
Computer Algebraic Approach to Verification and Debugging
of Galois Field Multipliers

Tiankai Su1, Atif Yasin1, Cunxi Yu1,2, Maciej Ciesielski1

ECE Department, University of Massachusetts, Amherst, USA1 LSI, EPFL, CH2

tiankaisu@umass.edu, ayasin@umass.edu, cunxi.yu@epfl.ch, ciesiel@umass.edu

Abstract—The paper presents a novel method to verify and debug
gate-level arithmetic circuits implemented in Galois Field arithmetic. The
method is based on forward reduction of the specification polynomials of
the circuit in GF (2m) using GF (2) models of its logic gates. We define a
forward variable order ”FO >” and the rules of forward reduction that
enable verification, bug detection, and automatic bug correction in the
circuit. By analyzing the remainder generated by forward reduction, the
method can determine whether the circuit is buggy, and finds the location
and the type of the bug. The experiments performed on Mastrovito and
Montgomery multipliers show that our debugging method is independent
of the location of the bug(s) and the debugging time is comparable to the
time needed to verify the bug-free circuit.

Keywords— Galois Field, Arithmetic circuits, Formal verification, Com-
puter Algebra, Logic Debugging.

I. INTRODUCTION

Galois Field (GF) arithmetic has numerous applications in digital
communication, cryptography and security engineering, and formal
verification of such circuits is of prime importance. A large body of
work has been published on formal verification of arithmetic circuits,
both integer arithmetic [1][2][3][4] and GF arithmetic circuits [5][6].
The most successful verification techniques for verifying arithmetic
circuits are based on computer algebra [7]. In this approach, the veri-
fication problem is solved by proving that the implementation satisfies
the specification, where the specification and the implementation are
represented by polynomial rings, F [x]. A typical approach is based
on polynomial reduction using Gröbner Basis, which transforms
the verification problem to membership testing of the specification
polynomial in the ideals [1][5]. An alternative approach to verify gate-
level arithmetic circuits uses algebraic rewriting of the polynomial at
the primary outputs (POs) into a polynomial at the primary inputs
(PIs). The method, termed backward rewriting, is performed in a
reverse topological order [4][6] and is characterized by a good
runtime performance due to a large number of monomial cancellations
during rewriting [6][8].

However, very little work has been done on debugging of arithmetic
circuits. One such work reasons about the bugs in integer circuits by
analyzing the remainder polynomial generated by backward rewriting
[9][10]. However, it is limited by an uncontrollably large size of the
remainder generated in case of a buggy circuit. Another approach
combines backward rewriting with forward rewriting, carried from
PIs to POs, and compares the two results to identify and correct
the bugs [11]. This method also suffers from the polynomial size
explosion in a buggy circuit and the complexity of forward rewriting.

In this paper we propose a novel approach to debugging of GF
arithmetic circuits based on forward rewriting. This technique does
not suffer from the polynomial size explosion encountered by other
methods and allows one to identify and automatically correct the bugs
in GF circuits. We limit our attention to bugs that are caused by using
a wrong logic gate (e..g, using an AND gate instead of an XOR),
referred to as gate replacement, which is the most common source
of errors. Specifically, we make the following novel contributions:
• Use forward variable order ”FO >” which enables performing

verification and debugging at the same time.
• The method does not suffer from memory explosion problem.

• It can handle multiple dependent bugs.
• The performance of bug detection is not related to the location

of the bug; the time it takes to verify a buggy circuit is about
the same as verifying a bug-free circuit.

II. BACKGROUND

A. Galois Fields

Galois field (GF) is a number system with a finite number of
elements and basic arithmetic operations of addition, multiplication,
and division. Of particular interest in hardware design for cryptogra-
phy systems are binary extension fields, denoted GF(2m) (or F2m),
which are finite fields with 2m elements represented by polynomial
rings F [x]. The addition of finite field elements is the addition of
polynomials, with coefficients computed in GF(2). Multiplication of
field elements in GF(2m) is performed modulo irreducible polynomial
P (x) of degree m with coefficients in GF(2). Extension fields are
used in many cryptography applications, such as Advanced Encryp-
tion Standard (AES) and Elliptic-curve cryptography (ECC).

