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Abstract -
Sequential circuits are combinational circuits that are separated by

registers. Retiming is considered as the most promising technique for

optimizing sequential circuits, that involves moving the edge-triggered

registers across the combinational logic without changing the func-

tionality. Despite significant efforts spent on sequential optimization

since 1980’s, there are few works discussed its performance in an end-

to-end design flow. The retiming algorithms were mostly evaluated

at the logic level. However, it turns out that the retiming results at

logic level could be significantly different than evaluating the physical

level.

This paper provides the findings of how retiming algorithms

perform in an end-to-end industrial design flow, with seven industry

designs taken from a recent 14nm microprocessor. Experiments

are conducted with several complete industrial design flows. The

evaluations are made at the end of the physical design flow. The

experimental results show that the performance (design quality) of

the retiming algorithms vary on the designs. Based these experimental

results, we discover a feature that describes the retiming potentials

of sequential designs. This model successfully forecast whether the

given industrial designs could be significantly improved by retiming

in an end-to-end design flow, regarding timing, area, and power.

Keywords—Sequential optimization, retiming, physical design, retiming
prediction

I. INTRODUCTION

Retiming is a sequential optimization technique that has been

studied since 1980’s. Retiming techniques optimize the sequential

circuits by relocating edge-triggered registers1 across the combination

logic without changing the design functionality. A lot of research

efforts have been spent on developing promising retiming techniques

that mainly target on three objectives:

• min-delay: minimize the worst-path delay of the circuits [1];

• min-area: minimize the number of registers of the circuits [2];

• constrained min-area: minimize the number of registers with a

given worst-path delay constrain [3].

Numerous techniques have been proposed in our community to

achieve these three objectives [1][2][4][5][6][7], and have been

demonstrated with encouraging results. Although retiming assumes

that the topology of the combinational logic is fixed, the quality (at

logic-level) of the design can be further improved by combining the

combinational logic optimization techniques and technology mapping

[8][9][10]. In practice, constrained min-area retiming, has been incor-

porated into end-to-end design flows, which targets on improving the

performance of the design regarding the delay, power, area, etc.

In 1997, N. Shenoy published the first retiming survey [11]. This

work reviewed the theories and practical implementations of retiming,

and the side issues of incorporating in the design flow. Due to the

1In the rest of this paper, register is used to represent edge-triggered
registers.
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Fig. 1. Design flow used in this study.

significant changes in the technology and design complexity, an up-

to-date industrial study of retiming is necessary. Moreover, to our

knowledge, no credible work ever evaluates the retiming algorithms

in an end-to-end design flow. Most existing retiming algorithms were

evaluated at the end of the logic synthesis, where the delay and

area are measured after technology mapping or using unit delay-area

models. However, due to the significant increase in design complexity

and design rules, the gate-level netlist does not correlate well with

the physical netlist [12][13]. Hence, in this work, the experimental

results are collected at the end of the physical design process. The

overview of the design flow is shown in Figure 1. Note that the

negative retiming operations2 are forbidden in our experiments. It

turns out that the performance improvements gained by retiming

evaluated the logic level could make the final physical netlist worse.

Also, there are significant extra design efforts required for retimed

designs, e.g., sequential equivalence checking (SEC). Thus, for the

designs that retiming does not provide enough improvements in

design performance, retiming needs to be avoided in the design flow.

These give us the motivation for developing a prediction mechanism

for retiming. The state-of-the-art retiming algorithms are reviewed

in Section 2. The main difference compared to [11] is the min-area

algorithm.

Specifically, the main contributions of this paper are as follows:

• The complete end-to-end industrial study of retiming is shown

in Section 3, using seven industrial designs are taken from the

most recent microprocessor design with 14nm CMOS technol-

ogy. Four different flows are tested, including the baseline flow

and three retiming flows with different retiming options. The

baseline flow is using the concept flow shown in Figure 1

without retiming applied. Retiming algorithms are embedded

in the logic synthesis process, before technology mapping.

