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Abstract—The paper introduces a novel verification method
of gate-level hardware implementation of divider circuits. The
method, called hardware reduction, accomplishes the verification
by appending the divider circuit with another circuit, which
implements its arithmetic inverse, followed by logic synthesis.
If the circuit under verification is correct, the resulting re-
synthesized circuit becomes trivially redundant (composed of
wires or buffers only). This method outperforms the established
Boolean satisfiability, SAT-based and equivalence checking tech-
niques and does not require a reference design.

I. INTRODUCTION

Considerable progress has been made in recent years in ver-
ification of arithmetic circuits, such as multipliers, multiply-
accumulate circuits, and other components of arithmetic data-
paths [1][2][3]. However, verification of gate-level divider
circuits has received only a limited attention [4][5][6]. Division
plays a major role in many domains, including computer arith-
metic, computational geometry, cryptography, and many other
applications, and verification of hardware implementation of
divider circuits is of prime importance.

This work addresses this need and offers a new technique
called hardware reduction. The technique is based on append-
ing the arithmetic circuit under verification with a circuit that
computes its inverse; the resulting circuit is then synthesized
and checked if it becomes redundant, i.e., is reduced to
identity. The results show that despite the increase in gate
count of such constructed circuit, this verification method
offers a good alternative to the standard Boolean satisfiability
(SAT)-based and combinational equivalence checking (CEC)
techniques.

The rest of the paper is organized as follows. Section II
provides the necessary background and a brief review of the
related work in this field. Section III describes the details of
hardware reduction applied to dividers. Finally, Sections IV
and V present the results and conclusions.

II. BACKGROUND AND RELATED WORK

An established verification technique often employed in
industry is Theorem Proving. Theorem provers are inductive
reasoning systems that use mathematical models to verify
functional correctness of the design. They rely on a carefully
constructed set of rewriting rules and complex formulas to
represent the circuit and require an in-depth, domain-specific
user knowledge of the design and the system [7][8]. The
success of the proof relies on the choice of the rules and
on the order in which they are applied to the system, with
no guarantee of a successful conclusion. They are typically
used to prove the correctness of larger systems and CPUs
and their architecture, rather than of the low-level hardware
implementation.

Some approaches rely on reverse-engineering by extracting
logic gates of the circuit (such as XORs and carry chains) and
comparing them against the expected elements of the divider
using structural matching [4]. These methods however are
customized for the particular hardware structure which may
not always be available.

A more general approach, offered by formal verification,
employs various canonical diagrams, such as BDDs [9] and
*BMDs [10]. These techniques however need to transform
the circuit into bit-level netlists, known as "bit-blasting", and
as such are ineffective for arithmetic circuits with large bit-
width operands. The state-of-the-art formal methods resort to
SAT-based approach and equivalence checking. Some of those
methods have been used in proving correctness of the SRT
divider [11], but could handle only a single gate-level stage
of the divider.

An approach to formal verification of arithmetic circuits that
emerged in recent years has been based on symbolic computer
algebra (SCA). In this approach, an arithmetic circuit is
represented in an algebraic, rather than Boolean, domain. The
specification of an arithmetic circuit and its implementation
are represented as polynomials. The verification problem is
then to check if the implementation satisfies the specification
using a canonical polynomial representation, called Gröbner
basis [12]. This method is known in computer algebra lexicon
as ideal membership testing [13]. Several modifications have
been reported in the literature to improve the efficiency of
the technique for the verification of integer multipliers [2][3].
However, those techniques have not been successful in veri-
fying gate-level divider circuits due to their high demand for
memory.

An alternative approach to arithmetic verification, derived
from SCA and originally proposed in [14], uses a technique
of algebraic rewriting. With this approach, the polynomial
representing encoding of the primary outputs (called output
signature) is transformed by backward rewriting into a poly-
nomial expressed in terms of the primary inputs (the input
signature) using algebraic models of internal logic gates. The
resulting signature is then checked against the specification
polynomial of the circuit. The method, in fact, performs
function extraction as it derives an arithmetic function of the
circuit from its gate-level implementation. This method has
been successfully used to verify complex adders and large
multipliers [1][2][3].