B. Computer Algebra Approach

Algebraic approach used in this work relies on polynomial rep-
resentation of the circuit specification and its logic gate compo-
nents. Input Signature is the polynomial in terms of the PI vari-
ables that represents the expected function of the circuit, denoted
Sigin. For example, input signature for an n-bit binary adder is
Sigin =

∑n−1
i=0 2i(ai + bi). Output Signature is a binary encoded

polynomial expressed in the PO variables, denoted by Sigout. Output
signature of an unsigned arithmetic circuit with m output bits {zi}
is Sigout =

∑m−1
i=0 2izi. Backward rewriting is the process that

transforms the output signature Sigout into a unique input signature
Sigin using algebraic (polynomial) models of the logic gates of the
circuit [4][6]. This work models Boolean operators using algebraic
models of GF (2). For example, the pseudo-Boolean model of XOR
in integer arithmetic, XOR(a, b)=a + b −2ab, is reduced in GF(2)
to (a + b + 2ab) mod 2 = (a + b) mod 2. The following algebraic
models are used to describe basic logic gates in GF (2m) [1][6]:

¬a = 1 + a mod 2

a ∧ b = a · b mod 2

a ∨ b = a+ b+ a · b mod 2

a⊕ b = a+ b mod 2

(1)

To address the debugging problem of gate-level GF circuits we
define two orders by which monomials are listed in each polynomial:
Definition 1: BO > order: A backward, reverse-topological order,
such that every output signal of a gate is always greater than
its input signal. The set of polynomials representing a logic cone
ordered according to BO > is called a BO base.
Definition 2: FO > order: A forward, topological order, such that
every output signal of a gate is always less than its input signal. The
set of polynomials ordered according to FO > is called an FO base.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

For example, the polynomials for an OR gate z in these orders are:
BO > order: z + a+ b+ a · b,
FO > order: a+ b+ a · b+ z.

The BO > order has been used successfully in verification works
of [5][8][6], but, as demonstrated in this paper, it is ineffective in
debugging of GF circuits. The approach described in this paper is
based on an FO > order.

C. GF Multiplier Principles

Galois Field multiplication is performed modulo an irreducible
polynomial P (x), a polynomial that cannot be factored into nontrivial
polynomials over the given field [12][13]. The inputs and outputs of
GF(2k) multiplication are k-bit binary numbers. An example of a 4-bit
GF(24) multiplication, with irreducible polynomial P (x)=x4+x3+1,
is shown in Figure 1.

a3 a2 a1 a0

b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
s6 s5 s4 s3 s2 s1 s0

sq =
⊕

aibj , ∀ i+j=q, 0 ≤ q ≤ 6

s3 s2 s1 s0
s4 0 0 s4
s5 0 s5 s5
s6 s6 s6 s6
z3 z2 z1 z0

z0 = s0 ⊕ s4 ⊕ s5 ⊕ s6
z1 = s1 ⊕ s5 ⊕ s6
z2 = s2 ⊕ s6
z3 = s3 ⊕ s4 ⊕ s5 ⊕ s6

Fig. 1: Multiplication in GF(24): Z mod P (x) = A · B mod P (x),
where P (x)=x4+x3+1.

The GF multiplication is performed in a straightforward way by:
1) generating and adding the partial products; and 2) reducing the
result over GF(2m) with P (x). The partial products are generated in
the same way as in the integer multiplication, using AND operations.
However the sum of the partial products (denoted sq in Figure 1)
is obtained using a series of XORs, since additions in finite field
are implemented as XOR operations. This multiplication structure
is called Mastrovito multiplier [14]. Note that in GF arithmetic
there is no carry propagation between the columns of the result
bits. Hence, each bit can be computed separately as a linear (XOR)
sum of the product terms in the respetive column. An alternative
method for performing fast modular multiplication is the Montgomery
multiplication [15]. It works by transforming two integer inputs, A,
B, into Montgomery forms, AR mod N and BR mod N , for
some constant R, and computing the product ABR mod N . The
multiplication result A ·B is then obtained by transforming the result
from the Montgomery form, as A · B = A · B · R−1mod P (x).
Since the Montgomery form generator is a GF multiplication with a
constant input R, each of the four components can be considered as
a simplified Mastrovito multiplication [16].