• The primary focus of the evaluations is the design-quality.

Evaluations of retiming are made by comparing the results

using a set of timing, area and power metrics, that are measured

2For min-delay retiming, negative retiming refers to ′′the delay of critical
path increases′′; for min-area retiming, it refers to ′′the number of registers
increases.′′
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at the end of physical design with simulation. Based on

the analysis of how retiming algorithms work, three classes

of experiments have been identified: a) designs significantly

improved by retiming; b) designs significantly disimproved by

retiming, and c) retiming does not make many differences.

• The side challenges of retiming to the entire design flow are

reviewed in Section 3-B. Specifically, the effects of retiming in

physical design and sequential verification are discussed. These

challenges with the unpredictable results shown in Section 3

motivate us in developing a prediction mechanism for retiming.

• In Section 4, a numerical model is introduced for prediction.

This model describes a sequential feature of designs at the logic

level that could include Boolean gates and high-level blocks

such as Adders. We demonstrate that this model can be used

for forecasting whether a design could be improved by retiming

in an end-to-end design flow, with the seven industrial designs

(Fig. 3).

• We evaluate the academic sequential benchmarks taken from

ISCAS-89 and ITC99 using the proposed prediction model. It

turns out that these benchmarks are not sufficient for evaluating

retiming algorithms.

II. BACKGROUND
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Fig. 2. Illustrative examples of retiming: 1) original netlist; 2) min-delay
retiming; 3) min-area retiming; 4) min-area retiming under delay constrain
(delay≤3).

TABLE I. RETIMING RESULTS OF EXAMPLES IN FIGURE 2.

Baseline min-delay min-area min-area
and d<3

Delay (d) 4 2 4 3

Num. of Regs 5 3 1 2

The concept and the three objectives of retiming are illustrated

using a simple example shown in Figure 2. The original design is

shown in Figure 2-(1). We assume all the gates have unit delay one,

and the edge-triggered registers are represented using the rectangles.

The original design has five registers (n=5) and the delay of the critical

path, {a,b} → f , is four (d=4).

The min-delay retiming result is shown in Figure 2-(2). There are

two iterations in this retiming: 1) move the two registers connected

with a and b forward, which makes gate g2 retimable; 2) move the

retimed register and the register connected with c forward. The delay

of the retimed design in Figure 2-(2) is two (d=2), and the number

of registers is three (n=3). The min-area retiming result is shown in

Figure 2-(3). This solution requires two more iterations in addition to

the solution of min-delay retiming, which move the registers all the

way to primary output and reduce the number of registers to one. The

delay is increased to four. The third objective is min-area retiming

under delay constrain. In this example, let the delay constraint be

d≤ 3. The solution is shown in Figure 2-(4). The comparison of these

three retiming solutions to the original design is shown in Table I.

We can see that the min-delay retiming gives the best delay solution

(d = 2), min-area offers the minimum number of registers, and min-

area retiming with delay constraints gives balanced results in between

of min-area and min-delay.

A. Formulation of Retiming

Most logic optimization techniques are formulated based on direct

graph representation. The logic netlist, so called Boolean network
can be modeled using direct graph G(V,E), where each vertex v
corresponds to a logic gate g in the design. Besides constructing

the direct graph directly from the netlist, this can also be done

based on the transformed Boolean network, such as And-Inv-Graph
[14] and its sequential version [15]. In the context of retiming, the

sequential Boolean network is the combinational network separated

by the memory elements, which are assumed to be ideal registers.

The edges in the graph G(V,E) represent the interconnections of the

logic gates in the design.

Let us denote euv is an edge of G(V,E), euv: u → v, and wuv is

the weight of the edge euv which represents the number of registers

between the two vertex u and v. The weight of the edges directed from

and into the primary inputs (PIs) and primary outputs (POs) is zero.

