=Don’t-care polynomial , VPs=Vanishing polynomials

9 1110

3

Fig. 7: Unrolled 4-bit Serial Squarer.

second stage adder requires sign extension, while the other

input is already 9-bit wide, as generated by the previous adder.

Similarly, the inputs to the remaining two adders, B3 and B4

are sign-extended by 2 and 3 bits, respectively. As a result,

the 12-bit output is composed of extra four bits. The most

significant three of those bits are always 0 because of the sign-

extension; they can be represented by vanishing polynomials.

The other bit however, is not a 0-functions, but a Don’t Care,

providing the two’s complement corrector to the remaining 8-

bit adder. This represents a reachable state that is unreached

in the design.

By including both types of polynomials (vanishing and don’t

cares), the computation of the input signature can be greatly

simplified. Specifically, it is used to simplify the algebraic

equations during the rewriting process in order to minimize

the size of the “fat belly”.

V. EXPERIMENTAL RESULTS

The sequential verification method described in this paper

has been implemented as a C++ program and tested on a

number of sequential, serial arithmetic circuits, taken from

[21] and [22]. The experiments were run on a PC with

Intel Processor Core i5-3470 CPU 3.20GHz ×4 and 15.6 GB

memory. Table I includes the CPU time and memory results

for integer multiply-accumulator and add-shift multiplier cir-

cuits (an instance of the s344/s349 circuit from ISCAS-89

benchmarks, without the counter), extended to 256 bits.

Table II summarizes the benefit of using vanishing poly-

nomials and don’t care polynomials in computing the input

signature, and its effect on solving the sequential arithmetic

verification problem. The table shows that using both, don’t

care and vanishing polynomials, gives best solution in CPU

time and memory usage. The reason why using the don’t

care polynomials only is better than using the vanishing

polynomials only is that the don’t care bit, which is the first

unreached state in the serial squarer design, contains more

information and can produce more cancellation of intermediate

terms.

Circuit
256-bit

Gates (Unrolled) CPU [sec] Mem

GF (2256) Adder 3.5 K 0.21 1.1 MB

Add-Shift-Mult 587K 31.81 1.2 GB

2-Cycle MAC 1,049K 66.71 2.3 GB

6-Cycle MAC 3,148K 203.63 6.9 GB

TABLE I: Verification results for GF(2256) Adder, MAC, and Add-
shift Multipliers

To further analyze the effect of vanishing and don’t care

polynomials, we monitored the largest-size polynomial during

rewriting (the fat-belly). The results are shown in Figure 8. The

horizontal axis represents the time-line of the rewriting process

as percentage of the complete run; the vertical axis represents

the size of the expression at each point of the computation.

We can see that the worst case corresponds to the case when

output signature contains only PO signals (without vanishing

or don’t care polynomials). Including both types of redundant

polynomials significantly reduces the size of fat belly and of

the largest monomial. In summary, including don’t-care and

vanishing polynomials can improve efficiency and scalability

of arithmetic verification.

Our verification method was also compared to SAT and

SMT techniques for a bit-serial squarer circuit, ranging from

4 to 512 bits. The results, showing CPU runtime and memory

usage, are given in Table III.

SAT comparison: The functional verification problem was

modeled as Boolean satisfiability (SAT) on a product circuit,

generated with a miter, and solved using the ABC system [23].

A miter was created between the unrolled serial squarer circuit

and the reference design (a multiplier with two inputs tied

together), and the miter’s output was tested for unSAT. Several

SAT tools were tested, including ABC (cec command) [23],

miniSAT [24] , lingeling [25], and minisat blbd, the winners

of 2014 SAT competition [26].

For SMT comparison, we tested Boolector 2.0.0 (first place

in SMT Competition 2014) [27], as well as Z3, and CVC4

tools. We tried two models: 1) We directly translated the

algebraic equations of the unrolled serial squarer into SMT2

format and modeled the specification (Sigout-Sigin) as a

Pseudo-Boolean polynomial using Boolean vector operations.