III. BUG IDENTIFICATION

This section describes an algorithm that utilizes the property of GF
multipliers to identify bug(s) in the circuit. It consists of two major
parts: 1) Remainder Generation and 2) Bug Analysis.

Algorithm I describes forward rewriting; it imposes the FO >
order on the polynomials and reduces the specification by the FO
base. Each polynomial representing a logic gate in the FO base has
the form: {head}, zi. The {head} is the set of head monomials
representing the gate inputs; the tail monomial zi is the output of
the gate. The degree of the monomial is the sum of the degrees of all
its variables. For example, polynomial of an XOR gate is a+ b+ zi,
where the head set is {a, b}, each of degree one, and the tail is zi.

Algorithm 1 Remainder Generation via Forward Rewriting
Input: Gate-level netlist of the GF circuit
Input: Expected InputSignaturei of each output bit
Output: Residual polynomials {Remainderi}
Output: Non-zero elements of FOi base
1: PO={z0, z1, ..., zn−1}: primary output bits of the GF circuit
2: for i ← 0 to n− 1 do
3: Extract cone POi from the gate-level netlist and generate the FOi base
4: Speci ← InputSignatruei − zi
5: while Speci 6= 0 do
6: Successin ← 0
7: for each polynomial Pj in FOi base do
8: for each monomial Mk in Pi do
9: if Mk divides Speci and Deg(Mk) == Deg(Speci) and Mk

is not the last monomial in Pj then
10: Reduce Speci by Pj ; Set Pj in FOi to 0; Successin ← 1
11: end if
12: end for
13: end for
14: if Successin == 0 then
15: Move the leading term of Speci into Remainderi
16: end if
17: end while
18: end for
19: return {Remainderi, non-empty FOi base}

The specification of the circuit is defined as Sigin − Sigout, the
difference between the correct (expected) world-level input signature
Sigin and the output signature Sigout, which is the binary encoded
outputs. Since in a GF circuit the output bits are independent from
each other, we can define Speci, the bit-level logic of output zi,
as Sigin(i) − zi. The input signature Sigin(i) is known, computed
using the irreducible polynomial P (x). The verification goal is then
to reduce each specification Speci by its FOi base. If the result is
0, we conclude that the logic cone associated with bit i is bug-free.
Otherwise, a non-zero Remainderi will indicate the presence of a
bug (or bugs) in that cone.

The first step of Algorithm I is to extract all the cones from the
circuit and derive the corresponding Speci (lines 3-6). Recall that the
FOi base is the set of polynomials with an FO > order describing
the input-output relationship for cone i. While creating logic cones
for each output, the common logic is duplicated, effectively making
each cone fanout-free1. This means that every intermediate signal
will appear only once in the head monomials of FOi base.

The next step is to reduce each Speci by its corresponding FOi

base. In lines 8-10, the Algorithm scans the polynomials in the FOi

base to check if the leading term lti of Speci is divisible by any of
the head monomials with the same degree as lti. This reduction is
different than in the polynomial reduction based on the BO > order,
where only a leading monomial is used in the division. Allowing the
use of any of the head monomials is essential in identifying the bugs.

As an example, consider the reduction of Speci = a + b + R,
where R represents the remaining set of monomials, by polynomial
f = a+b+z. The result of such a reduction should be Speci = z+R.
However, if the monomial a is missing in Speci due to a bug (when
the gate with output a is false), i.e., when Speci = b+R, the head
monomial b in f still can be used to divide Speci. The result of
such a reduction will be Speci = a + z + R . The monomial a in
the reduced Speci will never be eliminated by other polynomials in
FOi base, since there would be no other gate with signal a as input.
When examining the content of the final remainder, it will be clear
that the gate with output a is the source of the bug.