Each vertex v in G(V,E) represents its delay of the corresponding

gate, denoted d(v). The problem of retiming is denoted by retiming

lag function r(v) [16]: V → Z. Let us denote that wr
uv is the weight

of the edge euv . For any retiming, it can be represented by Eq. 1.

wr
uv = r(v)− r(u) + wuv (1)

The value of r(v) represents the movement of the registers for vertex

v. If it is forward retiming (from inputs to outputs), then r(v) is a

negative. For any legal retiming, the condition shown in Eq. 2 must

be satisfiable.

wuv + r(v)− r(u) ≥ 0 (2)

B. Min-delay Retiming
The min-delay retiming problem is as follows: Given G(V,E) with

a vertex delay function d and edge weight function w, find a legal
retiming r, such that the cycle time c is minimized:

c = max
p:wr(p)=0

{d(p)}, (3)

where d(p) is the path delay, and wr(p) is the retimed register count on
the path p. To this problem, Leiserson and Saxe [16] developed a classic
algorithm: Two matrices W and D are first defined as:

W (u, v) = min
p:u�v

{w(p)}, (4)

D(u, v) = max
p:u�v∧w(p)=W (u,v)

{d(p)}, (5)

W (u, v) gives the minimum register count on any path from u to v.

D(u, v) determines the maximum delay from u to v for the minimum

register count. The two matrices can be obtained by solving an all-

pairs shortest paths problem in G. Afterward, a binary search for the

minimum clock cycle is performed. In each iteration, a Bellman-Ford

algorithm can be employed to test whether a legal retiming exists with

the current cycle time c. The algorithm above runs in O(V 3 lg V )
time because each iteration costs O(V 3) time for a Bellman-Ford

algorithm and the binary search runs in O(lg V ).
Leiserson and Saxe [16] also proposed another more efficient

relaxation algorithm, which runs in O(V E) for examining if a

retiming exist for a given clock cycle c. A function Δ(v) gives the

largest delay seen from any path that terminates at the output of v:

Δ(v) = d(v) + max
u∈FI(v), w(euv)=0

{Δ(u)}. (6)
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Therefore, the cycle time can be expressed as follows:

c = max
v∈V

{Δ(v)}. (7)

The relaxation algorithm consist of alternately updating the functions

Δ(v) and r(v) for |V |−1 times. The optimality is guaranteed because

each iteration simulates a pass off a Bellman-Ford algorithm (i.e., a

vertex being relaxed in a pass of the Bellman-Ford algorithm must be

updated in an iteration of the relaxation algorithm), one can obtain a

feasible retiming under the target cycle time c, if it exists. Because

calculating Δ(v) in an iteration costs O(E) time, the relaxation

algorithm runs in O(V E) time. Later on, the runtime of this algorithm

was improved by Shenoy and Rudell [17] by adding an early break

mechanism.

C. Min-area Retiming

The typical min-area retiming refers to minimizing the number

of registers without delay constraints. In which case, the problem

can be formulated as a minimum-cost flow problem using linear

programming. The formulation is as follows:

min :
∑

∀euv

r(u)− r(v) ∧ (∀euv, r(u)− r(v) ≤ wuv) (8)

Goldberg [5] presented a practical push-relabel method that can

solve this problem in O(V 2E log(VC)) worst-case runtime, where

V is the number of vertices, E is the number of edges, and C is

the maximum cost of the edges. A. Hurst et al. [2] proposed a the

min-area retiming using maximum network flow problem. It turns

out that within a combinational network, minimizing the number of

registers by retiming is equivalent to finding a minimum cut. Note

that the minimum cut problem is the dual of the maximum network

flow problem. Computing maximum flow of a network is much less

complex than minimum cost determination. Although there may exist

many minimum cuts, that approach always generates one minimum

cut that provides the minimum number of movements of the registers.

This is claimed to simplify the computation of the initial states and

minimize the side effects of the design [2]. The worst-case runtime

of maximum flow approach is bounded by O(R2E), where R is

the initial number of registers, and E is the number of edges. This

algorithm requires repeated iterations while the number of iterations

is typically small, as demonstrated by the authors.

