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Formal Analysis of Galois Field Arithmetic Circuits
- Parallel Verification and Reverse Engineering

Cunxi Yu Student Member, IEEE, and Maciej Ciesielski, Senior Member, IEEE

Abstract—Galois field (GF) arithmetic circuits find numerous
applications in communications, signal processing, and security
engineering. Formal verification techniques of GF circuits are
scarce and limited to circuits with known bit positions of the
primary inputs and outputs. They also require knowledge of the
irreducible polynomial P (x), which affects final hardware im-
plementation. This paper presents a computer algebra technique
that performs verification and reverse engineering of GF(2m)
multipliers directly from the gate-level implementation. The
approach is based on extracting a unique irreducible polynomial
in a parallel fashion and proceeds in three steps: 1) determine
the bit position of the output bits; 2) determine the bit position
of the input bits; and 3) extract the irreducible polynomial
used in the design. We demonstrate that this method is able to
reverse engineer GF(2m) multipliers in m threads. Experiments
performed on synthesized Mastrovito and Montgomery multipliers
with different P (x), including NIST-recommended polynomials,
demonstrate high efficiency of the proposed method.

Index Terms—Galois field arithmetic, computer algebra, for-
mal verification, reverse engineering, parallelism.

I. INTRODUCTION

DESPITE considerable progress in verification of random
and control logic, advances in formal verification of

arithmetic circuits have been lagging. This can be attributed
to the difficulty in efficient modeling of arithmetic circuits
and datapaths, without resorting to computationally expensive
Boolean methods. Contemporary formal techniques, such as
Binary Decision Diagrams (BDDs), Boolean Satisfiability
(SAT), Satisfiability Modulo Theories (SMT), etc., are not
directly applicable to verification of integer and finite field
arithmetic circuits [1] [2]. This paper concentrates on formal
verification and reverse engineering of finite (Galois) field
arithmetic circuits.

Galois field (GF) is a number system with a finite number
of elements and two main arithmetic operations, addition and
multiplication; other operations can be derived from those two
[3]. GF arithmetic plays an important role in coding theory,
cryptography, and their numerous applications. Therefore,
developing formal techniques for hardware implementations
of GF arithmetic circuits, and particularly for finite field
multiplication, is essential.

The elements in field GF(2m) can be represented using
polynomial rings. The field of size m is constructed using
irreducible polynomial P (x), which includes terms of degree

C. Yu and M. Ciesielski are with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst, MA, 01375.
The related tools and benchmarks are released publicly on Github,
ycunxi.github.io/Parallel Formal Analysis GaloisField
E-mail: ycunxi@umass.edu

with d ∈ [0,m] with coefficients in GF(2). The arithmetic
operation in the field is then performed modulo P (x). The
choice of the irreducible polynomial has a significant impact
on the hardware implementation of the GF circuit and its
performance. Typically, the irreducible polynomial with a
minimum number of elements gives the best performance [4],
but it is not always the case.

Due to the rising number of threats in hardware security,
analyzing finite field circuits becomes important. Computer
algebra techniques with polynomial representation seem to
offer the best solution for analyzing arithmetic circuits. Sev-
eral works address the verification and functional abstraction
problems, both in Galois field arithmetic [1] [5] [6] and integer
arithmetic implementations [7] [2] [8] [9] [10]. Symbolic
computer algebra methods have also been used to reverse
engineer the word-level operations for GF circuits and integer
arithmetic circuits to improve verification performance [11]
[12] [5]. The verification problem is typically formulated as
proving that the implementation satisfies the specification,
and is accomplished by performing a series of divisions of
the specification polynomial by the implementation polyno-
mials. In the work of Yu et al. [11], the authors proposed
an original spectral method based on analyzing the internal
algebraic expressions during the rewriting procedure. Sayed-
Ahmed et al. [12] introduced a reverse engineering technique
in Algebraic Combinational Equivalence Checking (ACEC)
process by converting the function into canonical polynomials
and using Gröbner Basis.

However, the above mentioned algebraic techniques have
several limitations. Firstly, they are restricted to implementa-
tions with a known binary encoding of the inputs and out-
puts. This information is needed to generate the specification
polynomial that describes the circuit functionality regarding
its inputs and outputs, necessary for the polynomial reduction
process (described in Section II-D). Secondly, these methods
are unable to explore parallelism (inherent in GF circuits),
as they require that the polynomial division is applied itera-
tively using reverse-topological order [2] [9] [6]. Thirdly, the
approaches applied specifically to GF(2m) arithmetic circuits
[5] [6], require knowledge of the irreducible polynomial P (x)
of the circuit.

In this work, we present a formal approach to reverse
engineer the gate-level finite field arithmetic circuits that
exploit inherent parallelism of the GF circuits. The method
is based on a parallel algebraic rewriting approach [13] and
applied specifically to multipliers. The objective of reverse
engineering is as follows: given the netlist of a gate-level
GF multiplier, extract the bit positions of input and output
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bits and the irreducible polynomial used in constructing the
GF multiplication; then extract the specification of the design
using this information. Bit position i indicates the location of
the bit in the binary word according to its significance (LSB
vs MSB). Our approach solves this problem by transforming
the algebraic expressions of the output bits into an algebraic
expression of the input bits (specification), and is done in par-
allel for each output bit. Specifically, it includes the following
steps1:
• Extract the algebraic expression of each output bit.
• Determine the bit position of the outputs.
• Determine the bit position of the inputs.
• Extract the irreducible polynomial P (x).
• Extract the specification by algebraic rewriting.
We demonstrate the efficiency of our method using GF(2m)

Mastrovito and Montgomery multipliers of up to 571-bit width
in a bit-blasted format (i.e., flattened to bit-level), implemented
using various irreducible polynomials.

II. BACKGROUND

A. Canonical Diagrams

Several approaches have been proposed to check an arith-
metic circuit against its functional specification. Different
variants of canonical, graph-based representations have been
proposed, including Binary Decision Diagrams (BDDs) [14],
Binary Moment Diagrams (BMDs) [15] [16], Taylor Expan-
sion Diagrams (TED) [17], and other hybrid diagrams. While
BDDs have been used extensively in logic synthesis, their
application to verification of arithmetic circuits is limited
by the prohibitively high memory requirement for complex
arithmetic circuits, such as multipliers. BDDs are being used,
along with many other methods, for local reasoning, but not
as monolithic data structure [18]. BMDs and TEDs offer a
better space complexity but require word-level information of
the design, which is often not available or is hard to extract
from bit-level netlists. While the canonical diagrams have been
used extensively in logic synthesis, high-level synthesis, and
verification, their application to verify large arithmetic circuits
remains limited by the prohibitively high memory requirement
of complex arithmetic circuits [2] [1].

