
 1

Temporal Parallel Gate-level Timing Simulation

Dusung Kim, Maciej Ciesielski
University of Massachusetts

Dept. of Electrical & Computer Engineering
Amherst, MA 01003, USA

{dukim, ciesiel}@ecs.umass.edu

Kyuho Shim, Seiyang Yang
Pusan National University

Department of Computer Engineering
Busan, Korea

{capnemo, syyang}@pusan.ac.kr

Abstract – This paper introduces a radically different
approach to parallel simulation for gate level design,
aimed at completely eliminating the communication
and synchronization overhead between simulators. It is
based on a new concept of temporal parallel
simulation: in contrast to traditional, spatially-
distributed simulation, which partitions the design into
multiple modules to be simulated concurrently, the
proposed temporal parallel simulation partitions the
single simulation run into multiple simulation runs in
temporal domain. Experimental results demonstrate
that linear speedup is possible for large designs and
long simulation runs.

1. Introduction

Unlike other verification methods (formal
verification, or hardware assisted simulation), it
provides full signal visibility and scales with
design size. Simulation is also being used to
complement static methods, such as static timing
analysis (STA) and formal verification
(equivalence checking) for timing verification [1].

However, the major drawback of simulation is
its low speed. There have been several approaches
to address this deficiency, such as hardware-
assisted simulation acceleration [2], distributed
parallel simulation [3] and abstraction level design
simulation [4].

This paper concentrates on a distributed
approach to simulation, as a means to parallelize
the simulation and improve its overall
performance. A new approach to parallel HDL
simulation is proposed, based on a concept of
temporal parallel simulation, rather than
traditional, spatially distributed simulation. Unlike
the spatial simulation method, the method
described in this paper does not introduce any
dependency among the simulation nodes. The

synchronization and communication overhead due
to inter-module communication and signal passing,
characteristic of the traditional distributed
simulation is completely eliminated. This is a very
important feature, which increases parallelism and
maximizes speedup ratio with respect to the
number of simulation nodes.

In this paper we outline the concept of
temporal parallel simulation and show that it is
compatible with the accepted design and
verification flows. We discuss technical issues to
make this method practical and show some
preliminary experimental results.

The proposed technique is universally
applicable to full timing simulation of designs of
any size and type (both with single and multiple,
asynchronous clocks). However, for the purpose of
this paper we confine its description to gate-level
designs with a single clock. It is worth mentioning
that gate-level timing simulation is still being used,
even for designs with a single clock, because STA
alone is not efficient for timing verification due to
gated clocks, false paths, multi-cycle paths, etc [5].

2. State of the Art

A rich body of literature exists in the area of
parallel simulation; however most of the known
work addresses traditional parallel simulation,
which is based on physical partitioning of the
design into modules, distributed to individual
simulators. We refer to this approach as spatial
parallelism, since the simulation relies on
partitioning of the design in spatial domain. This
form of parallel simulation has been known since
late 1980s as Parallel Discrete Event Simulation
(PDES) [6],[7],[8],[9],[10]. Such an approach to
distributed simulation suffers from an unavoidable

 2

communization and signal synchronization
overhead between the modules, and a lack of
methods to perform efficient design partitioning to
minimize this overhead. To the best of our
knowledge, most of the current research in
distributed HDL simulation is based on this
approach. The results have been demonstrated on
relatively small or well structured designs that can
be easily partitioned without incurring large
communication cost.

Li et al. [11] implemented a parallel Verilog
simulator by adopting an Object-Oriented concept.
However, its performance is still not acceptable
because of the high synchronization and
communication overheads for real, complex
designs.

 Zhu et al. [12] attempted to apply this
approach to realistic designs and achieved good
event processing rate with the number of events
growing linearly in the number of processors. In
spite of these promising results, the actual
simulation performance can easily deteriorate, as it
strongly depends on the design structure and the
dynamic behavior of the design.

No clean solution has been proposed to
address the traditional issues plaguing this
approach, such as synchronization, message
passing/sharing, and design partitioning problems.
As a result, only a few commercial products have
been developed for such spatial parallel simulation,
including SimCluster [13] and MP-Sim [14]. To
this date they, however, were not able to attract
attention of expert designers.

