
A Case Study of Analyzing Imprecise Adders using

BDDs

Cunxi Yu, Maciej Ciesielski

Department of Electrical Computer Engineering

University of Massachusetts, Amherst, MA, USA

Email: ycunxi@umass.edu, ciesiel@ecs.umass.edu

Abstract—Imprecise adders are implemented to improve the
performance and power consumption of arithmetic circuits with
forgivable inaccurate result. These types of designs are extensively
used in digital computer systems for approximate computing. One
of the challenges in designing imprecise adders is evaluation of
output quality. Currently, the most popular technique to evaluate
the approximate designs are random simulation and error
estimation. These techniques cannot provide exact error analysis.
In this paper, we present a formal approach of evaluating the
imprecise adders based on BDDs. The proposed framework can
measure Exact error rate (EER) of the designs. Additionally,
we present a method for test generation (TG) of approximate
adders, which can be used for implementing correlation logic.
The proposed technique has been demonstrated using a number
of imprecise adders (VLSA and ACA) with large number of
errors (over1 billion).

I. INTRODUCTION

One of the greatest challenges of the modern VLSI designs

is to reduce the high power consumption. Although circuit-

level techniques, such as dynamic voltage and frequency scal-

ing (DVFS), as well as near-threshold technique have proved

effective in power reduction, they are still fundamentally

limited by the critical path of the arithmetic circuits. To over-

come this limitation, several approximate designs have been

proposed that exploit a tradeoff between computation accuracy

versus performance and power [1][2][3][4]. The approximate

designs have proved to significantly improve energy efficiency

for noise-tolerant applications. Especially, for applications

related to artificial neural networks, approximate arithmetic

designs generate sufficient accurate results compared to the

traditional designs, which produce absolute accurate results

[5][3][6].

One of the challenges for CAD tools in the approximate

circuits design flow is evaluation of such designs. The key of

evaluating approximate designs is to efficiently evaluate the

output quality of approximate designs. Several error metrics

have been used to evaluate the approximate designs. Error

metric is a unit to measure the quality of the approximate

designs compared to the correct designs. The most important

error metrics are Error rate (ER) and Error significance

(ES). ER represents the percentage of disparity between the

correct and the approximate design. ES addresses the error

magnitude. Other error metrics have been introduced, such as

Mean squared error [7] to evaluate specific applications. Most

designers evaluate their approximate designs using simulation,

which is not accurate and time consuming. Chan et al.[8]

proposed an automatic statical approach to estimate the output

quality of the approximate designs which is able to evaluate

the approximate designs using a number of error metrics. Al-

though they proposed a regression-based technique to improve

the accuracy of the EM estimation, EMs are still not absolute

accurate. Additionally, the test patterns which produce the

error output are important for implementing error detection

and correlation logic, which is not addressed in [8].

In this paper, we propose an automatic formal approach of

evaluating the imprecise adders based on binary decision dia-

grams (BDD) [9]. Our approach measures the imprecise adders

using Exact error rate (EER), or exact error boundary, without

any estimation. In addition, we take a fresh look at generating

the test patterns which explicitly cover all the errors. This

means that we are able to explicitly diagnose the errors

which is important for improving the design qualities. We

demonstrate our technique using number of Variable Latency

Speculative Adder (VLSA) [2] and Accuracy Configurable

Adder (ACA) [3] adders that are implemented using different

size of group adders without error correlation logic. We make

the following contributions:

1) We obtain the EER of a number for VLSAs and ACAs.

We demonstrate that our approach is able to obtain the EER

of 512-bit designs when group size k = 32 in 3 minutes.

2) We analyze the designs by measuring the EER of

the design and the individual output bit. We show the EER

distribution of the output bits in Section 5.

3) We introduce the modeling to obtain the EER of the

design with ES range, e.g., the EER when the numerical

difference between the correct and the actual results are in

the range [26, 28].

4) Our technique can explicitly generate the test patterns

that cover all the errors. In addition, we show the distribution

of these error input vectors (decimal).

II. BACKGROUND

It is assumed that the reader is familiar with basic concepts

of Boolean functions, Boolean networks, and BDDs. This

section reviews basic terms related to approximate computing

and formal analysis used throughout the paper.