In summary, if there is a polynomial Pi in FOi base that contains
a head monomial that divides Speci, it will be used to reduce Speci.
The polynomial Pi will then be removed from the base (each base

1This is true for most structures such as Mastrovito multipliers, but may
not be true for more complex ones, such as Montgomery; we currently limit
our attention to those structures that can be made reconvergent fanout free.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

3

polynomial can only be used once during the reduction). However,
if the leading term of Speci is not divisible by any of the head
monomials in the FOi base, it will be moved into Remainderi.
This process will be repeated until Speci becomes empty (lines 13-
18); or until it cannot be reduced anymore, in which case the content
of the Remainder will be used to identify the bug.

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

Fig. 2: A two-bit Mastrovito GF multiplier.

Example 1: Consider a bug-free two-bit Mastrovito multiplier in
Figure 2. The circuit can be separated into two cones: z0 and z1. The
FO1 base of cone z1 includes polynomials: p1 = a0b1 + c1; p2 =
a1b0+ c2; p3 = a1b1+ c3; p4 = c1+ c2+r0 and p5 = c3+r0+z1,
each written in FO > order. According to the definition, Spec1 is
equal to the input signature of z1 minus z1, the output signature. The
expected input signature of the circuit is F = (a0 + Xa1) · (b0 +
Xb1) = a0b0 +X(a0b1 + a1b0) +X2a1b1. After GF (2) reduction
with the irreducible polynomial P (X) = X2 + X + 1, we obtain
F = X(a0b1 + a1b0 + a1b1)+ (a0b0 + a1b1). Hence, for output z1,
associated with X , we have Spec1 = (a0b1+a1b0+a1b1)+z1(mod
2). Similar expression can be derived for Spec0 of output z0.

The next step is to reduce the specification Spec1 by the polyno-
mial base of FO1. This process is shown in Figure 3. We can see
that Spec1 is eventually reduced to 0. That is, Remainder1 = 0 and
all polynomials in FO1 have been used, which indicates that cone
z1 is bug-free. We proceed similarly with bit z0 to determine that its
logic cone is also bug-free.

Example 2: Let us now consider the case when there is a bug in
the two-bit multiplier in Figure 2. Let the bug be caused by replacing
the XOR gate r0 with an AND gate in cone z1. That is, polynomial
p4 = c1 + c2 + r0 is replaced by p4 = c1c2 + r0 in the FO1 base,
while Spec1 remains the same.

The process of reducing Spec1 by the new FO1 base is shown in
Figure 3. Note that in the 4th iteration of the reduction, the polynomial
c1 + c2 in Spec1 is not divisible by any of the head monomials in
FO1, so it will be moved into Remainder1. The monomial r0 in
the 5th iteration also be moved to Remainder1.

Polynomials in FO1 base
of a bug-free cone Spec1=a0b1+a1b0+a1b1+z1
p1=a0b1+c1 Spec1/p1=c1+a1b0+a1b1+z1
p2=a1b0+c2 Spec1/p2=c1+c2+a1b1+z1
p3=a1b1+c3 Spec1/p3=c1+c2+c3+z1
p4=c1+c2+r0 Spec1/p4=2c2+c3+r0+z1 mod 2
p5=c3+r0+z1 Spec1/p5=2r0+2z1 = 0 mod 2

Polynomials in FO1 base
of a buggy cone Spec1=a0b1+a1b0+a1b1+z1
p1=a0b1+c1 Spec1/p1=c1+a1b0+a1b1+z1
p2=a1b0+c2 Spec1/p2=c1+c2+a1b1+z1
p3=a1b1+c3 Spec1/p3=c1+c2+c3+z1
p4=c1c2+r0 Spec1/FO1=c1+c2+c3+z1
p5=c3+r0+z1 Spec1/p5=c1+c2+r0+2z1 mod 2

Fig. 3: Generating Remainder with Forward Rewriting of bug-free
and buggy logic cone of output bit z1. Remainder = 0 for bug-free
cone, and Remainder = c1 + c2 + r0 for a buggy cone.

As a result, we obtain a non-zero Remainder1 = c1+c2+r0, and
a non-empty FO1 base: p4 = c1c2+r0. This is a clear manifestation
of a bug; namely, the XOR gate (c1 + c2 + r0) has been replaced
by an AND gate (c1c2 + r0), while during the reduction, polynomial

c1+ c2 should have been canceled by r0. In a similar fashion we can
identify other types of errors caused by gate replacement.