3. Temporal Parallel Simulation

The temporal parallel simulation proposed in
this paper is a radical departure from the
conventional parallel HDL simulation for gate
level timing simulation. In contrast to spatial
parallelism, which partitions the design to be
simulated, our temporal parallel simulation
partitions the simulation run in time, by cutting the
entire simulation run into a number of independent
simulation slices. It consists of two major steps:

1. Fast, high-speed, high-level reference

simulation on a single processor that stores
essential information at selected checkpoints;
and

2. Low-level target simulation, which is
distributed to the individual processors.

The reference simulation runs at zero-delay

gate level (GL) of design abstraction, while the
target simulation is run at the full-timing GL,
using annotated SDF (Standard Delay Format).
Usually full-timing gate level simulation is 10~50
times faster than full-timing gate level simulation.
This large difference in simulation speed makes it
possible for the proposed approach to achieve
significant speedup improvement. The basic
concept of this new technique is shown in Figure 1.

Both steps of the simulation work on the entire
design under test (DUT), while the entire
simulation run is divided into simulation slices,
each to be executed on an independent simulator.

Fig. 1. Concept of temporal parallel simulation.

For this approach to work, the initial design

state for each slice of the target simulation must be
captured and saved during the first (reference) run.

Slice N

Capturing output stimulus of DUT

Second (target) parallel simulation
at full timing GL simulation

Slice3

Slice2

Slice1

First (reference) simulation at zero-delay GL simulation

Output stimulus capturing

Testbench forwarding

Checkpoints for saving design status

Simulation slice

 3

This is done at predetermined checkpoints,
determined by the number of processors available
for distributed parallel simulation. The design state
consists of the state of all internal registers and
memory print of the design. By restoring the
design states, each slice can be made independent
of each other. As a result, target simulation can run
concurrently and independently for each slice.

3.1 Testbench Forwarding

While the design state of DUT can be stored at
any point during the simulation, the state of the
testbench cannot be similarly captured. This is
because the state of the testbench (software) is not
clearly defined. In order to maintain the correct
testbench state at the restoring point, the testbench
must be simulated from the beginning of the
simulation time to the initial time of each
simulation slice. This testbench forwarding
technique is a fast, testbench-only simulation used
in our temporal parallel simulation.

During the reference simulation, the values of
all output ports and bi-directional ports of DUT
are captured. The captured data is then used to
create a dummy DUT, which has exactly the same
output behavior as an actual DUT under the zero-
delay gate-level model. Such constructed dummy
DUT is used as a stimulus provider for the
simulation of the testbench up to each restoring
point prior to target simulation of each slice. After
restoring the design state, the dummy DUT is
replaced by the original DUT. Note that the
testbench is usually implemented in RTL or higher
abstraction level. Moreover, because the complex
simulation-time intensive DUT is completely
eliminated during this phase, the testbench
forwarding technique effectively reduces the
testbench simulation overhead.

3.2 Maintaining Functionality of Testbench

An important feature of our approach is that it

offers a significant performance improvement of
simulation without sacrificing the verification
capability of the testbench. Throughout the
simulation, no modification to the original
testbench is made. Therefore, all the verification

features defined in the testbench are applicable to
temporal parallel simulation.
4. Correctness of Simulation

The correctness of our approach can be
verified by comparing its results with the result of
the conventional (single processor) simulator. The
target simulation phase of our approach can be
divided into the following three stages:

1. Testbench forwarding,
2. State restoring, and
3. The target, slice simulation stage.

The correctness of the first stage is assured by

the stimulus from the dummy DUT. This stimulus
is functionally the same as used by the
conventional simulator, since it comes originally
from the zero-delay model simulation. The timing
of the stimulus is also the same as in the original
simulation on the cycle boundary, provided that
there is no timing violation in the design.

For the second stage, once all design state is
restored correctly, combinational logic values are
determined immediately. The third stage should
also be correct because the target slice simulation
uses the original DUT and the original testbench.
Therefore, the correctness of temporal parallel
simulation is easily ensured.

5. Performance Analysis

The following expressions represent the total
parallel simulation time Ttot as a function of the
number of simulation slices N and some overhead
due to reference simulation, and saving/restoring
of the testbench and DUT:

 tot ref targetT T T= +

 0ref stim delay saveT C T N T−= ⋅ + ⋅

 arg
1timing

t et restore TB

T XT T T
N N

−
= + + ⋅

where:

Ttot = total parallel simulation time,
Tref = reference simulation time,
Ttarget = target simulation time for each slice,

 4

Csim = overhead due to stimulus capturing,
T0-delay = simulation time for conventional

zero-delay model,
Tsave = time to save the DUT state,
Trestore = time to restore the DUT state,
Ttiming = simulation time for conventional

full timing model,
TTB = simulation time for testbench forwarding,
X = index of the target simulation slice,
N = total number of simulation slices.