D. Constrained Min-area Retiming

Although it is claimed that pruning the redundant storage elements

in the design reduces the area, power, and verification cost, most

designs request a specific target clock period. The first attempt of

constrained min-area retiming was presented by Shenoy et al. [17].

The implementation was composed by computing the W and D matri-

ces, and the minimum cost circulation implementation. Let us denote

Nfanin(v)=number of fanins of vertex v, Nfanout(v)=number

of fanouts of vertex v. The formal definition of this problem is

represented as follows [11]:

min :
∑

∀v
|Nfanin(v)−Nfanout(v)| · r(v) (9)

∧ ∀euv, r(u)− r(v) ≤ wuv (10)

∧ ∀euv, r(u)− r(v) ≤W (u, v)− 1 (11)

Equation 9 represents the cost of number of registers of all register

relocations. Equation 10 and 11 constrain each relocation must be

legal retiming and under the delay constrain. We can see that this

problem can be solved by combining the algorithms proposed in

Section 2.2 and Section 2.3. The most recent constrained min-area

retiming method was proposed by A. Hurst et. al [3], which the min-

area appoach is based on the work of [2]. That approach is developed

based on the observation that area-critical and timing-critical regions

are rare overlapped. In that work, the timing constrains of retiming

requires the exiting min-delay retiming algorithms, which give the

initial register positions for their min-area appoach.

III. EXPERIMENTAL RESULTS

The results used for this study are shown in Table II. They are

obtained with seven industry designs taken from the recent 14nm mi-

croprocessor design, with total twenty-eight end-to-end experiences.

Each design is applied with four different complete design flows.

baseline uses the flow shown in Figure 1, which is considered as the

benchmark flow (without retiming). The three retiming design flows

are added with three different retiming options to the basline flow.

r1,r2,r3 are the three different combinations of retiming that provide

the most effective results: 1) r1={min-area, min-delay, min-area};

2) r2={min-area, min-delay}; and 3) r3={min-delay, min-area}. The

retiming process is applied on NAND2-based network within logic

synthesis process, while each gate is considered as a unit delay gate.

The min-delay retiming is implemented by combining the relaxation

algorithm [1], and the heuristic min-delay algorithm implemented in

ABC [18]. The min-area retiming is implemented using constrained

min-area retiming algorithm based on max-flow min-cut proposed in

[3].

A. Evaluations of Retiming

Table II lists the selected experiences results. It includes the major

metrics used for evaluating the design at physical level using the flow

shown in Figure 1. The evaluations mainly target on timing, area and

power. The timing metrics include: 1) Worst Negative Slack (WNS),

2) Total Negative Slack (TNS), 3) Latch-to-Latch WNS (l2lWNS),

4) Latch-to-Latch TNS (l2lTNS), and 5) number of negative paths

(#NEG). The area metrics include the number of registers (#reg)

and physical area (Area). The power metrics inlude dynamic power
(Dpower) and static power (Spower). The CPU runtime of the

complete design process is included in the last column. Note that

the extra CPU time comparing to the baseline mostly come from

physical design process. The CPU time of retiming in Table II are all

less than 600 seconds.

Based on the results shown in Table II, the designs can be classified

in three types:

• Type 1) retiming significantly improves the timing and/or area

at the end of design flow, including ibm6 and ibm7;

• Type 2) these three retiming options all make the timing and/or

area worse compared to baseline, including ibm1 and ibm2;

• Type 3) retiming may make the timing and/or area worse than

baseline, including ibm3, ibm4 and ibm5.

In Table II, all the retiming operations are positive retiming, i.e., for

min-delay, the critical path delay at the logic level always decreases

or remain the same as before retiming. For min-area, the number

of registers always decreases or remain the same, and the critical

path delay is always less or equal to the given delay constraint. Any

negative retiming operations will terminate the retiming process and

return the original netlist.