B. SAT, ILP and SMT Solvers

Arithmetic verification problems have been typically mod-
eled using Boolean satisfiability (SAT). Several SAT solvers
have been developed to solve Boolean decision problems,
including ABC [19], MiniSAT [20], and others. Some of
them, such as CryptoMiniSAT [21], target specifically XOR-
rich circuits, and are potentially useful for arithmetic circuit
verification, but are all based on a computationally expensive
DPLL (Davis, Putnam, Logemann, Loveland) decision pro-
cedure [22]. Some techniques combine automatic test pattern
generation (ATPG) and modular arithmetic constraint-solving
techniques for the purpose of test generation and assertion

1Our tool and benchmarks used in this journal paper are released publicly
at our project website at
https://ycunxi.github.io/Parallel Formal Analysis GaloisField

checking [23]. Others integrate linear arithmetic constraints
with Boolean SAT in a unified algebraic domain [24], but
their effectiveness is limited by constraint propagation across
the Boolean and word-level boundary. To avoid this problem,
methods based on ILP models of arithmetic operators have
been proposed [25] [26], but in general ILP techniques are
known to be computationally expensive and not scalable to
large scale systems. SMT solvers depart from treating the prob-
lem in a strictly Boolean domain and integrate different well-
defined theories (Boolean logic, bit vectors, integer arithmetic,
etc.) into a DPLL-style SAT decision procedure [27]. Some of
the most effective SMT solvers, potentially applicable to our
problem, are Boolector [28], Z3 [29], and CVC [30]. However,
SMT solvers still model functional verification as a decision
problem and, as demonstrated by extensive experimental re-
sults, neither SAT nor SMT solvers can efficiently solve the
verification problem of large arithmetic circuits [1] [10].

C. Theorem Provers

Another class of solvers include Theorem Provers, deduc-
tive systems for proving that an implementation satisfies the
specification, using mathematical reasoning. The proof system
is based on a large and strongly problem-specific database
of axioms and inference rules, such as simplification, term
rewriting, induction, etc. Some of the most popular theorem
proving systems are: HOL [31], PVS [32], ACL2 [33], and
the term rewriting method described in [34]. These systems
are characterized by high abstraction and powerful logic
expressiveness, but they are highly interactive, require intimate
domain knowledge, extensive user guidance, and expertise for
efficient use. The success of verification using theorem provers
depends on the set of available axioms and rewrite rules, and
on the choice and order in which the rules are applied during
the proof process, with no guarantee for a conclusive answer
[35].

D. Computer Algebra Approaches

The most advanced techniques that have potential to solve
the arithmetic verification problems are those based on Sym-
bolic Computer Algebra. The verification problem is typically
formulated as a proof that the implementation satisfies the
specification [2] [1] [8] [7] [9]. This is accomplished by
performing a series of divisions of the specification polynomial
F by a set of implementation polynomials B, representing
circuit components, the process referred to as reduction of F
modulo B. Polynomials f1, ..., fs ∈ B are called the bases, or
generators, of the ideal J . Given a set f1, ..., fs of generators
of J , a set of all simultaneous solutions to a system of
equations f1=0; ... ,fs=0 is called a variety V (J). Verification
problem is then formulated as a test if the specification F
vanishes on V (J), i.e., if F ∈ V (J). This is known in
computer algebra as ideal membership testing problem [1].

Standard procedure to test if F ∈ V (J) is to divide
polynomial F by the polynomials {f1, ..., fs} of B, one by
one. The goal is to cancel, at each iteration, the leading term of
F using one of the leading terms of f1, ..., fs. If the remainder
r of the division is 0, then F vanishes on V (J), proving

https://ycunxi.github.io/Parallel_Formal_Analysis_GaloisField
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that the implementation satisfies the specification. However,
if r 6= 0, such a conclusion cannot be made; B may not
be sufficient to reduce F to 0, and yet the circuit may be
correct. To reliably check if F is reducible to zero, a canonical
set of generators, G = {g1, ..., gt}, called Gröbner basis,
is needed. It has been shown that for combinational circuits
with no feedback, certain conditions automatically make the
set B a Groebner basis [36]. Specifically, if the polynomials
f1, ..., fs ∈ B are ordered in reverse topological order of logic
gates, from primary outputs to primary inputs, and the leading
term of each polynomial is the output of a logic gate, then set
B is automatically a Groebner basis. Some of the authors use
Gaussian elimination, rather than explicit polynomial division,
to speed up the polynomial reduction process [1] [8]. The
polynomials corresponding to fanout-free logic cones can be
precomputed to reduce the size of the problem [8].

The polynomial reduction technique has been successfully
applied to both integer arithmetic circuits [9] and Galois field
arithmetic [1]. Verification work of Galois field arithmetic
has been presented in [1] [5]. Formulation of problems in
GF arithmetic takes advantage of known properties of Galois
field during polynomial reductions. Specifically, the problem
reduces to the ideal membership testing over a larger ideal that
includes ideal J0 = 〈x2 − x〉 in F2, for each internal signal
x of the circuit. Inclusion of this ideal basically assures that
each signal assumes a binary value. In this paper, we provide
comparison between this technique and our approach.

E. Function Extraction

Function extraction is an arithmetic verification method
originally proposed in [2] for arithmetic circuits in modular in-
teger arithmetic Z2m . It extracts a unique bit-level polynomial
function implemented by the circuit directly from its gate-level
implementation. Instead of expensive polynomial division,
extraction is done by backward rewriting, i.e., transforming
the polynomial representing encoding of the primary outputs
(called the output signature) into a polynomial at the primary
inputs (the input signature) using algebraic models of the logic
gates of the circuit. That is, the rewriting is performed in a
reverse topological order. This technique has been successfully
applied to large integer arithmetic circuits, such as 512-bit
integer multipliers. However, it is not directly applicable to
large Galois Field multipliers because of potentially exponen-
tial number of polynomial terms, before the internal term can-
cellations takes place during rewriting. Fortunately, arithmetic
GF(2m) circuits offer an inherent parallelism which can be
exploited in backward rewriting, without memory explosion.

In the rest of the paper, we first describe how to apply such
parallel rewriting in GF(2m) circuits while avoiding memory
explosion experienced in integer arithmetic circuits. Using this
approach, we extract the function of each output bit in F2m

and the function is represented in a pseudo-Boolean polyno-
mial expression, where all variables are Boolean. Finally, we
propose a method to reverse engineer the GF(2m) designs by
analyzing these expressions.

III. GALOIS FIELD MULTIPLICATION

Galois field (GF) is a number system with a finite number
of elements and two main arithmetic operations, addition and
multiplication; other operations such as division can be derived
from those two [3]. Galois field with p elements is denoted
as GF(p). The most widely-used finite fields are Prime Fields
and Extension Fields, and particularly Binary Extension Fields.
Prime field, denoted GF(p), is a finite field consisting of
finite number of integers {1, 2, ...., p− 1}, where p is a prime
number, with additions and multiplication performed modulo
p. Binary extension field, denoted GF(2m) (or F2m ), is a
finite field with 2m elements. Unlike in prime fields, however,
the operations in extension fields are not computed modulo
2m. Instead, in one possible representation (called polynomial
basis), each element of GF(2m) is a polynomial ring with
m terms with coefficients in GF(2), modulo P (x). Addition
of field elements is the usual addition of polynomials, with
coefficient arithmetic performed modulo 2. Multiplication of
field elements is performed modulo irreducible polynomial
P (x) of degree m and coefficients in GF(2). The irreducible
polynomial P (x) is analogous to the prime number p in prime
fields GF (p). In this work, we focus on the verification prob-
lem of GF(2m) multipliers that appear in many cryptography
and in some DSP applications.