TABLE I: Bug Analysis

Bug Type Correct gate False gate Remainder Non-empty base
1 XOR AND a + b + z a · b + z
2 XOR OR a · b -
3 AND XOR a · b + z a + b + z
4 AND OR a + b -
5 OR XOR a · b -
6 OR AND a + b -

Table I shows some common cases of erroneous gate-replacement
in GF circuit for 2-input logic gates: AND, OR, and XOR. Similar
relations can be derived for other gates as needed. In the table, signals
a and b represent the inputs, and z is the output of the false gate. By
analyzing the Remainderi and the non-empty FOi base generated
by the algorithm, we can readily determine the type of the error and
locate the bug. This is possible because the remainder contains the
names of the input and output signals of the false gate.

The bug of type 2, 4, 5, 6 are all associated with the OR gate.
Since the polynomial of the OR gate is f = a + b + ab + z, the
Spec polynomial can be reduced by f , regardless whether the inputs
are in the sum form (a + b) or the product form (a·b). This means
that the forward reduction will always ”go through” the bug, and
leave the residual polynomial with their inputs (a + b or a · b) in
the remainder. As a result, they do not have non-empty base and the
Remainder contains only the input variables of the false gate, making
it easy to identify the bug. On the other hand, for bug types 1 and 3,
both the input signals (a, b) and the output signal (z) of the false gate
appear in the Remainder. Furthermore, a non-empty base indicates
that the polynomial propagating through the circuit during forward
rewriting cannot ”go through” the bug. As we can see in the next
section, multiple of these bugs will affect each other.

At this point the reader should fully appreciate the difference be-
tween forward rewriting (using FO > order) and backward rewriting
(using BO > order). For a bug-free circuit both approaches will
produce a zero remainder, indicating that the circuit implements the
correct function. However, for the buggy circuit the remainder will
be different. By construction in BO > order, the remainder will
contain only the primary inputs, but not the input and output signals
of the false gate. Hence it does not provide sufficient information
about the type of the bug and its location. For example, assuming the
same bug as in Example 2, the backward rewriting would produce
Rem1 = a0b0a1b1 + a1b1, with no indication as to the source of
the bug. Furthermore, a single bug can make the remainder very
huge, making the analysis of the source of the bug difficult and the
debugging process very hard. In contrast, in forward reduction, the
remainder contains the signal name of the faulty gate and the location
of the bug does not affect the size of the remainder.

IV. MULTIPLE BUGS ANALYSIS

The debugging method using forward reduction described in the
previous section can be extended to multiple bugs. In general,
arithmetic bugs can be divided into independent and dependent bugs.
Independent bugs are those that will not affect each other; typically
they appear in different cones. Since each cone is verified separately,
each independent bug can be treated as a single bug in its own cone.

Dependent bugs can be classified into four cases, shown in Figure
4. The blank circle in the figure represents the correct gate. The
shaded circle represents a false gate, i.e., the gate that was erroneously
replaced by another gate. It can be of any type discussed in Table
I, and even extended to other gates. Assume that in a correct
implementation the gate e1 is an AND gate and the remaining gates
are XOR. With this, the specification of the cone with output z is
Spec = d1d2 + e2 + e3 + e4 + z.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Fig. 4: Different cases for dependent bugs.

The remainder in the case of multiple bugs depends not only on
the cases shown in Figure 4, but also on the type of the bugs, listed
in Table I (c.f. Section III). Recall that intermediate input variables
appear exactly once in each fanout-free cone. For this reason, the
remainder for the circuit with bugs of type 2, 4, 5, 6 of Table I
(i.e., those that have only false inputs left in the remainder) will be
composed of disjoint sets of complete input pairs. As a result, the
bugs of these types will not affect each other, regardless how they
are connected (c.f. Case 1, 2, 3, 4 in Figure 4). One just needs to
identify the complete input pairs in the remainder to detect the bugs.
On the other hand, as mentioned in Section III, for bug types 1 and
3 of Table I, both the input signals and the output signal of the false
gate will appear in the Remainder. For this reason, when multiple
bugs appear together, they will affect each other.