A. Boolean function and BDDs

Bryant [9] introduced a concept of reduced, ordered BDDs

(ROBDDs), along with a set of efficient operators for Boolean

a

b

c

z

a b c z

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a) (b)

a

c

b

10

z

(c)

1 3

2

a b c

1 0 - 1

2 1 0 1

3 1 1 -

(d)

0 0 1

0 1 1

1 1 0

1 1 1

Fig. 1: Boolean function, 1-minterms, and BDD.

function manipulation (symbolic manipulation), and proved

the canonicity property of ROBDDs (Figure 2). Recently, a

BDD-based minimization technique for approximate comput-

ing is presented in [1]. The authors proposed that the approx-

imate circuit can be designed automatically by minimizing

the BDD representation, which is limited to a error threshold.

The error rate can be calculated in the minimization process.

In this work, we study the quality of the imprecise adders by

measuring the exact error rate using BDDs. Additionally, we

propose the BDD-based test generation for imprecise designs.

A minterm is a product term with all variables for which the

function evaluates to 1. Minterms which produce output in 1(0)

are called 1-minterm (0-minterm). It is well know that finding

all the 1-minterms(0-minterms) can be done by searching all

the paths from the root to node 1(0) in the BDD. Figure 1 (b)

shows a truth table of the boolean logic in (a). This function

has been converted into BDD, shown in Figure 1 (c). The 1-

minterms can be obtained by the following paths: 1) ā →c;

2) a → b̄ → c; 3) a → b. The 1-minterms are shown in

Figure 1 (d). We can see that these minterms may contain

don’t cares depending on the number of variables in each

path. The number of input vectors covered by one minterm

equals to 2n, where n is the number of don’t cares included

in the minterm. Therefore, we calculate the probability of

z=1 as (2+1+2)/23=5/8. Our approach of evaluating the EER

and generating test patterns is modeled as collecting the 1-

minterms using BDD, as presented in Section 3.1.

B. Imprecise Adders

Variable latency speculative adder (VLSA) is implemented

by dividing the long addition into smaller groups of additions

of length k [2]. The first group computes the lowest k-bit

outputs (i.e. from LSB to (k - 1) bit). Other group adders

are responsible for generating the output using the MSB of

each group adder. For example, the carry-chain of a 16-bit

VLSA when k=8 (Figure 2) has been reduced from 16-bit to

8-bit addition. However, the area cost of this design is high

since each group overlaps over 1 output bit.

To improve the area cost of the approximate adders, Error-

Tolerant Adder (ETA) [4] has been introduced by dividing the

long addition into a number of non-overlapping groups. How-

ever, this introduces many more errors. Accuracy configurable

8-bit Adder

A[7:0] B[7:0]

Z[7:0]

8-bit Adder

A[8:1] B[8:1]

Z[8]

MSB

8-bit Adder

A[9:2] B[9:2]

Z[9]

MSB

8-bit Adder

A[15:8] B[15:8]

Z[15]

MSB

…

8-bit Adder

A[7:0] B[7:0]

Z[7:0]

8-bit Adder

A[11:4] B[11:4]

Z[11:8]

8-bit Adder

A[15:8] B[15:8]

Z[15:12]

(a)

(b)

Fig. 2: (a) 16-bit VLSA, k=8 (b) 16-bit ACA, k=8

adder (ACA) [3] uses only the result of the upper half part of

each addition so as to improve accuracy. A 16-bit ACA (k=8)

is shown in Figure 2 (b). We can see that the carry-chain is

reduced to 8-bit long addition and the number of group adders

is reduced to 3.

C. Evaluation of Approximate Designs

The problem of evaluating imprecise adders can be in-

formally defined as ”measuring the dissimilarity between an

imprecise adder and a regular adder”. To quantify errors in

approximate designs, error metrics have been introduced such

as Error rate and Error significance. Error rate (ER) is the

percentage of instances in which output value is different from

the correct value. Error significance (ES) is the numerical

difference between the correct and actual output results; this

quantifies the amount of error. The designers evaluate the

imprecise adders using random simulation methods [2][4][3].