Among the SMT solvers, Boolector produced the best result

for the serial squarer circuit, but it was only able to solve up to

an 8-bit version of the circuit in 3,000 seconds of CPU time. 2)

The product circuit (miter) was translated directly into SAT by

converting the CNF model into SMT2 format. This approach

showed better performance; it is the one shown in Table III.

As shown in the tables, our method has approximately linear

CPU time complexity for all the tested circuits, and wins with

the best SAT and SMT tools by several orders of magnitude

of CPU times for designs above 16 bits.

VI. CONCLUSIONS

We introduced an efficient method for functional verifica-

tion of gate-level sequential arithmetic circuits. This method

goes beyond simple unrolling to a sequential circuit into a

combinational one, as it applies vanishing (VP) and don’t-

care (DP) polynomials that are specific to sequential circuit

operation. In addition to arithmetic verification, the proposed

procedure can also be used to derive (i.e., extract) an arithmetic

function implemented by the circuit by computing its input

signature from the known output signature. We demonstrated

that inserting a useful type of redundancy, the VP and DP,

can greatly improve the verification time and scalability. To

automatically generate VP or DP during unrolling, it requires

certain account of domain knowledge of the circuit under

verification, which is the current limitation.

ACKNOWLEDGMENT: This work was supported by a grant

from the National Science Foundation under award CCF-1319496.

6

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

 o
f

m
on

om
ia

ls

Rewritting process (%)

Number of monomials

All included
POs Only

POs+Don’t-care
POs+Vanishing

Fig. 8: Evaluation of Don’t Care and Vanishing polynomials on a 4-bit serial squarer.

Size

2-Cycle Integer MAC Serial Squarer

Vanishing Poly POs Only Vanishing+Don’t Cares Don’t Cares Only Vanishing Only POs Only

CPU [sec] Mem CPU [sec] Mem CPU [sec] Mem CPU [sec] Mem CPU Mem CPU Mem

4 0.01 2.2 MB 190.86 2.1 GB 0.01 2.3 MB 0.13 11.3 MB - MO - MO

6 0.02 3.0 MB - MO 0.04 3.1 MB 3.94 205.2 MB - MO - MO

8 0.06 3.9 MB - MO 0.06 4.2 MB - MO - MO - MO

64 4.24 142.1 MB - MO 4.71 161.8 MB - MO - MO - MO

TABLE II: Effect of Vanishing and Don’t Care Polynomials for MAC and Serial Squarer (MO = Memory out 8 GB)

Serial Squarer Our SAT [sec] SMT [sec]

Size Clk Cycles #.Gates CPU [sec] Mem minisat ABC lingeling minisat blbd Boolector Z3 CVC4

4 11 255 0.01 2.32 MB 0.00 0.01 0.00 0.00 0.00 0.00 0.01

16 59 4.33K 0.26 11.7 MB 35.96 61.99 18.34 12.45 19.87 20.86 92.56

20 75 6.87K 0.42 17.3 MB 1698.53 TO 720.33 549.41 533.59 1045.18 TO

24 91 9.92K 0.62 24.1 MB TO TO TO TO TO TO TO

64 251 71.2K 4.71 161.8 MB TO TO TO TO TO TO TO

128 507 285K 18.63 667.3 MB TO TO TO TO TO TO TO

256 1019 1.14M 77.12 2.63 GB TO TO TO TO TO TO TO

512 2043 4.58M 331.64 10.5 GB TO TO TO TO TO TO TO

TABLE III: Sequential Squarer results: comparison with SAT and SMT (TO = Time out after 3600 sec)

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986.

[2] D. Pradhan and e. I.G. Harris, Practical Design Verification. Cambridge
University Press, 2009.