Specifically, for ibm6 and ibm7, all the three retiming options

give improvements in timing (mostly TNS) and area comparing to

baseline. One observation is that while adding more registers in the

design, the area and power may not increase. This is because adding

more registers improve the timing, which timing closure requires

fewer efforts during physical design process. For designs ibm3, ibm4

and ibm5, retiming doesn’t give promising improvements compared to
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TABLE II. EVALUATION OF THREE RETIMING OPTIONS IN THE END-TO-END DESIGN FLOW. BOLD RESULTS INDICATE THE BEST RESULTS AMONG

THE FOUR FLOWS.

Design Options WNS TNS l2lWNS l2lTNS #NEG #reg Area Dpower Spower CPU Time(hr)

ibm1

baseline -14.491 -10497 -17 8.607 1326 3214 340230 26.9089 18.8614 20.3
r1 -23.425 -23170 -44 7.007 2156 3095 336509 25.8387 20.4603 20.9
r2 -14.75 -15169 -47 7.260 1668 3193 337795 26.8823 19.9236 21.0
r3 -16.68 -18651 -21 8.151 1775 3113 335646 25.2462 19.9465 21.0

ibm2

baseline -23.87 -3275 -50 8.151 641 8115 836771 111.0640 16.5280 13.6
r1 -36.524 -3894 -101 7.548 775 7901 897393 115.8500 17.7728 22.8
r2 -37.397 -4340 -83 8.200 778 8082 893571 115.5700 17.5046 22.8
r3 -35.869 -4118 -83 8.099 772 8247 899329 118.5860 17.5122 22.8

ibm3

baseline -17.884 -4882 -8 8.504 670 2672 216950 45.5289 9.7992 6.9
r1 -17.142 -4899 -6 8.705 664 2485 209388 43.1193 10.0417 21.1
r2 -14.711 -4662 -2 9.569 646 2633 213527 44.7554 9.5785 21.2
r3 -19.675 -4976 -4 8.947 685 2567 212362 44.1308 9.9634 21.1

ibm4

baseline -20.507 -13074 -9064 -16.317 1110 4186 509862 119.9100 28.7540 20.8
r1 -23.922 -17110 -13960 -21.856 1138 4186 512716 120.9800 31.1402 21.9
r2 -22.295 -14784 -10626 -21.196 1132 3954 517506 120.4960 30.5482 21.9
r3 -18.965 -9919 -6288 -12.797 892 4010 506887 118.4360 28.4195 21.9

ibm5

baseline -20.675 -2584 -55 2.437 471 4682 514430 109.7720 11.8720 19.7
r1 -49.791 -3229 -62 2.234 1163 4597 503435 108.8470 11.1319 20.5
r2 -19.928 -1735 -46 4.978 203 4684 505298 112.2140 11.3123 20.6
r3 -54.379 -3266 -22 9.143 1091 4622 507626 109.6960 11.3450 20.6

ibm6

baseline -366.635 -14327 0 9.992 365 8238 812092 39.3554 5.378 19.3
r1 -367.179 -9412 0 10.000 303 7423 711125 35.213 4.779 21.6
r2 -363.009 -9860 0 10.000 314 8241 744181 39.4629 4.9856 21.7
r3 -363.632 -6982 0 10.000 140 8657 769391 41.3688 5.089 21.8

ibm7

baseline -55.537 -38388 -18005 -45.000 1732 2846 446838 134.214 24.7752 1.3
r1 -56.131 -35473 -15361 -42.810 1736 2819 438761 131.735 23.9898 1.5
r2 -53.184 -33876 -13653 -39.838 1740 2625 428183 127.636 24.1353 1.4
r3 -45.805 -31904 -12098 -38.850 1620 2688 429153 127.585 23.6245 1.9

baseline. And, the performance of retiming varies on the combination

and the order of retiming algorithms applied. For example, ibm5, r2

gives almost the same result compared to baseline, but r1 and r3

make the timing much worse. For the designs ibm1 and ibm2, all the

three retiming options make the timing and area worse than baseline.