Obviously, the simulation-based technique is limited by the

runtime and evaluation accuracy. Error estimation techniques,

such as interval-based approach [10], and statistical analysis

[8], can quickly evaluate the approximate designs but suffer

from estimation accuracy problems. For example, if the actual

error distribution varies greatly within one interval, the estima-

tion will be inaccurate. However, the absolute error evaluation

has never been discussed. Additionally, test generation (TG)

of approximate designs is important for diagnosis of errors

input

AND

OR

4-bit RCA

Z0

Z1

Z2

Z3

AND

OR

4-bit VLSA

Z0

Z1

Z2

Z3

miter

s0

s1

s2

s3

Fig. 3: Modeling

which can be used to efficiently design the correlation logic.

The basic notations are defined as following: assuming

the imprecise adder is n-bit wide, I={i1, i2, ..., i22n} is

the set of all input vectors; each i contains two operands.

There is a subset of input vectors Ierror={x1, x2, ..., xm}
such that the output value of the imprecise adder is different

compared to the correct adder (e.g. RCA). Exact error rate E
= m/22n. Assuming that the function of the correct adder and

the imprecise adder are F and F ′, ES can be represented as

D = {δ1, δ2, ..., δm}; where each δi = | F(xi) - F ′(xi) |.

III. IMPLEMENTATION

One of the key components of the hardware verification

methodology is Combinational Equivalence Checking (CEC).

Functional equivalence of two designs is formally solved using

existing BDD or SAT based methods. Given two designs, the

traditional CEC tool returns ”equivalent” or ”not equivalent”.

Equivalent means that for any input vector I = {i1,i2,..., in}
the two designs always produce the same output. If the designs

are not equivalent, this means that there is a subset of input

vectors Ierror for which the two design produce different

outputs. However, the current formal equivalence checking

methods do not offer any method for finding Ierror.

A. Modeling

To complement our method with BDD, we formulate the

problem using the modeling similar to CEC. The modeling is

basically using XOR gates to check the equivalence, followed

by a word wide OR gate, called ”miter”. Additionally, we add

extra primary outputs which are the output signals of these

XOR gates. Ripple-Carry Adder (RCA) is used as a reference

design. The model of 4-bit VLSA (k=2) is shown in Figure 3.

The extra primary outputs {s0, s1, s2, s3} are used to evaluate

the quality of the each output bit and miter is used for the

entire design. Additionally, ES can be modeled using these

extra POs as s0+2s1+4s2+... +2n−1sn−1. The next step is

to implement this model with BDD. If the two designs are

equivalent, the BDD will be reduced to a 0-BDD. Otherwise,

the BDD is not empty and contains a number of paths from the

root to node 1 in the BDD. These paths indicate the patterns

which cause errors. We can collect all the input vectors for

which the function evaluates to 1 by traversing the graph

Fig. 4: BDD of 4-bit VLSA evaluation model

(Figure 1), and the EER can be calculated based on these

patterns.

B. Case study: 4-bit VLSA

We illustrate this technique using a 4-bit VLSA (k=2),

which contains three 2-bit adders. The first group adder pro-

duces output z0, z1 with two operands A[1 : 0], and B[1 : 0].
The output bit z2, z3 are generated by two 2-bit adders (MSB)

whose the operands are A[2 : 1], B[2 : 1] and A[3 : 2], B[3 : 2]
respectively. The BDD of this model is shown in Figure 4.

Based on the 4-bit VLSA design, we can see that output z0
and z1 are error-free. The BDD shows that s0 and s1 are 0-

BDDs, which proves that z0 and z1 are error-free. Meanwhile,

we can see that s2, s3 and miter are not 0-BDDs, which means

that they are not error-free. To measure the exact Error rate,

we only consider the paths from the root to node 1. Each path

represents a 1-minterm in the model. The Error rate (ER) and

test vectors can be automatically obtained by collecting all

the paths to 1. For example, we can see that there are two

paths from root s2 to 1: (a0 → b0 → a1 → b1) and (a0 →
b0 → a1 → b1). The corresponding 1-minterms or error test

vectors of the 4-bit VLSA are shown in Table I (Ierror of s2 =

{(xx01,xx11), (xx11,xx01)}). The total number of error input

vectors is 4·4·2 = 32. Hence, the ER of z2 is 32/28 = 12.5%.

We collect the error input vectors and ER of z3 (18.75%) and

the miter (25%) using the same technique (Table I).