However algebraic rewriting has its disadvantages, mostly
due to a large number of the so called vanishing monomials
accumulating during the rewriting, while eventually reducing
to zero. This phenomenon is particularly severe in dividers,
where a straightforward algebraic rewriting produces a pro-
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hibitive number of such monomials. This problem has been
recognized in [6]; it employs SAT to gain information about
vanishing monomials by propagating logic information in the
direction opposite to standard rewriting, i.e., from inputs to
outputs. This helps determine the invariants, combinations of
internal signal values that do not occur in the circuit due to
the imposed constraint on the size of dividend X vs divisor
D: X < 2n−1D. These signals appear at the inputs to the
atomic blocks (adders), extracted using reverse engineering.
The invariants are then modeled as satisfiability don’t cares
and an integer linear programming (ILP) method is used to
optimize the polynomials modulo those don’t cares. While this
approach makes it possible to handle large designs, it is quite
complex and require extended CPU times to complete.

III. DIVIDER VERIFICATION

Figure 1 shows a typical architecture of a restoring integer
divider. The inputs are unsigned integers: X is the dividend,
D the divisor, Q the quotient, and R the remainder. To
reduce the circuit size and for practical considerations (the
fact that X = Q · D + R), the operands D,Q,R are n-
bit wide and the dividend has 2n-1 bits. Furthermore, to
guarantee that the resulting quotient Q will not overflow, a
condition X < 2n−1D is imposed on the inputs [15][6]. With
these constraints, the optimized divider is implemented in an
n×(2n−1) array structure, composed of n layers, each being
n-bit wide, as shown in the Figure.

Fig. 1: Restoring integer divider for n = 3.

The division is performed by a repeated subtraction of the
dividend by a divisor D, shifted after each subtraction by
one bit to the right. If the expected subtraction result (partial
remainder) is positive, subtraction takes place; otherwise it
is not performed at that level and the unchanged partial
remainder is passed on to the next layer.

In the following, each layer i corresponding to the quotient
bit qi has inputs Ri+1, D and outputs qi, Ri. The input to
the top layer is Rn, part of the dividend X . The output of
the bottom layer is the final remainder R. The quotient bit
qi produced as the MSB of each layer serves as a select
signal, which determines whether the input vector Ri+1 or
the difference Ri+1 − D is passed to the output Ri. Hence,
the equation that characterizes layer i of the divider is:
Ri = Ri+1 − qiD. The verification goal is to prove that the
circuit correctly performs the division under the required input
constraint X < 2n−1D.

Such a conceptually simple array structure is difficult to
handle by the SCA or algebraic rewriting approach. This
is dictated mostly by the dependence of the quotient qi on
the n-bit subtractor with inputs Ri+1 and D, which causes
exponential increase in the size of polynomials. This has
already been noticed by authors of [6] who solve this problem
using satisfiability don’t cares and ILP, as explained earlier.
However, their approach is computationally expensive and
unnecessarily complex. In the next section we propose an
alternative way to perform the verification, without the use
of algebraic rewriting, which produces even better results.

A. General Model

Figure 2(a) shows an abstract model of the divider verifi-
cation employed in this work. It is governed by the following
expression:

X = Q ·D +R and 0 ≤ R < D (1)

The middle part of the diagram is the divider circuit under
verification. The lower box "reverses" the division X/D by
computing Q·D+R from the quotient Q and the remainder R,
produced by the divider. The goal is to prove that the computed
result matches the original dividend X , i.e. that X = QD+R,
and the condition 0 ≤ R < D is satisfied.

b) a) c)

Fig. 2: Divider verification approaches: a) Divider verification
model; b) solution with SAT, c) hardware reduction method.

In principle, this problem can be solved by creating a circuit
Z = Q·D+R and checking the equivalence between its output
Z and the dividend X . This can be done using standard SAT
technique: create a "miter" (generalized XOR) between the
dividend input X and output Z and check if the CNF1 formula
of the resulting miter circuit is unsatisfiable (unSAT). This is
shown symbolically in Figure 2(b).

We tested this method on both restoring and non-restoring
array dividers using the ABC system [16], with MiniSAT
[17] as the underlying SAT engine. While it required only a
few seconds to prove the divider with 16-bit dividend X , the
computation for larger instances timed out after one hour. In
general, divider circuits with bit-widths greater than 16 could
not be verified using this method. To address this problem, we
investigated another approach, originally proposed for SQRT
circuits [18], where algebraic rewriting has been replaced by
logic synthesis.