The total parallel simulation time is a sum of
the reference simulation time and target simulation
time. Note that only one slice is included in the
target simulation time, since all slices are
simulated in parallel. Reference simulation time is
a function of conventional zero-delay simulation
and some overhead. Overhead due to stimulus
capturing is multiplied by the simulation time
because capturing event occurs continuously
during the entire simulation. Target simulation
time is a function of some overhead and
conventional full timing simulation time for
particular slice, labeled X in the equation. Note
that the testbench is simulated with dummy DUT
from the simulation time 0 to the previous slice for
the purpose of testbench forwarding.

Parameter Tref is usually very small compared
to the conventional timing simulation because it is
a zero-delay simulation. It is known that zero-
delay simulation is at least 10~50 times faster than
full timing simulation. As the number of DUT
output ports is very limited, stimulus capturing
Csim does not introduce a big overhead. Similarly,
Tsave is small. The value of Ttarget is also small
because only a single slice is considered.
Therefore, the total parallel simulation time Ttot is
significantly smaller than the one of conventional
simulation.

An important point is that the simulation time
for each target slice is not identical. In other words,
the last slice (X=N) has slowest performance
because of the overhead for testbench forwarding.
However, the performance difference is so small
that it can be ignored because testbench is usually
described on a high abstraction level; it executes
hundreds of times faster than the full timing
simulation of DUT. Hence the overhead of

testbench is a relatively small fraction of the total
simulation time. This small performance
difference will be shown later in the experimental
result section.

6. Experimental Results

 The following experiments were performed using
zero-delay gate-level simulation as a reference
simulation.

6.1 Experiment 1

The experiment was carried out with the help

of designers from a major semiconductor
corporation on an industrial 18M-gate design.
The design was elaborated using a commercial
parser and simulated with Cadence NC-Verilog
simulators, running on SUN machines. Despite a
small (10:1) speedup ratio between the zero-delay
simulation and full-timing GL simulation, the
results showed an expected linear (6×) speedup
with 10 simulators on a simulation run of
72,600,000 cycles.

6.2 Experiment 2

In this experiment an S1_Core design from
Simply RISC [15] was used. The design was
elaborated using a commercial parser and
simulated with Cadence NC-Verilog simulators,
running on PCs with Linux. The design has 1.2
million gates and contains one 64 bit-SPARC Core,
a Wishborn bridge, a reset controller and a basic
interrupt controller. The following shows the
characteristics of the traditional, single-processor
simulation and the zero-delay simulation used as
reference simulation.

Single-processor Simulation (full GL timing)
• Simulation Size : 500,000 cycles
• Simulation Time : 11,860 s
• Simulation Rate : 42.16 cycles/sec

Zero-Delay simulation
• Simulation Cycle : 500,000 cycles
• Simulation Time : 223 s
• 53 × faster than full timing simulation

 5

The results of the simulation are shown in
Table 1. As discussed earlier (refer to the
equations) the time to simulate individual slices
during the target simulation differs slightly among
the slices. This is due to the time needed to
save/restore the testbench, with the restore time
increasing with the number of slices. The best
simulation performance is attributed to the first
slice: the initial condition for the first slice does
not require the design state to be restored, and the
testbench doesn’t need to be simulated to recover
the state. From the second slice on, the simulation
may be slower. However, the plots in Fig. 3 and
Fig. 4 show that the overhead to simulate
testbench is small and the last slice is simulated
almost as fast as the first one. Furthermore, the
simulation overhead due to testbench forwarding
is not a function of the number of slices but a
function of the simulation time. Therefore,
regardless of the number of slices, the total
simulation overhead of temporal parallel
simulation is maintained at a small level.

Second simulation
(full timing)

Slice
No.

First
simul.
(zero-
delay)

1st
slice
(best
case)

2st
slice

Last
slice

(worst
case)

Total
simulation

time
(min, max)

5 361 2673 2756 2798 3034 -159
10 391 1342 1554 1567 1733 - 958
15 429 887 951 969 1316 -1398
20 457 648 732 745 1150 - 1202

Table 1. Performance of gate-level simulation with
20 simulation slices. Design: S1Core, 1.2Mgates.