Example 3: Consider Case 1 in Figure 4, where the bugs at e1
and f2 are not connected directly. Assume that the AND gate e1 is
replaced by an XOR, and the XOR gate f2 is replaced by an AND.
The remainder computed by Algorithm I, Rem = d1d2 + e1 + e3 +
e4 + f2 can be partitioned into two disjoint groups, based on the
input and output variables, such that each group forms a complete
input-output pair: (d1d2 + e1) and (e3 + e4 + f2). In this case, it is
always possible to achieve such a partition, since the two bugs are not
connected directly. Specifically, the analysis of the non-zero base tells
us that d1, d2, e3, e4 are the input signals (the head monomials), and
e1, f2 are output signal (the tail monomials). Therefore, both bugs
can be detected, one for e1 gate and the other for f2 gate.

Analysis of the other cases, where the false signals interact with
each other, is more complex, as illustrated by the following example.

Example 4: Consider Case 2 in Figure 4, when the XOR gates
f1 and z are replaced by the AND gates. Here we cannot find a
complete input-output pair in Remainder = e1 + e2 + f2 + z,
because signal f1 is not only the false output of gate f1 but also the
false input of gate z. In this case we need to search for incomplete
pairs in order to properly identify the bugs. For Cases 3 and 4, with
the same Remainder = e1+e2+e3+e4+z, the input-output pairs
cannot be found. The result depends on how z can be expressed as a
combination of f1, f2 that partitions the remainder into groups. The
detailed discussion of these cases is beyond the scope of this paper.

V. RESULTS AND CONCLUSIONS

The debugging technique described in this paper was implemented
in Python and interfaced with the computer algebra tool, Singular
[17], to affect the polynomial reduction. The experiments were
performed on an Intel® Core™ CPU i5-3470 @ 3.20 GHz × 4 with
15.6 GB memory, using Mastrovito multipliers up to 256 bits as

benchmarks [14]. The more complex and challenging Montgomery
multipliers [16] have only been partially tested and not reported here.

TABLE II: Results of Mastrovito multipliers with single bug per cone.

Largest cone
Operand size # polys

Runtime for
bug-free

cone (sec)

Avg. runtime
for buggy
cone (sec)

Max runtime
for buggy
cone (sec)

z5, 16-bit 167 0.36 0.36 0.37
z21, 64-bit 539 6.2 6.3 6.3
z63,128-bit 1167 19.3 19.4 19.5
z10,256-bit 2033 46.3 46.5 46.6

Table II shows the verification results for a single bug inserted
randomly in the circuit and illustrates the fact that the location of the
bug does not affect the verification performance. To ensure that the
location of the bug is the only variable factor in this experiment, for
each circuit we extracted the largest output logic cone and inserted
a single bug in it. The experiment was repeated for each cone 20
times, each time randomly changing the location of the bug, so they
can be anywhere in the circuit and of any type shown in Table I. The
average time of the experiments was computed and the worst case
runtime it took to locate the bug recorded. As we can see in the Table,
the longest and average times are similar, which means that the time
to locate and correct the bug does not depend on its location in the
circuit. Furthermore, the time to verify the bug-free circuit is almost
the same as the debugging of a single bug. In other approaches, the
difference between these two times can be significant [1] [18].

TABLE III: Results of Mastrovito multipliers with multiple bugs.

Operand
size

Runtime for
bug-free

circuit (sec)
Result of [19] Number

of bugs

Avg. runtime for
multiple bugs
circuit (sec)

8 0.33 0.09 16 0.37
16 0.84 0.42 24 0.92
32 3.89 0.83 32 4.23
64 30.39 28.90 40 31.30
128 283.72 924.3 48 286.94
163 667.38 3,546.0 56 676.07
256 2,111.43 6,728.0 64 2,135.92

Table III shows the debugging results for Mastrovito multipliers
with multiple bugs. It gives the time it takes to verify the bug-free
circuit; makes comparison with [19]; shows the number of bugs and
the time to debug multiple bugs. The data of Table III, in conjunction
with that in Table II, shows that the runtime for verifying the entire
circuit is much less than the runtime of verifying a single cone
multiplied by the number of cones. This is because the verification
of each cone is performed in parallel since the cones are independent
from each other.