IV. EXPERIMENTAL RESULTS

The technique described in this paper was implemented

in C++ using CUDD 2.4.0 package [11]. The program was

tested on a number of combinational imprecise adders [3][2]

with different group sizes. The experiments were conducted

on a PC with Intel Processor Core i5-3470 CPU 3.20GHz

x4 with 15.6 GB memory. In this section, we demonstrate

that our tool can efficiently evaluate the output quality of the

imprecise adders using different parameters. Note that we are

TABLE II: Error rate of VLSAs and ACAs and the CPU runtime of evaluating 64-bit designs.

VLSA ACA

k 16-bit k 32-bit k 64-bit Runtime k 16-bit k 32-bit k 64-bit Runtime

4 34.04% 8 4.636% 8 10.497% 0.11 s 4 47.79% 8 16.73% 8 34.85% 0.03 s

5 16.67% 10 1.702% 10 2.613% 0.24 s 6 20.98% 10 7.431% 10 15.65% 0.03 s

6 7.751% 12 0.244% 12 0.633% 0.26 s 8 5.859% 12 3.061% 12 6.757% 0.03 s

7 3.551% 14 0.0549% 14 0.152% 0.11 s 10 3.027% 14 1.160% 14 3.069% 0.03 s

8 1.563% 16 0.0112% 16 0.0366% 0.10 s 12 0.769% 16 0.389% 16 1.161% 0.03 s

9 0.684% 18 2.67E-3% 18 8.77E-3% 0.26 s - - 18 0.195% 18 0.584% 0.02 s

10 0.293% 20 5.72E-4% 20 2.10E-4% 0.10 s - - 20 9.76E-2% 20 0.244% 0.02 s

TABLE I: Bit-vector Ierror of z2, z3 and the entire 4-bit VLSA (x =
don’t care)

s2 s3 miter

A B A B A B

xx01
xx11

xx11
xx01

x001
x010
x011
x011
x110
x111
x111

x111
x11x
x101
x11x
x011
x001
x01x

x001
x010
x011
x011
x011
x101
x110
x111
x111
x111

xx11
x11x
x001
x101
x11x
xx11
x01x
x001
x01x
x101

not evaluating the performance of the adders, i.e. the trade-

off between accuracy and cost. We only measure the output

quality of different imprecise adders.

A. Error Analysis

Table II shows the Exact Error rate (EER) of 16-bit, 32-bit

and 64-bit VLSAs and ACAs with different group size k. The

columns Runtime show the CPU time of evaluating the 64-bit

designs. The EER of all the designs shown in Table II can be

obtained in a fraction of a second. Additionally, we test our

tool on a 512-bit VLSA adder with the group size of 32. It

took only 152.2 seconds of CPU time and 28.2 MB memory.

Our tool also can evaluate the individual output bit quality

using the extra primary outputs in the modeling presented in

Section 3. We demonstrate this feature using the the same

designs as in Table II. The results are shown in Figure 5.

Figure 5(a), (b) and (c) show the error distribution of the output

bits of 16-bit, 32-bit, and 64-bit ACA adders. Figure 5 (d), (e)

and (f) show the error distributions of the output bits of 16-

bit, 32-bit, and 64-bit VLSA adders. The CPU runtime of this

experiment is included in Table II. We can see that the error

rate of the output bits, which are generated by each group

adder in the ACA adder (except the first one), are the same.

This is because the length differences between the actual carry

chain and the correct carry chain of all group adder in ACA,

are the same. Regarding the VLSA adders, we can see that

the error rate of the output bits increases to a constant after a

certain bit position p. Additionally, we observe that p can be

represented as a function of k, i.e. the size of the group adder.

In this paper, we also offer an advanced model to evaluate

the imprecise adders with a specific error range. The basic

idea is to insert extra logic for defining the error range

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

All >217 >223 >231 >239 >247 >255

E
rr

or
 r

at
e

Error range

64-bit VLSA (k=16)

 0

 0.003

 0.006

 0.009

 0.012

 0.015

All >217 >223 >231 >239 >247 >255

E
rr

or
 r

at
e

Error range

64-bit ACA (k=16)

Fig. 6: Error rate with error significance range.

constrain. The Error significance (ES) is the numerical dif-

ference between correct and output results, which can be

represented using signals si in our model, i.e. S = 20s0+21s1
... +2n−1sn−1. In this paper, we add extra comparators (”¡”,

smaller than) to model the error range. S is one of the input

of the comparators and the other input is a constant number

based on the error range. For example, assuming there is a

8-bit VLSA and the given error range is [32,64], two 8-bit

comparators are required. In the first comparator the input

operands are S and 00100000 and the output is c1. In the

second comparator the input operands are S and 01000000

and the output is c2. Then, we create a new ”miter” mnew =

AND(c̄1, c2). This error rate equals the probability that mnew

evaluates to 1. We tested this method using 64-bit VLSA

and ACA with the group adder of size 16-bit (Figure 6).