A. GF Multiplication Principle

Two different GF multiplication structures, constructed us-
ing different irreducible polynomials P1(x) and P2(x), are
shown in Figure 1. The integer multiplication takes two n-
bit operands as input and generates a 2n-bit word, where the
values computed at lower significant bits ripple through the
carry chain all the way to the most significant bit (MSB). In
contrast, in GF(2m) implementations the number of outputs is
reduced to n using irreducible polynomial P(x). The product
terms are added for each column (output bit position) modulo
2, hence there is no carry propagation. For example, to
represent the result in GF(24), with only four output bits, the
four most significant bits in the result of the integer multi-
plication have to be reduced to GF(24). The result of such a
reduction is shown in Figure 1. In GF(24), the input and output
operands are represented using polynomials A(x), B(x) and
Z(x), where A(x)=

∑n=3
n=0 an · xn, B(x)=

∑n=3
n=0 bn · xn, and

Z(x)=
∑n=3

n=0 zn · xn, respectively.
Example 1: The function of each multiplication

bit si (i ∈ [0, 6]) is represented using polynomials
in GF(2), namely: s0=a0b0, s1=a1b0+a0b1, etc. ...,
up to s6=a3b32. The output bits zn (n ∈ [0, 3])
are computed modulo the irreducible polynomial
P (x). Using P2(x)=x4+x+1, we obtain : z0=s0+s4,
z1=s1+s4+s5, z2=a0b2+a1b1+a2b0+a2b3+a3b2+a3b3, and
z3=a0b3+a1b2+a2b1+a3b0+a3b3. The coefficients of the
multiplication results are shown in Figure 2. In digital
circuits, partial products are implemented using AND gates,
and addition modulo 2 is done using XOR gates. Note that,
unlike in integer multiplication, in GF(2m) circuits there is

2For polynomials in GF(2), ”+” are computed as modulo 2.
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no carry out to the next bit. For this reason, as we can see
in Figure 1, the function of each output bit can be computed
independently of other bits.

a3 a2 a1 a0
b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
s6 s5 s4 s3 s2 s1 s0

P1(x)=x4 + x3 + 1
s3 s2 s1 s0
s4 0 0 s4
s5 0 s5 s5
s6 s6 s6 s6
z3 z2 z1 z0

P2(x)=x4 + x+ 1
s3 s2 s1 s0
0 0 s4 s4
0 s5 s5 0
s6 s6 0 0
z3 z2 z1 z0

Figure 1: Two GF(24) multiplications constructed using P1(x)=x4+
x3 + 1 and P2(x)=x4 + x+ 1.

output polynomial expression
z0 (a0b0)+a1b3+a2b2+a3b1
z1 (a0b1+a1b0)+a1b3+a2b2+a2b3+a3b1+a3b2
z2 (a0b2+a1b1+a2b0)+a2b3+a3b2+a3b3
z3 (a0b3+a1b2+a2b1+a3b0)+a3b3

Figure 2: Extracted algebraic expressions of the four output
bits of GF(24) multiplier for P (x) = x4 + x+ 1.

B. Irreducible Polynomials

In general, there are various irreducible polynomials that
can be used for a given field size, each resulting in a differ-
ent multiplication result. For constructing efficient arithmetic
functions over GF(2m), the irreducible polynomial is typi-
cally chosen to be a trinomial, xm+xa+1, or a pentanomial
xm+xa+xb+xc+1 [37]. For efficiency reason, coefficients m, a
are chosen such that m - a ≥ m/2.

An example of constructing GF(24) multiplication using two
different irreducible polynomials is shown in Figure 1. We
can see that each polynomial produces a unique multiplica-
tion result. The size of the corresponding multiplier can be
estimated by counting the number of XOR operations in each
multiplication. Since the number of AND and XOR operations
for generating partial products (variables si in Figure 1) is
the same, the difference is only caused by the reduction of
the corresponding polynomials modulo P (x). The number of
two-input XOR operations introduced by the reduction with
P (x) can be obtained as the number of terms in each column
minus one. For example, the number of XORs using P1(x)
is 3+1+2+3=9; and using P2(x), the number of XORs is
1+2+2+1=6.

As will be shown in the next section, given the structure of
the GF(2m) multiplication, such as the one shown in Figure 1,
one can readily identify the irreducible polynomial P (x) used
during the GF reduction. This can be done by extracting the

terms sk corresponding to the entry sm (here s4) in the table
and generating the irreducible polynomial beyond xm. We
know that P (x) must contain xm, and the remaining terms xk

of P (x) are obtained from the non-zero terms corresponding
to the entry sm. For example, for the irreducible polynomial
P1(x) = x4 + x3 + x0, the terms x3 and x0 are obtained by
noticing the placement of s4 in columns z3 and z0. Similarly,
for P2(x) = x4 + x1 + x0, the terms x1 and x0 are obtained
by noticing that s4 is placed in columns z1 and z0. The reason
for it and the details of this procedure will be explained in the
next section.

IV. PARALLEL EXTRACTION IN GALOIS FIELD

In this section, we introduce our method for extracting the
unique algebraic expressions of the output bits (e.g. Figure
2) using computer algebraic method. This can be used to
verify the GF(2m) multipliers when the binary encoding of
inputs and output and the irreducible polynomial are given.
We introduce a parallel function extraction framework in
GF(2m), which allows us to individually extract the algebraic
expression of each output bit. This framework is used for
reverse engineering, since our reverse engineering approach
is based on analyzing the algebraic expression of output bits
in GF(2), as introduced in Section I.

A. Computer Algebraic model

The circuit is modeled as a network of logic elements of
arbitrary complexity, including basic logic gates (AND, OR,
XOR, INV) and complex standard cell gates (AOI, OAI, etc.)
generated by logic synthesis and technology mapping. We
extend the algebraic model of Boolean operators developed in
[10] for integer arithmetic to finite field arithmetic in GF (2),
i.e., modulo 2. For example, the pseudo-Boolean model of
XOR(a, b)=a+ b −2ab is reduced to (a+ b+ 2ab) mod 2 =
(a+ b) mod 2. The following algebraic equations are used to
describe basic logic gates in GF (2m) [1]:

¬a = 1 + a

a ∧ b = a · b
a ∨ b = a+ b+ a · b
a⊕ b = a+ b

(1)

B. Outline of the Approach

Similarly to the work of [2] and [10], the arithmetic
function computed by the circuits is obtained by transforming
(rewriting) the polynomial representing the encoding of the
primary outputs (called output signature) into the polynomial
at the primary inputs, the input signature. The output sig-
nature of a GF (2m) multiplier, Sigout =

∑m−1
i=0 zix

i, with
zi ∈ GF (2). The input signature of a GF (2m) multiplier,
Sigin =

∑m−1
i=0 Pix

i, with coefficients Pi ∈ GF (2) being
product terms, and addition operation performed modulo 2.
If the irreducible polynomial P (x) is provided, Sigin is
know; otherwise, it will be computed by backward rewriting
from Sigout. The goal is to transform the output signature,
Sigout, using polynomial representation of the internal logic
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elements (1), into an input signature Sigin in GF (2m), which
determines the arithmetic function (specification) computed by
the circuit.

Theorem 1: Given a combinational arithmetic circuit in
GF (2m), composed of logic gates, described by Eq. 1, input
signature Sigin computed by backward rewriting is unique and
correctly represents the function implemented by the circuit in
GF (2m).

