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Abstract – This paper introduces a radically different 
approach to parallel simulation for gate level design, 
aimed at completely eliminating the communication 
and synchronization overhead between simulators. It is 
based on a new concept of temporal parallel 
simulation: in contrast to traditional, spatially-
distributed simulation, which partitions the design into 
multiple modules to be simulated concurrently, the 
proposed temporal parallel simulation partitions the 
single simulation run into multiple simulation runs in 
temporal domain. Experimental results demonstrate 
that linear speedup is possible for large designs and 
long simulation runs. 
 
1. Introduction 
 

Unlike other verification methods (formal 
verification, or hardware assisted simulation), it 
provides full signal visibility and scales with 
design size. Simulation is also being used to 
complement static methods, such as static timing 
analysis (STA) and formal verification 
(equivalence checking) for timing verification [1].  

However, the major drawback of simulation is 
its low speed. There have been several approaches 
to address this deficiency, such as hardware-
assisted simulation acceleration [2], distributed 
parallel simulation [3] and abstraction level design 
simulation [4]. 

This paper concentrates on a distributed 
approach to simulation, as a means to parallelize 
the simulation and improve its overall 
performance. A new approach to parallel HDL 
simulation is proposed, based on a concept of 
temporal parallel simulation, rather than 
traditional, spatially distributed simulation. Unlike 
the spatial simulation method, the method 
described in this paper does not introduce any 
dependency among the simulation nodes. The 

synchronization and communication overhead due 
to inter-module communication and signal passing, 
characteristic of the traditional distributed 
simulation is completely eliminated. This is a very 
important feature, which increases parallelism and 
maximizes speedup ratio with respect to the 
number of simulation nodes. 

In this paper we outline the concept of 
temporal parallel simulation and show that it is 
compatible with the accepted design and 
verification flows. We discuss technical issues to 
make this method practical and show some 
preliminary experimental results. 

The proposed technique is universally 
applicable to full timing simulation of designs of 
any size and type (both with single and multiple, 
asynchronous clocks). However, for the purpose of 
this paper we confine its description to gate-level 
designs with a single clock. It is worth mentioning 
that gate-level timing simulation is still being used, 
even for designs with a single clock, because STA 
alone is not efficient for timing verification due to 
gated clocks, false paths, multi-cycle paths, etc [5]. 
 
2. State of the Art 
 

A rich body of literature exists in the area of 
parallel simulation; however most of the known 
work addresses traditional parallel simulation, 
which is based on physical partitioning of the 
design into modules, distributed to individual 
simulators. We refer to this approach as spatial 
parallelism, since the simulation relies on 
partitioning of the design in spatial domain. This 
form of parallel simulation has been known since 
late 1980s as Parallel Discrete Event Simulation 
(PDES) [6],[7],[8],[9],[10]. Such an approach to 
distributed simulation suffers from an unavoidable 
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communization and signal synchronization 
overhead between the modules, and a lack of 
methods to perform efficient design partitioning to 
minimize this overhead. To the best of our 
knowledge, most of the current research in 
distributed HDL simulation is based on this 
approach. The results have been demonstrated on 
relatively small or well structured designs that can 
be easily partitioned without incurring large 
communication cost. 

Li et al. [11] implemented a parallel Verilog 
simulator by adopting an Object-Oriented concept. 
However, its performance is still not acceptable 
because of the high synchronization and 
communication overheads for real, complex 
designs. 

 Zhu et al. [12] attempted to apply this 
approach to realistic designs and achieved good 
event processing rate with the number of events 
growing linearly in the number of processors. In 
spite of these promising results, the actual 
simulation performance can easily deteriorate, as it 
strongly depends on the design structure and the 
dynamic behavior of the design. 

No clean solution has been proposed to 
address the traditional issues plaguing this 
approach, such as synchronization, message 
passing/sharing, and design partitioning problems. 
As a result, only a few commercial products have 
been developed for such spatial parallel simulation, 
including SimCluster [13] and MP-Sim [14]. To 
this date they, however, were not able to attract 
attention of expert designers. 
 
3. Temporal Parallel Simulation 
 

The temporal parallel simulation proposed in 
this paper is a radical departure from the 
conventional parallel HDL simulation for gate 
level timing simulation. In contrast to spatial 
parallelism, which partitions the design to be 
simulated, our temporal parallel simulation 
partitions the simulation run in time, by cutting the 
entire simulation run into a number of independent 
simulation slices. It consists of two major steps: 

 
1. Fast, high-speed, high-level reference 

simulation on a single processor that stores 
essential information at selected checkpoints; 
and 

2. Low-level target simulation, which is 
distributed to the individual processors.  

 
The reference simulation runs at zero-delay 

gate level (GL) of design abstraction, while the 
target simulation is run at the full-timing GL, 
using annotated SDF (Standard Delay Format). 
Usually full-timing gate level simulation is 10~50 
times faster than full-timing gate level simulation. 
This large difference in simulation speed makes it 
possible for the proposed approach to achieve 
significant speedup improvement. The basic 
concept of this new technique is shown in Figure 1.  