The table shows that up to 10× speedup
improvement is achievable with 20 target slices,
with the overhead for testbench and design state
restoration taken into account. The performance
improvement starts to saturate after 15 slices due
to overhead incurred by reference simulation and
state restoration. It should be noted that state
restore overhead is around 7% of total simulation
for slice No. 20. In general, the total simulation
time is long enough to ignore this overhead
allowing for large number of simulation slices in
real verification.

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20

Number of slices

S
e
c

Best

Worst

Fig. 3 Gate-level timing simulation time as a
function of the number of simulation slices.

Fig. 4 Gate-level timing simulation performance
as a function of the number of simulation slices.

7. Conclusions and Future Work

A radical solution to completely eliminate
communication and synchronization overhead in a
distributed parallel simulation environment for
full timing gate level simulation is proposed. This
is accomplished by performing temporal
partitioning of the simulation run, instead of
spatial partitioning of the design. For long
simulation runs a linear speedup can be obtained;
this is something that is not achievable in
traditional (spatial) parallel simulation, due to the
unavoidable inter-simulator communication and
synchronization overhead. To achieve this linear
speedup the implementation may have to be
confined to a strictly progressive refinement
process, in which lower abstraction model is
cycle-time or transaction-time consistent with its

0

2

4

6

8

10

12

0 5 10 15 20 25
N um ber of slices

S
p
e
e
d
 u
p
 (
x)

B e st

W orst

 6

higher abstraction model. However, we believe
that it is more than worthwhile because the
temporal parallel simulation may make the fully
automated and fast dynamic verification possible
by integrating the verification flow with
implementation flow.

The proposed approach is also applicable to
designs with multiple asynchronous clocks. By
applying proper delay on a clock domain crossing
(CDC) wire during the reference simulation, we
believe the consistency can be maintained for
designs with multiple clocks. As a result, our
approach might be applicable for any general
designs, and this extension will be our further
research items in the future.
REFERENCE

[1] Y. C. Hsu et al, “Visibility Enhancement for
Silicon Debug,” Proc. 43rd Design Automation
Conference, pp. 13-18, July 2006
[2] Bauer, J. et al., ‘’A Reconfigurable Logic
Machine for Fast Event-driven Simulation,’’ Proc.
ACM/IEEE DAC, pp. 668-671, June 1998.
[3] Fujimoto, R., ‘’Parallel Discrete Event
Simulation,’’ Communications of the ACM, Vol.
33, Issue 10, pp. 30-53, Oct. 1990.
[4] Ghenassia, F., Transaction Level Modeling
with SystemC, Springer, Dordrecht, Netherlands,
2005.
[5] http://www.deepchip.com/items/0421-01.html
[6] Jayadev Misra, “Distributed Discrete-Event
Simulation.” ACM Computing Surveys, 18(1):39–
65, 1986.
[7] A. Gafni. “Rollback Mechanisms for
Optimistic Distributed Simulation Systems.”
Proceedings of the SCS Multiconference on
Distributed Simulation, vol.3, pages 61-67, July
1988
[8] R.M. Fujimoto, “Time Warp on a Shared
Memory Multiprocessor”, Transactions of the
Society for Computer Simulation, Vol, 6, No. 3,
pages 211-239, July 1989
[9] R.M. Fujimoto, "Parallel Discrete Event
Simulation," Communication of the ACM,
Vol. 33, No. 10, Oct. 1990, pp 30-53.
[10] H. Bauer, C. Sporrer, and T. Krodel. “On
Distributed Logic Simulation using Time Warp.”

In Proc. VLSI International Conference (IFIP),
Edinburgh, 1991
[11] Tun Li; Yang Guo; Si-Kun Li “Design and
implementation of a parallel Verilog simulator:
PVSim” VLSI Design, 2004. Proc. 17th
International Conference on 2004 pp.329 – 334.
[12] L. Zhu, G. Chen, B.K. Szymanski, C. Tropper,
Tong Zhang “Parallel Logic Simulation of
Million-Gate VLSI Circuits” Proc. 13th IEEE
International Symposium on Modeling, Analysis,
and Simulation of Computer and
Telecommunication Systems - Volume 00
MASCOTS '05, 2005. Also, MS thesis on the
same subject (RPI, 2005).
[13] SimCluster datasheet, Avery Design
Automation (http://www.avery-design.com)
[14] MP-Sim datasheet, Axiom Design
Automation (http://www.axiom-da.com)
[15] S1_Core RISC processor, Simply RISC
(www.srisc.com)