We didn’t consider the runtime of retiming in those comparisons

since retiming takes little time compared to other design automation

processes. In summary, the results in Table II show that:

• 1) The performance of retiming varies on different designs.

For example, ibm6 and ibm7 are improved by all retiming options,

but ibm1 and ibm2 are worse than baseline with any retiming option.

The main reason is that delay-driven retiming algorithms target on

minimizing the critical path delay, i.e., the levels of the longest

combinational paths. However, the logic-level critical paths could be

very different to the critical paths at the physical level. This means

that, even though there are significant reductions provided by retiming

at the logic level, the critical path delay at physical level could be

worse. This directly affects the timing closure, such as WNS and

TNS. For timing closure, more physical design efforts are required to

meet the requirements of timing constraints. On the other hand, the

area and CPU time could also increase, e.g., the routability decreases

after retiming. This provides the main motivation for pre-analysis of

retiming to predict if a given design could be improved by retiming.

• 2) The combination and ordering of retiming approaches affect

the timing, area, and power, even though the statistics (area and

levels) at logic level are the same.

For most industry designs, retiming is required to provide balanced

performance regarding timing, area, power, etc., which is the retiming

objective reviewed in Section II-D. The constrained min-area retiming

methodology hasn’t been changed in the last twenty years, which was

proposed by Shenoy et al. [17], using a combination of multiple min-

delay and min-area retiming. This method works for many designs

based on the observation that the regions of area-critical and timing-

critical rarely overlap [3]. However, although the optimum solutions

can be found, the retiming operations could be very different. For

example, the uniqueness of the maximum flow does not imply the

uniqueness of the minimum cut. One observation in this study is

that the number of retiming depths of retimed registers could be very

different using different retiming options, even though the statistics at

the logic level are the same. Hence, the varieties of retiming solutions,

and the mismatch between logic and physical criticalities make the

choice of retiming options crucial.

• 3) For the designs that can be improved by one of the retiming

options, they are likely to be verified by all the retiming options.

One observation is that the designs that cannot be verified by any

one retiming option, they are unlikely improved by other retiming

options. Some designs are significantly disimproved. On the other

side, the designs are improved by one retiming option; they are

likely to be improved by other retiming options as well. For example,

designs ibm6 and ibm7 are improved significantly by all the retiming

options. This gives us the main motivation of developing a retiming

prediction model to pre-analyze whether retiming algorithms are

effective for a given design, which is shown in Section IV.

B. Challenges of Retiming

The challenges of retiming are considered in three parts: a) retiming

complexity, b) retiming performance in design-quality; and c) the

side effects. The complexity of retiming has been discussed in

[11] and briefly reviewed in Section 2. Hence, in this section, we

focus on analyzing the last two. As shown in Table II, the design

performance of the physical netlist is not guaranteed to be improved

by retiming algorithms. Since all the retiming operations undertake

to reduce the critical path delay and area of the design at the logic

level, these results also show that there are no strong correlations

between logic and physical netlist. This is believed to be worse as the

number of design rules increasing for the advanced technology nodes.

Apparently, this has significant impacts on the design-quality and

Time-to-Market. To forecast a given design whether its performance

could be improved by retiming becomes extremely important.

One of the main side effects of the design flow is sequential veri-

fication. It is stated that the verification of retimed circuits could be

solved very efficiently and takes O(|E|) time [11], where verification
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TABLE III. DEMONSTRATION OF THE PROPOSED PRE-ANALYSIS MECHANISM USING ONE DESIGN IN EACH EXPERIMENTAL CATEGORY PRESENTED IN

SECTION 3.1. THE RESULTS ARE SHOWN IN PERCENTAGE COMPARED TO THE RESULTS OF baseline.