Both steps of the simulation work on the entire 
design under test (DUT), while the entire 
simulation run is divided into simulation slices, 
each to be executed on an independent simulator. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Concept of temporal parallel simulation. 

 
For this approach to work, the initial design 

state for each slice of the target simulation must be 
captured and saved during the first (reference) run. 
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This is done at predetermined checkpoints, 
determined by the number of processors available 
for distributed parallel simulation. The design state 
consists of the state of all internal registers and 
memory print of the design. By restoring the 
design states, each slice can be made independent 
of each other. As a result, target simulation can run 
concurrently and independently for each slice. 
 
3.1 Testbench Forwarding 
 

While the design state of DUT can be stored at 
any point during the simulation, the state of the 
testbench cannot be similarly captured. This is 
because the state of the testbench (software) is not 
clearly defined. In order to maintain the correct 
testbench state at the restoring point, the testbench 
must be simulated from the beginning of the 
simulation time to the initial time of each 
simulation slice. This testbench forwarding 
technique is a fast, testbench-only simulation used 
in our temporal parallel simulation. 

During the reference simulation, the values of 
all output ports and bi-directional ports of DUT 
are captured. The captured data is then used to 
create a dummy DUT, which has exactly the same 
output behavior as an actual DUT under the zero-
delay gate-level model. Such constructed dummy 
DUT is used as a stimulus provider for the 
simulation of the testbench up to each restoring 
point prior to target simulation of each slice. After 
restoring the design state, the dummy DUT is 
replaced by the original DUT. Note that the 
testbench is usually implemented in RTL or higher 
abstraction level. Moreover, because the complex 
simulation-time intensive DUT is completely 
eliminated during this phase, the testbench 
forwarding technique effectively reduces the 
testbench simulation overhead. 

 
3.2 Maintaining Functionality of Testbench 

 
An important feature of our approach is that it 

offers a significant performance improvement of 
simulation without sacrificing the verification 
capability of the testbench. Throughout the 
simulation, no modification to the original 
testbench is made.  Therefore, all the verification 

features defined in the testbench are applicable to 
temporal parallel simulation.  
4. Correctness of Simulation 
 

The correctness of our approach can be 
verified by comparing its results with the result of 
the conventional (single processor) simulator. The 
target simulation phase of our approach can be 
divided into the following three stages: 

 
1. Testbench forwarding, 
2. State restoring, and 
3. The target, slice simulation stage. 

 
The correctness of the first stage is assured by 

the stimulus from the dummy DUT. This stimulus 
is functionally the same as used by the 
conventional simulator, since it comes originally 
from the zero-delay model simulation. The timing 
of the stimulus is also the same as in the original 
simulation on the cycle boundary, provided that 
there is no timing violation in the design. 

For the second stage, once all design state is 
restored correctly, combinational logic values are 
determined immediately. The third stage should 
also be correct because the target slice simulation 
uses the original DUT and the original testbench. 
Therefore, the correctness of temporal parallel 
simulation is easily ensured. 
 
5. Performance Analysis 
 

The following expressions represent the total 
parallel simulation time Ttot as a function of the 
number of simulation slices N and some overhead 
due to reference simulation, and saving/restoring 
of the testbench and DUT:  
  
  tot ref targetT T T= +  

  0ref stim delay saveT C T N T−= ⋅ + ⋅  

  arg
1timing

t et restore TB

T XT T T
N N

−
= + + ⋅  

where: 

Ttot  =  total parallel simulation time, 
Tref  =  reference simulation time, 
Ttarget =  target simulation time for each slice, 
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Csim  =  overhead due to stimulus capturing, 
T0-delay = simulation time for conventional  

zero-delay model, 
Tsave  =  time to save the DUT state, 
Trestore =  time to restore the DUT state, 
Ttiming =  simulation time for conventional  

full timing model, 
TTB  =  simulation time for testbench forwarding, 
X   =  index of the target simulation slice, 
N   =  total number of simulation slices. 
 

The total parallel simulation time is a sum of 
the reference simulation time and target simulation 
time. Note that only one slice is included in the 
target simulation time, since all slices are 
simulated in parallel. Reference simulation time is 
a function of conventional zero-delay simulation 
and some overhead. Overhead due to stimulus 
capturing is multiplied by the simulation time 
because capturing event occurs continuously 
during the entire simulation. Target simulation 
time is a function of some overhead and 
conventional full timing simulation time for 
particular slice, labeled X in the equation. Note 
that the testbench is simulated with dummy DUT 
from the simulation time 0 to the previous slice for 
the purpose of testbench forwarding. 

Parameter Tref is usually very small compared 
to the conventional timing simulation because it is 
a zero-delay simulation. It is known that zero-
delay simulation is at least 10~50 times faster than 
full timing simulation. As the number of DUT 
output ports is very limited, stimulus capturing 
Csim does not introduce a big overhead. Similarly, 
Tsave is small. The value of Ttarget is also small 
because only a single slice is considered. 
Therefore, the total parallel simulation time Ttot is 
significantly smaller than the one of conventional 
simulation. 