Proof: The proof of correctness relies on the fact that each
transformation step (rewriting iteration) is correct. That is,
each internal signal is represented by an algebraic expression,
which always evaluates to a correct value in GF (2m). This
is guaranteed by the correctness of the algebraic model in Eq.
(1), which can be proved easily by inspection. For example, the
algebraic expression of XOR(a,b) in Z2m is a+b−2ab. When
implemented in GF (2m), the coefficients in the expression
must be in GF (2), hence XOR(a,b) in GF2m is represented
by a + b. The proof of uniqueness is done by induction
on i, the step of transforming polynomial Fi into Fi+1. A
detailed induction proof of this theorem is provided in [2] for
expressions in Z2m .

�

Algorithm 1 Backward Rewriting in GF (2m)
Input: Gate-level netlist of GF (2m) multiplier
Input: Output signature Sigout, and (optionally) input signature, Sigin
Output: GF function of the design; return Sigout==Sigin
1: P={p0, p1, ..., pn}: polynomials representing gate-level netlist
2: F0=Sigout

3: for each polynomial pi ∈ P do
4: for output variable v of pi in Fi do
5: replace every variable v in Fi by algebraic expression of pi

6: Fi → Fi+1

7: for each monomial M in Fi+1 do
8: if the coefficient of M%2==0
9: or M is a constant, M%2==0 then

10: remove M from Fi+1

11: end if
12: end for
13: end for
14: end for
15: return Fn and Fn =?Sigin

Theorem 1, together with the algebraic model of Boolean
gates (1), provide the basis for polynomial reduction using
backward rewriting. This is described by Algorithm 1. The
method takes the gate-level netlist of a GF(2m) multiplier
as input and first converts each logic gate into an algebraic
expression using Eq. (1). The rewriting process starts with
the output signature F0 = Sigout and performs rewriting in
reverse topological order, from outputs to inputs. It ends when
all the variables in Fi are primary inputs, at which point it
becomes the input signature Sigin [2].

Each iteration includes two basic steps: 1) substitute the
variable of the gate output using the expression in the inputs
of the gate (Eq.1), and name the new expression Fi+1 (lines
3 - 6); and 2) simplify the new expression in two ways: a)
by eliminating terms that cancel each other (as in the integer
arithmetic case [2]), and b) by removing all the monomials
(including constants) that reduce to 0 in GF(2) (line 3 and
lines 7 - 10). The algorithm outputs the arithmetic function
of the design in GF(2m) after n iterations, where n is the
number of gates in the netlist. The final expression Fn = Sigin
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Figure 3: The gate-level netlist of post-synthesized and
mapped 2-bit multiplier over GF(22). The irreducible poly-
nomial is P (x) = x2 + x+ 1.

Sigout: Finit=z0+xz1 Eliminating terms
G8: F8=z0+x(i5+i6) -
G7: F7=i1+i2+x(i5+i6) -
G6: F6=i1+i2+x(i3+i4+i5) -
G5: F5=i1+i2+x(i3+i4+i2+1) -
G4: F4=i1+i2+x(i2+i3+a0b1)+2x 2x
G3: F3=i1+i2+x(i2+a1b0+a0b1+1) -
G2: F2=i1+a1b1+1+x(a1b1+a1b0+a0b1)+2x 2x
G1: F1=a0b0+a1b1+2+x(a1b1+a1b0+a0b1) 2
Sigin: a0b0+a1b1+x(a1b1+a1b0+a0b1) -

Figure 4: Function extraction of a 2-bit GF multiplier shown
in Figure 3 using backward rewiring from PO to PI.

can be used to verify if the circuit performs the desired
arithmetic function by checking if the computed polynomial
Sigin matches the expected specification, if known. This
equivalence check can be readily performed using canonical
word-level representations, such as BMD [15] or TED [17]
which can efficiently check equivalence of two polynomials.
Alternatively, if the specification is not known, the computed
signature can serve as the specification extracted from the
circuit.

Example 2 (Figure 3): We illustrate our method using a
post-synthesized 2-bit multiplier in GF (22), shown in Figure
3. The irreducible polynomial is P (x) = x2 + x + 1. The
output signature is Sigout = z0+z1x, and input signature
is Sigin = (a0b0+a1b1)+(a1b1+a1b0+a0b1)x. First, Finit =
Sigout is transformed into F8 using polynomial of gate g8,
z1=i5 + i6 and simplified to F8 = z0 + i5x + i6x. Then,
the polynomials Fi are successively derived from Fi+1 and
checked for a possible reduction. The first reduction happens
when F5 is transformed into F4, where i4 (at gate g4) is
replaced by (1 + a0b0). After simplification, a monomial 2x
is identified and removed by modulo 2 from F4. Similar
reductions are applied during the transformations F3 → F2

and F2 → F1. Finally, the function of the design is extracted
as expression F1. A complete rewriting process is shown in
Figure 4. We can see that F1 = Sigin, which indicates that
the circuit indeed implements the GF (22) multiplication with
P (x)=x2 + x+ 1.

An important observation is that the potential reductions
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take place only within the expression associated with the same
degree of polynomial ring (Sigout). In other words, the reduc-
tions happen in a logic cone of every output bit independently
of other bits, regardless of logic sharing between the cones.
For example, the reductions in F4 and F2 happen within the
logic cone of output z1 only. Similarly, in F1, the reduction
is within logic cone of z0. Details of the proof are provided
in [13].

C. Implementation

This section describes the implementation of our parallel
verification method for Galois field multipliers. Our approach
takes the gate-level netlist as input, and outputs the extracted
function of the design. It includes four steps:

Step1: Convert netlist to equations. Parse the gate-level
netlist into algebraic equations based on Equation 1. The
equations are listed in topological order, to be rewritten by
backward rewriting in the next step. m copies of this equation
file will be made for a GF(2m) multiplier.

Step2: Generate signatures. Split the output signature of
GF(2m) multipliers into m polynomials, with Sigout i=zi.
Insert the new signatures into the m copies of the equation
file generated from Step1. Each signature represents a single
output bit.

Step3: Parallel extraction. Apply Algorithm 1 to each
equation file to extract the polynomial expression of each
output in parallel. In contrast to work on integer arithmetic
[2], the internal expression of each output bit does not offer
any polynomial reduction (monomial cancellations) with other
bits. Ideally, our approach can extract GF(2m) multiplier in m
threads. However, due to the limited computing resources, it is
impossible to extract GF(2m) multipliers in m threads when m
is very large. Hence, our approach puts a limit on the number
of parallel threads T (T = 5, 10, 20 and 30 have been tested
in this work). This process is illustrated in Figure 5. The m
extraction tasks are organized into several task sets, ordered
from LSB to MSB. In each set, the extractions are performed
in parallel. Since the runtime of each extraction within the set
can differ, the tasks in the next set will start as soon as any
previous task terminated.