Design Bfoward Bbackward Options WNS TNS l2lWNS l2lWNS Area Power

ibm1 0.118 0.044
r1 1.617 2.207 2.588 0.814 0.989 1.085
r2 1.018 1.445 2.765 0.843 0.993 1.056
r3 1.151 1.777 1.235 0.947 0.987 1.058

ibm2 0.041 0.022
r1 1.530 1.189 2.020 1.080 1.072 1.047
r2 1.566 1.325 1.660 0.994 1.067 1.042
r3 1.502 1.257 1.660 1.01 1.074 1.066

ibm3 0.33 0.041
r1 0.959 1.003 - 1.024 0.965 1.025
r2 0.823 0.955 - 1.125 0.984 0.977
r3 1.100 1.019 - 1.052 0.979 1.017

ibm4 0.616 0.035
r1 1.166 1.308 1.540 0.746 1.005 1.023
r2 1.087 1.130 1.172 0.769 1.014 1.016
r3 0.925 0.758 0.694 1.275 0.994 0.987

ibm5 0.045 0.001
r1 2.408 1.250 1.127 0.917 0.979 0.938
r2 0.964 0.671 0.836 2.043 0.982 0.953
r3 2.630 1.264 0.400 3.752 0.987 0.956

ibm6 5.512 0.082
r1 1.001 0.659 - 1.000 0.875 0.894
r2 0.990 0.688 - 1.000 0.916 0.993
r3 0.992 0.487 - 1.000 0.947 1.038

ibm7 0.763 0.082
r1 1.011 0.924 0.853 0.951 0.982 0.980
r2 0.957 0.882 0.758 0.885 0.958 0.955
r3 0.827 0.831 0.672 0.863 0.960 0.951

is restricted to verify the design before and after retiming. However,

the complete sequential verification is still needed, especially the typ-

ical retiming flow includes multiple iterations and usually combined

with logic synthesis [19]. Despite the progress of the sequential ver-

ification, directly check the sequential equivalence is still extremely

hard. For example, using model checking technique IC3 [20], it

can’t directly verify the properties of retimed s13207, s15850, and

s38584 ISCAS-89 designs, with more than 24 hours3. Engineering

Change Order (ECO) is another side challenge of retiming. ECO

for retimed circuits becomes Sequential Engineering Change Order
(SECO), which has never been discussed. Although several techniques

of combinational ECO proposed using formal methods and structural

methods, determination of the minimal patches in combinational logic

is still a challenging problem. Functional methods can find smaller

patches but limited to its scalability. Structural methods improve the

runtime but limited by the structural similarity.

IV. RETIMING PREDICTION

Due to the uncertainty of retiming and significant extra design

efforts, a pre-analysis mechanism for predicting whether a design is

potentially improvable by retiming is needed. The purpose of the

proposed prediction mechanism is that given a sequential circuit
including Boolean gates, high-level blocks, and registers, it outputs
a normalized value that represents the retiming potentials in an end-
to-end design flow. Based on a large number of experiences and

analysis using industry and academic benchmarks, we observe that the

retiming flow gives significant improvements when the pipeline stages

are not well-balanced, regardless of the options of the retiming flow.

However, it is not sufficient by just considering the pipeline stages.

The reason is that unbalanced registers4 may not be retimable. Hence,

we introduce the Balancing metric. It is defined using Equation

12, where ri is forward, or backward retimable register5, N is

the number of retimable registers in the design. Hence, for each

design, it has two balancing value, Bforward and Bbackward. This

metric is sensitive to the timing model since it is calculated at logic-

level. For the blocks have multiple inputs and outputs (e.g., 4-bit

adder), we consider that the pin-to-pin delay of all the paths is the

3These experiments are obtained without the industrial design flow. They
are tested using pdr command in ABC[18].

4Unbalanced registers refer to the registers with significant differences
between the input and output Slack time.