Column 3 of Table III shows the performance of [19] that used
backward reduction with the BO > order and Groebner basis. As
we can see, our results are superior for circuit sizes above 64 bits.
This suggests that FO > order can be a better choice for GF
verification. The major advantage of the FO > order, however, is the
performance of debugging, as shown in columns 2 and 5 of Table III.
We randomly inserted bugs (dependent or independent) in circuit. The
runtime difference between the bug-free circuit and a buggy circuit is
negligible. Even in the largest case of 256-bit Mastrovito multiplier,
with 64 bugs inserted, the runtime difference is insignificant.

In summary, our verification scheme based on forward reduction
algorithm offers an effective method for identifying and removing
bugs in GF circuits. Unlike in other methods, its performance does
not depend on the location of the bug, and the time to locate the
bug is comparable to verifying a bug-free circuit. Future work will
extend the method to handle other GF circuits and more advanced
multipliers, such as Montgomery. We will also consider other types
of bugs, such as miswiring, missing gates, and others.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Acknowledgment: This work has been funded by the National
Science Foundation, grant CCF-1617708.

REFERENCES

[1] J. Lv, P. Kalla, and F. Enescu, “Efficient Groebner Basis Reductions for
Formal Verification of Galois Field Arithmatic Circuits,” IEEE Trans.
on CAD, vol. 32, no. 9, pp. 1409–1420, September 2013.

[2] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch, and
G. Greuel, “STABLE: A new QF-BV SMT solver for hard verification
problems combining Boolean reasoning with computer algebra,” in
DATE, 2011, pp. 155–160.

[3] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Groebner basis
with logic reduction,” in DATE’16, 2016, pp. 1–6.

[4] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification of
Gate-level Arithmetic Circuits by Function Extraction,” in 52nd DAC.
ACM, 2015, pp. 52–57.

[5] T. Pruss, P. Kalla, and F. Enescu, “Efficient Symbolic Computation for
Word-level Abstraction from Combinational Circuits for Verification
Over Finite Fields,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. PP, no. 99, p. 1, November 2015.

[6] C. Yu and M. J. Ciesielski, “Efficient parallel verification of Galois field
multipliers,” ASP-DAC’17, 2017.

[7] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms.
Springer, 1997.

[8] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits using function extraction,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 12,
pp. 2131–2142, 2016.

[9] F. Farahmandi and P. Mishra, “Automated Test Generation for Debug-
ging Arithmetic Circuits,” in Proceedings of the conference on Design,
automation and test in Europe (DATE). EDA Consortium, 2016.

[10] Farimah Farahmandi and Prabhat Mishra, “Automated debugging of
arithmetic circuits using incremental Groebner basis reduction,” in
ICCD 2017, Boston, MA, USA. (to appear), 2017.

[11] S. Ghandali, C. Yu, D. Liu, B. Walter, and M. Ciesielski, “Logic
Debugging of Arithmetic Circuits,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2015, pp. 113–118.

[12] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[13] T. Nagell, Introduction to Number Theory. Almqvist & Wiksell
Stockholm, 1951.

[14] B. Sunar and Ç. K. Koç, “Mastrovito multiplier for all trinomials,”
Computers, IEEE Transactions on, vol. 48, no. 5, pp. 522–527, 1999.

[15] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[16] C. K. Koc and T. Acar, “Montgomery multiplication in GF(2k),”
Designs, Codes and Cryptography, vol. 14, no. 1, pp. 57–69, 1998.

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
3-1-6 A Computer Algebra System for Polynomial Computations,”
Tech. Rep., 2012, http://www.singular.uni-kl.de.

[18] T. Su, C. Yu, A. Yasin, and M. Ciesielski, “Formal verification of
truncated multipliers using algebraic approach and re-synthesis,” in
2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2017, pp. 415–420.

[19] T. Pruss, P. Kalla, and F. Enescu, “Equivalence Verification of Large
Galois Field Arithmetic Circuits using Word-Level Abstraction via
Gröbner Bases,” in DAC’14, 2014, pp. 1–6.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