Step4: Finalization. Compute the final function of the
multiplier. Once the algebraic expression of each output bit
in GF(2) is computed, our method computes the final function
by constructing the Sigout using the rewriting process in step
3.
Our algorithm uses a data structure that efficiently imple-

ments iterative substitution and elimination during backward
rewriting. It is similar to the data structure employed in
function extraction for integer arithmetic circuits [2], suitably
modified to support simplifications in finite fields algebra.
Specifically, in addition to cancellation of terms with opposite
signs, it performs modulo 2 reduction of monomials and
constants. The data structure maintains the record of the terms
(monomials) in the expression that contain the variable to
be substituted. It reduces the cost of finding the terms that
will have their coefficients changed during substitution. Each
element represents one monomial consisting of the variables

Eqns of netlist

Sigout = z0

Eqns of netlist

Sigout = z1

Eqns of netlist

Sigout = zm-2

Eqns of netlist

Sigout = zm-1

…

z0   z1   z2   …    zT-1

zT  zT+1  zT+2   …    z2T-1…

 …    zm-2  zm-1 

Parallel extraction

Figure 5: Step3: parallel extraction of a GF(2m) multiplier
with T threads.

in the monomials and its coefficient. The expression data
structure is a C++ object that represents a pseudo-Boolean
expression, which contains of all the elements in the data
structure. It supports both fast addition and fast substitution
with two C++ maps, implemented as binary search trees, a
terms map, and a substitution map. This data structure includes
two cases of simplifications: 1) after substitution the coeffi-
cients of all the monomials are updated and the monomials
with coefficient zero are eliminated; 2) the monomials whose
coefficient modulo 2 evaluate to 0 are eliminated. The second
case is applied after each substitution.

Sigout0=z0 elim Sigout1=x·z1 elim
G8: z0 - G8: i5x+i6x -
G7: i1+i2 - G7: i5x+i6x -
G6: i1+i2 - G6: i2x+x+i6x -
G5: i1+i2 - G5: i2x+x+i3x+i4x -
G4: i1+i2 - G4: i2x+x+i3x+a0b1x+x 2x
G3: i1+i2 - G3: i2x+a1b0x+x+a0b1x -
G2: i1+a1b1+1 - G2: a1b1x+x+a1b0x+x+a0b1x 2x
G1: 1+a0b0+a1b1+1 2 G1: x(a1b1+a1b0+a0b1) -
z0=a0b0+a1b1, z1=x(a1b1+a1b0+a0b1)

Figure 6: Extracting the algebraic expression of z0 and z1 in Fig.
4.

Example 3 (Figure 6): We illustrate our parallel extraction
method using a 2-bit multiplier in GF(22) in Figure 3. The
output signature Sigout = z0+z1x is split into two signatures,
Sigout0 = z0 and Sigout1 = z1. Then, the rewriting process is
applied to Sigout0 and Sigout1 in parallel. When Sigout0 and
Sigout1 have been successfully extracted, the two signatures
are merged into Sigout0 + x·Sigout1, resulting in the polyno-
mial Sigin. In Figure 4, we can see that elimination happens
three times (F4, F2, and F1). As expected, this happens within
each element in GF(2n). In Figure 6 one elimination in Sigout0
and two eliminations in Sigout1 have been done independently,
as shown earlier (refer to Example 2).

V. REVERSE ENGINEERING

In this section, we present our approach to perform reverse
engineering of GF(2m) multipliers. Using the extraction tech-
nique presented in the previous section, we can extract the
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algebraic expression of each output bit. In contrast to the
algebraic techniques of [6] [10], our extraction technique can
extract the algebraic expression of each output bit indepen-
dently. This means that the extraction can be done without the
knowledge of the bit position of the inputs and outputs. Two
theorems are provided and proved to support this claim.

In a GF(2m) multiplication, let si (i ∈ {0,1,...,2m-1}) be a
set of partial products generated by AND gates and combined
with an XOR operations. For example, in Figure 1, there are
six product sets, s0, s1, ..., s6, where s1=a1b0+a0b1; or written
as a set: s1={a1b0, a0b1}, etc. These product sets are divided
into two groups: those with index i ≤ m − 1, called in-
field product sets; and those with index i ≥ m, called out-
of-field product sets. The in-field product sets si, in this case
s0, s1, s2, s3, correspond to the output bits zi. The out-of-field
product sets will be reduced into the field GF(2m) using mod
P (x) operation, and assigned to the respective output bit, as
determined by P (x). In the case of Figure 1, the out-of-field
sets are s4, s5, s6. In general, for a GF(2m) multiplication, m
product sets are in-field, and m-1 product sets are out-of-field
[38].

A. Output Encoding Determination

We will now demonstrate how to determine the encoding,
and hence bit position, of the outputs.

Theorem 2: Given a GF(2m) multiplication, the in-field
product sets (s0, s1, ..., sm−1) appear in exactly one element of
GF(2m) each, and the out-of-field product sets (sm, sm+1, ...,
s2m−1) appear in at least two elements (outputs) of GF(2m),
as a result of reduction mod P (x).

Proof: An irreducible polynomial in GF(2m) has the stan-
dard form P (x) = xm + P ′(x), where the tail polynomial
P ′(x) contains at least two monomials xd with degree d < m.
For example, there are two such monomials for a trinomial,
four for pentanomial, etc. Since P (x) = 0 we have xm =
P ′(x) in GF(2m). Hence the variable xm, associated with
the first out-of-field partial product set sm will appear in at
least two outputs, determined by P ′(x). Other variables, xk,
associated with out-of-field partial product set sk, for k > m,
can be expressed as xk = xk−mxm = xk−mP ′(x) and will
contain at least two elements. QED �

In fact, the number of outputs in which the out-of-field
set sk will appear is equal to the number of monomials in
the above product xk−mP ′(x), provided that every monomial
xj with j > m is recursively reduced mod P ′(x), i.e., by
using relation xm = P ′(x). We illustrate this fact with an
example of multiplication in GF(24) using irreducible polyno-
mial P1(x) = x4 + x3 + 1 shown in the left side of Figure
1. The in-field sets, associated with outputs z0, z1, z2, z3, are
s0, s1, s2, s3. Since P1(x) = x4 + x3 + 1 = 0, we obtain
x4 = x3 + 1. This means that set s4 appears in two output
columns, z3 and z0. Then

x5 = x · x4 = x(x3 + 1) = x4 + x = x3 + x+ 1,

which means that s5 appears in three outputs: z3, z1, z0.
Finally,

x6 = x ·x5 = x(x3+x+1) = x4+x2+x = x3+x2+x+1,

that is, s6 will appear in four outputs: z3, z2, z1, z0. As
expected, this matches the left Table in Figure 1. Note the
recursive derivation of xk for k > m, which increases the
number of columns to which a given set sk is assigned.

Based on Theorem 2, we can find the in-field product
sets, s0, s1, ..., sm−1, by searching the unique products in
the resulting algebraic expressions of the output bits. In this
context, unique products are the products that exist in only
one of the extracted algebraic expressions. Since the in-field
product set indicates the bit position of the output, we can
determine the bit positions of the output bits as soon as all the
in-field product sets are identified.