An important point is that the simulation time 
for each target slice is not identical. In other words, 
the last slice (X=N) has slowest performance 
because of the overhead for testbench forwarding. 
However, the performance difference is so small 
that it can be ignored because testbench is usually 
described on a high abstraction level; it executes 
hundreds of times faster than the full timing 
simulation of DUT. Hence the overhead of 

testbench is a relatively small fraction of the total 
simulation time. This small performance 
difference will be shown later in the experimental 
result section. 
 
6. Experimental Results 
 
 The following experiments were performed using 
zero-delay gate-level simulation as a reference 
simulation. 
 
6.1 Experiment 1 

 
The experiment was carried out with the help 

of designers from a major semiconductor 
corporation on an industrial 18M-gate design.  
The design was elaborated using a commercial 
parser and simulated with Cadence NC-Verilog 
simulators, running on SUN machines. Despite a 
small (10:1) speedup ratio between the zero-delay 
simulation and full-timing GL simulation, the 
results showed an expected linear (6×) speedup 
with 10 simulators on a simulation run of 
72,600,000 cycles.   
 
6.2 Experiment 2 

In this experiment an S1_Core design from 
Simply RISC [15] was used. The design was 
elaborated using a commercial parser and 
simulated with Cadence NC-Verilog simulators, 
running on PCs with Linux. The design has 1.2 
million gates and contains one 64 bit-SPARC Core, 
a Wishborn bridge, a reset controller and a basic 
interrupt controller. The following shows the 
characteristics of the traditional, single-processor 
simulation and the zero-delay simulation used as 
reference simulation.  

Single-processor Simulation (full GL timing) 
• Simulation Size : 500,000 cycles 
• Simulation Time : 11,860 s 
• Simulation Rate : 42.16 cycles/sec 

Zero-Delay simulation 
• Simulation Cycle : 500,000 cycles 
• Simulation Time : 223 s 
• 53 × faster than full timing simulation 
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The results of the simulation are shown in 
Table 1. As discussed earlier (refer to the 
equations) the time to simulate individual slices 
during the target simulation differs slightly among 
the slices. This is due to the time needed to 
save/restore the testbench, with the restore time 
increasing with the number of slices. The best 
simulation performance is attributed to the first 
slice: the initial condition for the first slice does 
not require the design state to be restored, and the 
testbench doesn’t need to be simulated to recover 
the state. From the second slice on, the simulation 
may be slower. However, the plots in Fig. 3 and 
Fig. 4 show that the overhead to simulate 
testbench is small and the last slice is simulated 
almost as fast as the first one. Furthermore, the 
simulation overhead due to testbench forwarding 
is not a function of the number of slices but a 
function of the simulation time. Therefore, 
regardless of the number of slices, the total 
simulation overhead of temporal parallel 
simulation is maintained at a small level. 

Second simulation   
(full timing) 

Slice 
No. 

First 
simul.  
(zero-
delay) 

1st 
slice  
(best 
case) 

2st 
slice 

Last 
slice 

(worst 
case) 

Total 
simulation 

time     
(min, max) 

5 361 2673 2756 2798 3034 -159 
10 391 1342 1554 1567 1733 - 958 
15 429  887 951 969 1316 -1398 
20 457  648 732  745 1150 - 1202 

 
Table 1. Performance of gate-level simulation with 
20 simulation slices. Design: S1Core, 1.2Mgates. 

The table shows that up to 10× speedup 
improvement is achievable with 20 target slices, 
with the overhead for testbench and design state 
restoration taken into account. The performance 
improvement starts to saturate after 15 slices due 
to overhead incurred by reference simulation and 
state restoration. It should be noted that state 
restore overhead is around 7% of total simulation 
for slice No. 20. In general, the total simulation 
time is long enough to ignore this overhead 
allowing for large number of simulation slices in 
real verification. 
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Fig. 3 Gate-level timing simulation time as a 
function of the number of simulation slices. 

 

 
 
 
 
 
 
 
 
 
Fig. 4 Gate-level timing simulation performance 
as a function of the number of simulation slices. 
 

7. Conclusions and Future Work 

A radical solution to completely eliminate 
communication and synchronization overhead in a 
distributed parallel simulation environment for 
full timing gate level simulation is proposed. This 
is accomplished by performing temporal 
partitioning of the simulation run, instead of 
spatial partitioning of the design. For long 
simulation runs a linear speedup can be obtained; 
this is something that is not achievable in 
traditional (spatial) parallel simulation, due to the 
unavoidable inter-simulator communication and 
synchronization overhead. To achieve this linear 
speedup the implementation may have to be 
confined to a strictly progressive refinement 
process, in which lower abstraction model is 
cycle-time or transaction-time consistent with its 
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higher abstraction model. However, we believe 
that it is more than worthwhile because the 
temporal parallel simulation may make the fully 
automated and fast dynamic verification possible 
by integrating the verification flow with 
implementation flow. 

The proposed approach is also applicable to 
designs with multiple asynchronous clocks. By 
applying proper delay on a clock domain crossing 
(CDC) wire during the reference simulation, we 
believe the consistency can be maintained for 
designs with multiple clocks. As a result, our 
approach might be applicable for any general 
designs, and this extension will be our further 
research items in the future. 
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