5Definitions of forward and backward retiming refer to Equation 1 and 2.

same. For example, assuming delay of AND2 is one, in Figure 2

(a), Bbackward=0 because there is no backward retimable registers;

Bforward=(4 + 4)/2 = 4 since registers a and b are forward

retimable.

B =

i=N−1∑

i=0

|Slackout(ri)− Slackin(ri)| / N (12)

A. Performance Analysis via Balance Value

Table III lists the analysis of retiming performance using the

proposed pre-analysis mechanism, with the designs shown in Table

II. The forward and backward balancing values are listed in the first

two columns. The timing, area, and power results are divided by the

results generated from baseline experiences. In Table III, for any value

> 1, represents negative result; for any value < 1, represents positive

result. As the Bforward (see Eq. 12) value increasing, the design is

more likely to be improved by retiming. For example, for design ibm2,

both Bforward timing and Bbackward are smaller than 0.05, which

means that the design around the retimable registers is well-balanced.

Not spuriously, the area and power results generated from the flow

using retiming, are all negative. For design ibm4, Bforward=0.616,

which indicates that there are potential improvements could be done

by retiming. We can see that positive retiming results appear for

this design and r3 improves timing, area, and power simultaneously.

For design ibm6, the Bforward=5.512, where we see that the design

has been significantly improved by retiming. Note that the balancing

value may be different using different timing model. However, the

standardization remains regardless of the select timing model. We

observe that the backward balance value are not sufficient to provide

any evidence of analyzing the retiming performance.

To further analyze the forward balance value, the retiming, area and

power related metrics reported by the design flow are all collected

in Figure 3. The x-axis shows the forward balance value, and

the y-axis shows the overhead/improvement provided by retiming.

For example, the data point with y=1.5 means a 50% overhead

for some metric. The results are classified into six groups: timing

metrics improved/disimproved, area metrics improved/disimproved,

and power metrics improved/disimproved. The retiming performance

is considered as negative if some metrics have been significantly

disimproved, or most of the metrics remaining the same. We can see

that as the forward balance value increasing, the retiming becomes

more effective. For the designs with small forward balance value, the

area, timing and power metrics are 2× worse.
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Fig. 3. Forward balance analysis with the designs listed in Table III.

In addition, we find that the most sensitive parameter in respect

to forward balancing value is TNS. This means that the balancing

value could be more effective in predicting the improvements of

TNS. To demonstrate this, we create 120 benchmarks using high-level

synthesis tool by manually modifying the location of the registers,

such that the range of the balancing values of those benchmark is

wide. We then obtain the TNS results of all the benchmarks using

the same physical design flow. The results are shown in Figure

4. The x-axis represents the forward balancing value, and y-axis

represents the percentage of TNS improvements. The data points

above the horizontal line y=0 represent the designs get positive TNS

improvements by retiming. We can see that the TNS improvements

are clearly increasing as the forward balancing value increases.
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Fig. 4. Total negative slacks (TNS) improvements (%) versus forward
balancing value of 120 designs.

Based on the results shown in Table III and Figure 4, we can see

that the unbalanced designs are likely to be optimized by retiming.

Due to the high extra design automation efforts, it is essential

to understand if the designs are suitable for retiming in advance.

Meanwhile, we can see that selecting different benchmarks could

dramatically affect the evaluations of retiming algorithms.

V. CONCLUSION

This paper provides the first end-to-end industrial study of retiming,

using the recent 14nm industrial designs. The state-of-the-art min-

delay, min-area and constrained min-area retiming algorithms are

evaluated in the complete design flows, with three retiming options.

The results show that evaluations of retiming algorithms at logic level

could be misleading. Due to the challenges of retiming discussed

in this paper, a retiming-prediction model is introduced to forecast

whether retiming algorithms could improve a given design. We

demonstrate that this prediction model correctly predict the retiming

potentials of the seven 14nm industrial designs. With this model, we

are able to reduce the cost of designing an efficient flow in order to

reduce Time-to-Market.
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