Example 4 (Figure 2): We illustrate the procedure of de-
termining bit positions with an example of a GF(24) multiplier
implemented using irreducible polynomial P2(x)=x4+x+1
(see Figure 1). Note that in this process the labels do not
offer any knowledge of the bit positions of inputs and outputs.
The extracted algebraic expressions of the four output bits are
shown in Figure 2. The labels of the variables do not indicate
any binary encoding information. We first identify the unique
products that include set s0=a0b0 in algebraic expression of z0;
set s1=(a0b1+a1b0) in z1; set s2=(a0b2+a1b1+a2b0) in z2; and
set s3=(a0b3+a1b2+a2b1+a3b0) in z3. Note that the number
of products in the in-field product set si is i. Hence, we find
all the in-field product sets and their relation to the extracted
algebraic to be as follows:

s0 = a0b0, z0 → Least significant bit (LSB)
s1 = a0b1+a1b0, z1 → 2nd output bit
s2 = a0b2+a1b1+a2b0, z2 → 3rd output bit
s3 = a0b3+a1b2+a2b1+a3b0, z3 → Most significant bit (MSB)

B. Input Encoding Determination

Algorithm 2 Input encoding determination for GF (2m)
Input: a set of algebraic expressions represent the in-field product sets S
Output: bit position of input variables
1: S={s0, s1, ..., sm−1}
2: initialize a vector of variables V ← {}
3: for i=0, i≤m-1, i++ do
4: for each variable v in algebraic expression of si do
5: if v does not exist in V then
6: assign bit position value of v = i
7: store v in variable set V
8: end if
9: end for

10: end for
11: return V

We can now determine the bit position of the input variables
using the procedure outlined in Algorithm 2. The input bit po-
sition can be determined by analyzing the in-field product sets,
obtained in the previous step. Based on the GF multiplication
algorithm, we know that s0 is generated by an AND function
with two LSBs of the two inputs; and the two products in
s1 are generated by the AND and XOR operations using two
LSBs and two 2nd input bits, etc. For example in a GF(24)
multiplication (Figure 1), s0=a0b0, where a0 and b0 are LSBs;
s1=a1b0+a0b1, where a0, b0 are LSBs; a1, b1 are 2nd LSBs.
This allows us to determine the bit position of the input bits
recursively by analyzing the algebraic expression of si. We
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illustrate this with the GF(24) multiplier implemented using
P2(x) = x4+x+1 (Figure 2).

Example 5 (Algorithm 2): The input of our algorithm is
a set of algebraic expressions of the in-field product sets,
s0, s1, s2, s3 (line 1). We initialize vector V to store the
variables in which their bit positions are assigned (line 2).
The first algebraic expression is s0. Since the two variables,
a0 and b0 are not in V , the bit positions of these two variables
are assigned index i = 0 (line 4-8). In the second iteration,
V ={a0, b0}, and the input algebraic expression is s1, including
variables a0, b0, a1 and b1. Because a1 and b1 are not in
V , their bit position is i = 1. The loop ends when all the
algebraic expressions in S have been visited, and returns
V ={(a0, b0)0, (a1, b1)1, (a2, b2)2, (a3, b3)3}. The subscripts
are the bit position values of the variables returned by the
algorithm. Note that this procedure only gives the bit position
of the input bits; the information of how the input words are
constructed is unknown. There are 2m−1 combinations from
which the words can be constructed using the information
returned in V . For example, the two input words can be
W0=a0+2a1+4b2+8a3 and W1=b0+2b1+4a2+8b3; or they can
be W ′0=a0+2a1+4b2+8b3 and W ′1=b0+2b1+4a2+8a3. Although
there may be many combinations for constructing the input
words, the specification of the GF(2m) is unique.

C. Extraction of the Irreducible Polynomial
Theorem 3: Given a multiplication in GF(2m), let the

first out-of-field product set be sm. Then, the irreducible
polynomial P (x) includes monomials xm and {xi} iff all
products in the set sm appear in the algebraic expression of
the ith output bits, for all i < m.

Proof: Based on the definition of field arithmetic for
GF(2m), the polynomial basis representation of sm is xmsm.
To reduce sm into elements in the range [0, m− 1], the field
reductions are performed modulo irreducible polynomial P (x)
with highest degree m (c.f. the proof of Theorem 2). As
before, let P (x) = xm + P ′(x). Then,

xmsm mod (xm + P ′(x)) = smP ′(x)

Hence, if xi exists in P ′(x), it also exists in P (x). Therefore,
xi exists in P (x), iff xism exists in xmsm mod P (x).

�
Even though the input bit positions have been determined

in the previous step, we cannot directly generate sm since
the combination of the input bits for constructing the input
words is still unknown. In Example 5 (m=4), we can see that
sm={a1b3, a2b2, a3b1} when input words are W0 and W1; but
sm={a1a3, a2b2, b1b3} when inputs words are W ′0 and W ′1.
To overcome this limitation, we create a set of products s′m,
which includes all the possible products that can be generated
based on all input combinations. The set s′m includes the true
products, i.e., those that exist in the first out-of-field product
set; and it also includes some dummy products. The dummy
products are those that never appear in the resulting algebraic
expressions. Hence, we first generate the set s′m and eliminate
the dummy products by searching the algebraic expressions.
After this, we obtain sm. Then, we use sm to extract the
irreducible polynomial P (x) using Algorithm 3.

Example 6: We illustrate the method of reverse engineering
the irreducible polynomial using the GF (24) multiplier of Fig.
1. The procedure is outlined in Algorithm 3. The extracted
algebraic expressions S (line 1 at Algorithm 3) is shown
in Figure 2. The bit position of input bits is determined by
Algorithm 2 (line 2). Based on the result of Algorithm 2, we
generate s′m={a1a3, b1b3, a2b2, a3b1, a1b3}. To eliminate the
dummy products from s′m, we search all algebraic expressions
in S, and eliminate the products that cannot be part of the
resulting products. In this case, we find that a1a3 and b1b3 are
the dummy products. Hence, we get sm={a3b1, a2b2, a1b3}
(line 3). Based on the definition of irreducible polynomial,
P (x) must include xm; in this example m = 4 (line 4). While
looping over all the algebraic expressions, the expressions for
z0 and z1 contain all the products of sm. Hence, x0 and x1

are included in P (x), so that P (x) = x4+x1+x0. We can see
that it is the same as P2(x) in Figure 1.

Algorithm 3 Extracting irreducible polynomial in GF (2m)
Input: the algebraic expressions of output bits S
Input: the first out-of-field product set sm
Output: Irreducible polynomial P (x)

1: S = {exp0, exp1, ..., expm−1}
2: V ← Algorithm 2(S)
3: sm ← eliminate dummy(s′m ← V , S)
4: P (x)=xm: initialize irreducible polynomial
5: for i=0, i≤m-1, i++ do
6: if all products in sm exist in expi then
7: P (x) += xi

8: end if
9: end for

10: return P (x)

In summary, using the framework presented in Section IV-C,
we first extract the algebraic expressions of all output bits.
Then, we analyze the algebraic expressions to find the bit
position of the input bits and the output bits, and extract the
irreducible polynomial P (x). In the example of the GF(24)
multiplier implemented using P (x) = x4+x+1, shown in
Figure 1, the final results returned by our approach gives
the following: 1) the input bits set V = {(a0, b0)0, (a1, b1)1,
(a2, b2)2, (a3, b3)3}, where the subscripts represent the bit
position; 2) z0 is the least significant bit (LSB), z1 is the
2nd output bit, z2 is the 3rd output bit, and z3 is the most
significant bit (MSB); 3) irreducible polynomial is P (x) =
x4+x+1; 4) the specification can be verified using the ap-
proach presented in Section IV with the reverse engineered
information.