B. Hardware Reduction

The main idea of the Hardware Reduction (HR) method is
as follows: first, the divider circuit is appended with a circuit

1Conjunctive Normal Form, standard form used to encode SAT problems.
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that computes Z = Q · D + R, Figure 2(a); then, such a
constructed circuit, with input X and output Z, is subjected to
logic synthesis. If the divider correctly implements the division
operation, the resulting circuit is trivially redundant, composed
of wires/buffers connecting directly the bits of X and Z, as
shown symbolically in Figure 2(c). The goal is to prove that
output Z matches bit-by-bit the input X , i.e., Zi = Xi for all
bits i of the dividend. However, this technique, when applied
to the entire divider, is not scalable; we were only able to
verify the dividers with a maximum bit-width of 20 due to
excessive CPU time (but without a memory overload).

C. Layered Approach
To solve the problem, we investigated a layered approach,

originally proposed in [5] for algebraic rewriting. In this work
however, algebraic rewriting is replaced by logic synthesis.

Layered verification is a technique in which verification is
applied to each row of the divider array, associated with a
single output bit qi. The layered approach can be justified by
realizing that logic between two adjacent rows is typically not
optimized during synthesis and the partial remainder signals at
their boundaries are preserved during synthesis. This has been
elaborated on in [4], with Theorem 2 stating that "In an array
divider there is no way to optimize carry logic of adjacent
rows". That is, the circuit can be synthesized horizontally
along each layer, but not optimized vertically across their
boundaries. Independently, synthesis tools, such as Synopsys
DC, tend to maintain the layered structure to simplify physical
synthesis (place & route) after logic optimization. Even if
the design is given without explicit location of the layer
boundaries, there are extraction techniques to determine those
boundaries, as done in [6].

The basic idea of layered hardware reduction is similar to
that shown in Figure 2(c), but applied to a single layer, rather
than to the entire circuit. In this case an add-on circuit Zi =
Ri+1 − qiD is appended to layer i, as shown in Figure 3.
The goal is to check if the resulting circuit is redundant; i.e.,
if output Zi of the synthesized circuit matches bit-by-bit the
partial remainder input Ri+1. This redundancy, if not directly
exposed by synthesis, can be proved using bit-by-bit SAT, or
by a simple XOR comparison.

Fig. 3: Hardware reduction for a single layer.

In addition to verifying that each layer satisfies the relation
Ri = Ri+1 − qiD, an additional constraint on the range of
partial product computed at that layer must be verified. To
correctly account for such a constraint, we need to view thr
partial products as if they were computed across the entire
width of the divider, including the corresponding bits of X .
For this, we introduce a generalized partial remainder, labeled
PRi, each being 2n − 1 bit long, where PRn = X (divi-
dend) and PR0 = R (remainder). A modified layer equation

associated with layer i is then: PRi = PRi+1 − qi2
i−1D.

It correctly captures the fact that the value of such partial
remainder reduces by half at each division iteration (layer).
With this, it can be shown that PRi < 2iD, the constraint that
needs to be verified. Similar constraint was also developed in
[6] for non-restoring divider.

To check if such a constraint is satisfied by each layer,
a comparator circuit that implements the complement of the
above constraint, i.e., PRi ≥ 2iD is connected to the layer.
Note again that each PRi contains some bits of the divider X .
A SAT procedure is then performed to check if it is unsatisfied
(unSAT). Solving this SAT problem turns out to be very
effective in terms of memory and time complexity, as shown
in Table I. This also brings in an interesting observation that
synthesizing a circuit appended with some additional function
(such as the one that performs inversion, or a comparator that
implements the desired constraint) will actually simplify the
verification process.

IV. RESULTS

The presented verification method was implemented as
a prototype program with ABC environment as back-end.
The experiments were conducted on a 64-bit Intel Core i7-
7600 CPU, 2.80 GHz, with 30 GB of memory. The circuits
were generated by an in-house divider generator tool and
synthesized onto standard cells by the Synopsys Design Com-
piler (DC), using a set don’t touch directive to maintain the
layer boundaries. The gate-level mapped netlists produced by
Synopsys DC were converted into an ABC-compatible format
and synthesized using ABC commands: strash, fraig, dch.