The runtime with or without error range is the same. This

is because the extra logic does not introduce new variables.

B. Test generation (TG)

The method to explicitly generate the test vectors that cover

the error of the imprecise adders is shown in Section 3.2 (Table

1). The result of TG using our technique is shown in Table

III. The 16-bit VLSA(ACA) has more than 1460(2000) million

error input vectors for k = 4. We can see that our tool can

generate the test patterns which cover all the error inputs in 5

seconds. Additionally, we observe that the runtime of TG does

not increase as the number of errors increasing. The runtime of

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2 4 6 8 10 12 14 16

E
rr

or
 r

at
e

Output bit position

k=4
k=6
k=8

k=10
k=12

a Error distribution of 16-bit ACA (k=4,6,8,10,12)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 5 10 15 20 25 30 35

E
rr

or
 r

at
e

Output bit position

k=8
k=10
k=12
k=14
k=16
k=18
k=20

b Error distribution of 32-bit ACA (k=8,10,12,14,...,20)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 10 20 30 40 50 60 70

E
rr

or
 r

at
e

Output bit position

k=8
k=10
k=12
k=14
k=16
k=18
k=20

c Error distribution of 64-bit ACA (k=8,10,12,14,...,20)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14 16

E
rr

or
 r

at
e

Output bit position

k=4
k=6
k=8

k=10
k=12

d Error distribution of 16-bit VLSA (k=4,6,8,10,12)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 5 10 15 20 25 30 35

E
rr

or
 r

at
e

Output bit position

k=8
k=10
k=12
k=14
k=16
k=18
k=20

e Error distribution of 32-bit VLSA (k=8,10,12,14,...,20)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10 20 30 40 50 60 70

E
rr

or
 r

at
e

Output bit position

k=8
k=10
k=12
k=14
k=16
k=18
k=20

f Error distribution of 64-bit VLSA (k=8,10,12,14,...,20)

Fig. 5: Output-bit error distribution of 16-bit, 32-bit, and 64-bit VLSA and ACA.

TG depends how many test patterns exist, that is the number

of paths from the root the 1 in the BDD. For example, a single

test pattern (e.g. (1xxx)) may cover 8 errors; two test patterns

(e.g. (1x01), (x011)) may cover 4 errors.

In addition to TG, we expand the test vector without the

don’t cares to see the distribution of the error input vectors

in decimal. The results are shown in Figure 8. Op1 and Op2
represent the decimal value of the two operands of the adders.

Each dot in the figure represents one input. We observe that:

1) errors happen when the correct addition (Op1+Op2) equals

to some certain values (e.g. when the correct addition equal

to ”128” in Figure 7); 2) the densities of the distributions

clearly indicate the structural difference between VLSA and

ACA designs. The length of the missing carry chain in all

group adders of ACA are 4. However, for V LSA, the length

is increasing until the (k − 1)th group adder.

C. Analysis of Imprecise Multipliers

We also applied our technique to evaluate the 8-bit impre-

cise multipliers. A typical multiplier consists of three stages:

partial product generation, partial product accumulation and a

final stage adder. One simple idea of building an imprecise

TABLE III: Runtime of Test generation. # TP = The number of test
patterns.

16-bit VLSA 16-bit ACA

k # TP Runtime k # TP Runtime

12 100,352 0.20 s 12 23,294 0.23 s

10 319,488 0.36 s 10 1,293,266 1.16 s

8 1,039,873 0.83 s 8 68,478 0.89 s

6 3,174,688 2.18 s 6 3,721,846 3.04 s

4 11,025,319 4.63 s 4 1,444,494 2.36 s

 0

 64

 128

 192

 256

 0 64 128 192 256

O
p2

Op1

8-bit VLSA (k=4) VLSA

Fig. 7: Error inputs (decimal) distribution of 8-bit VLSA; Op1 and
Op2 are two operands of the adder.