VI. RESULTS

The experimental results of our method are presented
in two subsections: 1) evaluation of parallel verification of
GF(2m) multipliers; and 2) evaluation of reverse engineering
of GF(2m) multipliers. The results given in this section include
data (total time and maximum memory) for the entire verifica-
tion or reverse engineering process, including translating the
gate-level verilog netlist to the algebraic equation, performing
backward rewriting and other required functions.

A. Parallel Verification of GF(2m) Multipliers
The verification technique for GF(2m) multipliers presented

in Section IV was implemented in C++. It performs backward
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Mastrovito [5] This work

Op size # equations Runtime
(sec)

Mem
(MB)

Runtime (s) Mem*
T=1 T=5 T=10 T=20 T=30 T=1*

32 5,482 1 3 5 2 1 1 1 10 MB
48 12,228 8 13 9 6 3 3 2 21 MB
64 21,814 29 21 19 11 8 7 7 37 MB
96 51,412 195 45 68 38 26 20 23 84 MB

128 93,996 924 91 153 91 63 55 57 152 MB
163 153,245 3546 161 336 192 137 121 113 248 MB
233 167,803 4933 168 499 294 212 180 171 270 MB
283 399,688 30358 380 1580 890 606 550 530 642 MB
571 1628,170 TO - 13176 7980 5038 MO MO 2.6 GB

TABLE I: Results of verifying Mastrovito multipliers using our parallel approach. T is the number of threads. MO=Memory
out of 32 GB. TO=Time out of 18 hours.
(*T=1 shows the maximum memory usage of a single thread.)

Montgomery [5] This work

Op size # equations Runtime
(sec)

Mem
(MB)

Runtime (s) Mem*
T=1 T=5 T=10 T=20 T=30 T=1*

32 4,352 2 3 5 3 2 1 2 8 MB
48 9,602 14 13 34 18 11 9 6 16 MB
64 16.898 63 21 80 45 31 28 27 27 MB
96 37,634 554 45 414 234 157 133 142 59 MB

128 66,562 1924 68 335 209 121 115 110 95 MB
163 107,582 12063 101 2505 1616 1172 1095 1008 161 MB
233 219,022 TO 168 1240 722 565 457 480 301 MB
283 322,622 TO 380 32180 19745 17640 15300 14820 488 MB

TABLE II: Results of verifying Montgomery multipliers using our parallel approach. T is the number of threads. TO=Time
out of 18 hours.
(*T=1 shows the maximum memory usage of a single thread.)

rewriting with variable substitution and polynomial reductions
in Galois field in parallel fashion. The program was tested
on a number of combinational gate-level GF (2m) multipliers
taken from [6], including the Montgomery multipliers [39] and
Mastrovito multipliers [40]. The bit-width of the multipliers
varies from 32 to 571 bits. The verification results for various
Galois field multipliers obtained using SAT, SMT, ABC [41],
and Singular [42], have already been presented in works of
[1] and [6]. They clearly demonstrate that techniques based
on computer algebra perform significantly better than other
known techniques. Hence, in this work, we only compare our
approach to those two, and specifically to the tool described
in [6]. However, in contrast to the previous work on Galois
field verification, all the GF(2m) multipliers used in this
paper are bit-blasted gate-level implementations. The bit-level
multipliers are taken from [6] and mapped onto gate-level
circuits using ABC [41]. Our experiments were conducted
on a PC with Intel(R) Xeon CPU E5-2420 v2 2.20 GHz
×12 with 32 GB memory. As described in the next section,
our technique can verify Galois field multipliers in multiple
threads by applying Algorithm 1 to each output bit in parallel.
The number of threads is given as input to the tool.

The experimental results of our approach and comparison
with [6] are shown in Table I for gate-level Mastrovito
multipliers with bit-width varying from 32 to 571 bits. These
multipliers are directly mapped using ABC without any opti-
mization. The largest circuit includes over 1.6 million gates.
This is also the number of polynomial equations and the
number of rewriting iterations (see Section IV). The results
generated by the tool, presented in [6] are shown in columns
3 and 4 of Table I. We performed four different series of
experiments, with the number of threads T varying from 5

to 30. The table shows CPU runtime and memory usage for
different values of T . The timeout limit (TO) was set to 12
hours and memory limit (MO) to 32 GB. The experimental
results show that our approach provides on average 26.2×,
37.8×, 42.7×, and 44.3× speedup, for T = 5, 10, 20, and 30
threads, respectively. Our approach can verify the multipliers
up to 571 bit-wide multipliers in 1.5 hours, while that of [6]
fails after 12 hours.

The reported memory usage of our approach is the max-
imum memory usage per thread. This means that our tool
experiences maximum memory usage with all T threads
running in the process; in this case, the memory usage is
T ·Mem. This is why the 571-bit Mastrovito multipliers could
be successfully verified with T = 5 and 10, but failed with T
= 20 and 30 threads. For example, the peak memory usage of
571-bit Mastrovito multiplier with T = 20 is 2.6 × 20 = 52
GB, which exceeds the available memory limit.

We also tested Montgomery multipliers with bit-width vary-
ing from 32 to 283 bits; the results are shown in Table
II. These experiments are different than those in [6]. In
our work, we first flatten the Montgomery multipliers before
applying our verification technique. That is, we assume that
only the positions of the primary inputs and outputs are
known, without the knowledge of any high-level structure.
In contrast, [6] verifies the Montgomery multipliers that are
represented with four hierarchical blocks. For 32- to 163-bit
Montgomery multipliers, our approach provides on average a
9.2×, 15.9×, 16.6×, and 17.4× speedup, for T = 5, 10, 20,
and 30, respectively. Notice that [6] cannot verify the flattened
Montgomery multipliers larger than 233 bits in 12 hours.

Analyzing Table I we observe that the rewriting technique of
our approach when applied to Montgomery multipliers require
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significantly more time than for Mastrovito multipliers. The
main reason for this difference is the internal architecture of
the two multiplier types. Mastrovito multipliers are obtained
directly from the standard multiplication structure, with the
partial product generator followed by an XOR-tree structure,
as in modular arithmetic. Since the algebraic model of XOR in
GF arithmetic is linear, the size of the polynomial expressions
generated during rewriting of this architecture is relatively
small. In contrast, in a Montgomery multiplier the two inputs
are first transformed into Montgomery form; the products of
these Montgomery forms are called Montgomery products.
Since the polynomial expressions in Montgomery forms are
much larger than partial products, the increase in size of
intermediate expressions is unavoidable.

1) Dependence on P (x): In Table II, we observe that CPU
runtime for verifying a 163-bit multiplier is greater than that
of a 233-bit multiplier. This is because the computational com-
plexity depends not only on the bit-width of the multiplier, but
also on the irreducible polynomial P (x) used in constructing
the multiplier.

We illustrate this fact using two GF(24) multiplications
implemented using two different irreducible polynomials (c.f.
Figure 1). We can see that for P1(x)=x4+x3+1, the longest
logic paths for z3 and z0, include ten and seven products
that need to be generated using XORs, respectively. However,
when P2(x)=x4 + x + 1, the two longest paths, z1 and z2,
have only seven and six products. This means that the GF(24)
multiplication requires 9 XOR operations using P1(x) and 6
XOR operations using P2(x). In other words, the gate-level
implementation of the multiplier implemented using P1(x) has
more gates compared to P2(x). In conclusion, we can see that
irreducible polynomial P (x) has significant impact on both
design cost and the verification time of the GF(2m) multipliers.
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Figure 7: Runtime and memory usage of parallel verification
approach as a function of the number of threads T .