The experimental results2 are shown in Table I. The set
of columns labeled Other Methods include verification results
obtained with several methodologies: * Simulation: exhaustive
simulation using Modelsim 10.5b; * miniSAT: SAT-based
equivalence checking [19]; * CEC-ABC: combinational equiv-
alence checking with ABC [16]; and * SCA-DC: symbolic
computer algebra method of [6] (data given for non-restoring
dividers, on Xeon CPU with 3.3 GHz clock and 64GB main
memory). The entry ” − ” in some fields indicates that the
data was not available from the reference source.

The next set of columns, labeled This Work, reports the
CPU times for different stages of our layered HR verification
method: * Resynthesis: single-layer hardware reduction using
ABC. * HR-SAT: verifying results of HR synthesis, followed
by simple SAT, if needed; * R < D: verification of data
range constraints for each layer, PRi < 2iD, including final
R < D. * Total time: CPU time for all stages of the procedure
for all layers. As one can see from the table, neither the
simulation nor the equivalence checking CEC or SAT results
could compete with the layered verification in terms of the
CPU time.

In our experiments, we performed verification of all layers
in series and reported the total time for the verification of
the complete circuit. In practical implementation this can be
done by running verification of all layer concurrently, therefore
reducing the verification time by a factor of n.

2The software and the benchmarks used for the experiments are avail-
able at: https://drive.google.com/drive/folders/1D3m6yPUTQoesCOzb6U_
ulgb5IhKkEqPK?usp=sharing
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TABLE I: Hardware Reduction (HR) verification of restoring dividers. TO = Time-out 3600 sec.

Dividend
# bits # Gates

Verification time (sec)
Other Methods

Verification time (sec)
This Work: Hardware Reduction (HR)

Simulation miniSAT [19] CEC-ABC [16] SCA-DC [6] Resynthesis HR-SAT R < D Total time
13 570 8.30 19.16 0.15 - 0.01 0.01 0.01 0.21
17 970 552.50 1584.32 0.34 1.91 0.01 0.01 0.01 0.27
19 1207 TO TO 0.36 - 0.01 0.02 0.01 0.40
21 1470 TO TO 0.38 - 0.01 0.02 0.01 0.44
23 1750 TO TO 0.39 3.82 0.01 0.02 0.01 0.48
33 3700 TO TO 0.58 6.79 0.02 0.03 0.01 0.68
63 13446 TO TO 5.86 28.86 0.05 0.08 0.01 4.48
95 28200 TO TO 18.85 70.72 0.10 0.15 0.02 12.96

127 51200 TO TO 43.35 148.18 0.11 0.16 0.02 18.56
255 538579 TO TO 1,073.03 989.91 0.25 0.21 0.10 123.46

V. CONCLUSIONS

This paper presents a novel approach to verify gate-level
implementation of arithmetic dividers using an original hard-
ware reduction (HR) technique. It seems counter-intuitive
that adding more hardware to the design can simplify the
verification problem at hand. While this obviously increases
the gate-level complexity of the design, the resulting circuit (as
long as it is bug-free) becomes redundant or trivial to verify. If
the circuit is buggy, the complexity of the verification task is
still lower than using a SAT-based approach. As demonstrated
by the experiments, even if the synthesis is unable to reduce
the resulting circuit to wires/buffers, standard SAT-based ver-
ification has a much easier task to prove equivalence.

The main limitation of the presented hardware reduction
method is that it relies on the power of the synthesis tool
used in the process: the synthesis may not always reduce
the resulting circuit to bare wires. However, if the follow-
up application of SAT solver cannot solve this significantly
simplified problem, then no other SAT-based method can solve
the original problem. In general, the method does not suffer
from memory overload problem, experienced by rewriting
methods, but for large circuits may require extended amount
of time. The area penalty of the synthesized circuit imposed by
the layered structure could be as high as 17%, but it is more
important to have the circuit reliably verified than to have
it aggressively optimized at the cost of making the functional
verification ineffective. The main advantage is that the layered
approach can significantly speed up the verification process
and facilitate debugging. It can also facilitate debugging, since
each layer is verified separately and could be done in parallel.

The idea of using synthesis to accomplish verification
presented here can be applied to other circuits as long as a
circuit implementing the inverse function can be efficiently
generated. To the best of our knowledge, this is the first work
that applied resynthesis to simplify verification with such
good results.
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