 0

 64

 128

 192

 256

 0 64 128 192 256

O
p2

Op1

8-bit ACA (k=4) ACA

Fig. 8: Error inputs (decimal) distribution of 8-bit ACA; Op1 and Op2
are two operands of the adder.

multiplier is replacing the final stage adder with an imprecise

adder [10]. We implemented the imprecise multipliers by

replacing the last one stage adder or last two stage adders.

As shown in Figure 9, k is the group adder size of the

imprecise adder and s is the number of stages replaced by

imprecise adders. The imprecise adder used here is VLSA.

There are three observations. First, the error of each output

bit increases when the number of stages replaced by imprecise

adders increases. When s = 2, the error of each output bit is

almost 1x greater than s = 1. Meanwhile, this introduces one

more error output bit. Second, the number of errors increases

when k decreases. Third, compared to the result of VLSA in

Figure 5, we can see that the distribution of the imprecise

adder is changed. The reason is that the set of input vectors

of the VLSA in the imprecise multiplier are different than

evaluating the VLSA separately. In the imprecise multiplier,

the input vectors of the imprecise adder are reduced by the

partial product generation and accumulation logic.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 2 4 6 8 10 12 14 16

E
rr

or
 r

at
e

Output bit position

k=4,s=1
k=5,s=1
k=6,s=1
k=4,s=2
k=5,s=2
k=6,s=2

Fig. 9: Error distribution of 8-bit imprecise multiplier.

V. CONCLUSION

We proposed an approach that is able to evaluate the

output quality of imprecise adders with absolute accurate

measurements. Our tool can efficiently measure the exact error

rate of the design and the individual output bits. This method

is able to generate the test patterns which cover all the errors

produced by the imprecise adders, with or without a certain

error range. Our test generation (TG) is able to generate more

than 10 million test patterns which cover 1.5 billion errors in

5 seconds. We also evaluated the 8-bit imprecise multipliers.

Our future work will focus on evaluating large imprecise

multipliers.

REFERENCES

[1] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “BDD
Minimization for Approximate Computing,” in ASP-DAC’16. IEEE,
Jan. 25, 2016, pp. 474–479.

[2] A. K. Verma, P. Brisk, and P. Ienne, “Variable Latency Speculative
Addition: A New Paradigm for Arithmetic Circuit Design,” in DATE.
ACM, 2008, pp. 1250–1255.

[3] A. B. Kahng and S. Kang, “Accuracy-configurable Adder for Approxi-
mate Arithmetic Designs,” in 49th DAC. ACM, 2012, pp. 820–825.

[4] N. Zhu, W. L. Goh, and K. S. Yeo, “An Enhanced Low-power High-
speed Adder for Error-tolerant Application,” in Integrated Circuits,

ISIC’09. Proceedings of the 2009 12th International Symposium on.
IEEE, 2009, pp. 69–72.

[5] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of
Low-power High-speed Truncation-error-tolerant Adder and its applica-
tion in Digital Signal Processing,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 18, no. 8, pp. 1225–1229, 2010.

[6] G. Liu, Y. Tao, M. Tan, and Z. Zhang, “CASA: Correlation-aware Spec-
ulative Adders,” in Proceedings of the 2014 international symposium on

Low power electronics and design. ACM, 2014, pp. 189–194.

[7] Z. Wang and A. C. Bovik, “Mean Squared Error: Love it or Leave it?
a new Look at Signal Fidelity Measures,” Signal Processing Magazine,

IEEE, vol. 26, no. 1, pp. 98–117, 2009.

[8] W.-T. J. Chan, A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Sta-
tistical Analysis and Modeling for Error Composition in Approximate
Computation Circuits,” in Computer Design (ICCD), 2013 IEEE 31st

International Conference on. IEEE, 2013, pp. 47–53.

[9] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986.

[10] J. Huang, J. Lach, and G. Robins, “A Methodology for Energy-quality
Tradeoff Using Imprecise Hardware,” in 49th DAC. ACM, 2012, pp.
504–509.

[11] F. Somenzi, “CUDD: CU Decision Diagram Package-release 2.4. 0,”
University of Colorado at Boulder, 2009.