[3] M. Ganai and A. Gupta, SAT-based scalable formal verification solu-

tions. Springer, 2007.
[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking

without BDDs. Springer, 1999.
[5] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits with

binary moment diagrams,” in 32nd DAC. ACM, 1995, pp. 535–541.
[6] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A

Canonical Representation for Verification of Data Flow Designs,” IEEE

Trans. on Computers, vol. 55, no. 9, pp. 1188–1201, Sept. 2006.
[7] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification

of gate-level arithmetic circuits by function extraction,” in ACM Design

Automation Conference (DAC-2015), 2015.
[8] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan,

“An analysis of sat-based model checking techniques in an industrial
environment,” in Correct hardware design and verification methods.
Springer, 2005, pp. 254–268.

[9] D. Kaiss, M. Skaba, Z. Hanna, and Z. Khasidashvili, “Industrial strength
sat-based alignability algorithm for hardware equivalence verification,”
in FMCAD. IEEE, 2007, pp. 20–26.

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in computers, vol. 58, pp. 117–148, 2003.

[11] H. Savoj, A. Mishchenko, and R. Brayton, “Sequential equivalence
checking for clock-gated circuits,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 33, no. 2, pp. 305–317,
2014.

[12] G. Parthasarathy, C.-Y. Huang, and K.-T. Cheng, “An Analysis of ATPG
and SAT Algorithms for Formal Verification,” in HLDVT. Proceedings.

Sixth IEEE International. IEEE, 2001, pp. 177–182.
[13] D. G. Saab, J. A. Abraham, and V. M. Vedula, “Formal Verification using

Bounded Model Checking: SAT versus Sequential ATPG Engines,” in
VLSI Design, 2003. Proceedings. 16th International Conference on.
IEEE, 2003, pp. 243–248.

[14] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch,
and G. Greuel, “Stable: A new qf-bv smt solver for hard verification
problems combining boolean reasoning with computer algebra,” in
DATE, 2011, pp. 155–160.

[15] A. Biere, M. Heule, and H. van Maaren, “Handbook of satisfiability,”
vol. 185, 2009.

[16] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham,
“Automatic Verification of Arithmetic Circuits in RTL using Stepwise
Refinement of Term Rewriting Systems,” IEEE Trans. on Computers,
vol. 56, no. 10, pp. 1401–1414, 2007.

[17] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan, “Exploiting van-
ishing polynomials for equivalence verification of fixed-size arithmetic
datapaths,” in ICCD. IEEE, 2005, pp. 215–220.

[18] S. Ghandali, B. Alizadeh, M. Fujita, and Z. Navabi, “Automatic high-
level data-flow synthesis and optimization of polynomial datapaths using
functional decomposition,” Computers, IEEE Transactions on, 2014.

[19] Q. Zhu, N. B. Kitchen, and A. Kuehlmann, “Sat sweeping with local
observability don′t-cares,” in 43rd annual DAC, 2006, pp. 229–234.

[20] S. M. Plaza, K.-h. Chang, I. L. Markov, and V. Bertacco, “Node mergers
in the presence of don’t cares,” in ASP-DAC’07. IEEE, 2007, pp. 414–
419.

[21] A. E. Cohen and K. K. Parhi, “Architecture optimizations for the rsa
public key cryptosystem: a tutorial,” Circuits and Systems Magazine,

IEEE, vol. 11, no. 4, pp. 24–34, 2011.

[22] I. Koren, Computer arithmetic algorithms. Universities Press, 2002.

[23] A. Mishchenko et al., “Abc: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[24] N. Sörensson and N. Eén, “Minisat 2.1 and minisat++ 1.0 - sat race
2008 editions,” SAT, p. 31, 2009.

[25] A. Biere, “Lingeling, plingeling, picosat and precosat at sat race 2010,”
FMV Report Series Technical Report, vol. 10, no. 1, 2010.

[26] “Sat competition 2014,” URL http://www.satcompetition.org/2014/results.shtml,
July 14-17 in Vienna, Austria.

[27] R. Brummayer and A. Biere, “Boolector 2.0.0, winner of smt competi-
tion 2014,” 2014.