2) Runtime vs. Memory: In this section, we discuss the
tradeoff of runtime and memory usage of our parallel approach
to Galois Field multiplier verification. The plots in Figure 7
show the average runtime and memory usage for different
number of threads, over the set of multipliers shown in Tables
I and II (32 to 283 bits). The vertical axis on the left is
CPU runtime (in seconds), and on the right is memory usage

(MB). The horizontal axis represents the number of threads T ,
ranging from 1 to 30. The runtime is significantly improved for
T ranging from 5 to 15. However, there is not much speedup
when T is greater than 20, most likely due to the memory
management synchronization overhead between the threads.
Similarly to the results for Mastrovito multipliers (Table I),
our approach is limited here by the memory usage when the
size of the multiplier and the number of threads T are large.
In our work, T = 20 seems to be the best choice. Obviously,
T varies for different platforms, depending on the number of
cores and the memory.

We also analyzed the runtime complexity of our verification
algorithm for a single thread (T=1) computation; it is shown
in Figure 8. The y-axis shows the total runtime of rewriting
the polynomial expressions, and x-axis indicates the size of
the Mastrovito multiplier. The result shows that the overall
speedup is roughly the same for each value of T. Montgomery
multipliers exhibit similar behavior, regardless of the choice
of the irreducible polynomial.
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Figure 8: Single thread runtime analysis for Mastrovito multipliers.

3) Effect of Synthesis on Verification: In [10] the authors
conclude that highly bit-optimized integer arithmetic circuits
are harder to verify than their original, pre-synthesized netlists.
This is because the efficiency of the rewriting technique relies
on the amount of cancellations between the different terms of
the polynomial, and such cancellations strongly depend on the
order in which signals are rewritten. A good ordering of signals
is difficult to achieve in highly bit-optimized synthesized
circuits.

To see the effect of synthesis on parallel verification of
GF circuits, we applied our approach to post-synthesized
Galois field multipliers with operands up to 409 bits (571-
bit multipliers could not be synthesized in a reasonable time).
We synthesized Mastrovito and Montgomery multipliers using
ABC tool [41]. We repeatedly used the commands resyn2
and dch3 until the number of AIG levels or nodes could
not be reduced anymore. The synthesized multipliers were
mapped using a 14nm technology library. The verification
experiments shown in Table III are performed by our tool
with T = 20 threads. Our tool was able to verify both 409-
bit Mastrovito and Montgomery multipliers within just 13
minutes. We observed that in our parallel approach Galois
field multipliers are easier to be verified after optimization

3”dch” is the most efficient bit-optimization function in ABC.
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than in their original form. For example, the verification of
a 283-bit Montgomery multiplier takes 15,300 seconds for
T =20. After optimization, the runtime dropped to just 169.2
seconds, which means that such a verification is 90x faster
than of the original implementation. The memory usage has
also been reduced from 488 MB to 194 MB. In summary, in
contrast to verification problems of integer multipliers [10],
the bit-level optimization actually reduces the complexity of
backward rewriting process. This is because extracting the
function of an output bit of a GF multiplier depends only on
the logic cone of that bit and does not require logic expression
from other bits to be simplified (c.f. Theorem 3). Hence, the
complexity of function extraction is naturally reduced if the
logic cone is minimized.

Op size Mastrovito Montgomery
# eqn Runtime(s) Mem # eqn Runtime(s) Mem

64 11499 4 21 MB 9471 15 38 MB
96 25632 11 44 MB 20306 41 54 MB

128 45983 29 77 MB 35082 27 78 MB
163 73483 62 123 MB 56408 205 153 MB
233 121861 135 201 MB 110947 141 199 MB
283 120877 168 198 MB 111006 169 194 MB
409 385974 776 635 MB 340076 751 597 MB

TABLE III: Runtime and memory usage of synthesized Mas-
trovito and Montgomery multipliers (T=20).

B. Reverse Engineering of GF(2m) Multipliers

The reverse engineering technique presented in this paper
was implemented in the framework described in Section V in
C++. It reverse engineers bit-blasted GF(2m) multipliers by
analyzing the algebraic expressions of each element using the
approach presented in Section IV. The program was tested
on a number of gate-level GF (2m) multipliers with different
irreducible polynomials, including Montgomery multipliers
and Mastrovito multipliers. The multiplier generator, taken
from [1], takes the bit-width and the irreducible polynomial
as inputs and generates the multipliers in the equation format.
The experimental results show that our technique can success-
fully reverse engineer various GF(2m) multipliers, regardless
of the GF(2m) algorithm and the irreducible polynomials.
We set the number of threads to 16 for all the reverse
engineering evaluations in this section. This is dictated by the
fact that T=16 gives most promising performance (runtime)
and scalability (memory usage) metrics on our platform, based
on the analysis presented in Section VI-A2 (Figure 7).

m P (x)
Mastrovito-syn Montgomery-syn

T(s) Mem T(s) Mem
64 x64+x21+x19+x4+1 13 25 MB 5 20 MB

163 x163+x80+x47+x9+1 69 508 MB 221 610 MB
233 x233+x74+1 152 1.2 GB 154 2.9 GB
409 x409+x87+1 825 6.5 GB 855 10.3 GB

TABLE IV: Results of reverse engineering synthesized and technol-
ogy mapped Mastrovito and Montgomery multipliers.

Our program takes the netlist/equations of the GF(2m) im-
plementations, and the number of threads as input. Hence, the
users can adjust the parallel efforts depending on the limitation
of the machines. In this work, all results are performed in

16 threads. Typical designs that require reverse engineering
are those that have been bit-optimized and mapped using a
standard-cell library. Hence, we apply our technique to the
bit-optimized Mastrovito and Montgomery multipliers (Table
IV). For the purpose of our experiments, the multipliers are
optimized and mapped using ABC [41]. Compared to the
verification runtime of synthesized multipliers (Table III), the
CPU time spent on analyzing the extracted expressions for
reverse engineering is less than 10% of the extraction process.
This is because most computations of reverse engineering
approach are associated with those for extracting the algebraic
expressions, as presented in Section VI-A2, Table III.
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Figure 9: Result of reverse engineering GF(2233) Mastrovito multi-
pliers implemented with different P(x).

The reverse engineering approach has been further evaluated
using four Mastrovito multipliers, each implemented with
a different irreducible polynomial P (x) in GF(2233). The
polynomials are obtained from [43] and optimized using ABC
synthesis tool. The results are shown in Figure 9. We can see
that the multipliers implemented with trinomial P (x) are much
easier to be reverse engineered than those based on a pen-
tanomial P (x). This is because the multipliers implemented
with pentanomial P (x) contain more gates and have longer
critical path, since the reduction over pentanomial requires
more XOR operations. The CPU runtime for irreducible poly-
nomial of the same class (trinomials or pentanomials) is almost
the same. As discussed in Section III-B, comparison of the
two trinomials shows that the efficient trinomial irreducible
polynomial, xm+xa+1, typically satisfies m-a>m/2.

The results for designs synthesized with 14nm technol-
ogy library are shown in Figure 10. It shows that the
area and delay of the Mastrovito multiplier implemented
with P (x)=x233+x74+1 are 5.7% and 7.4% less than for
P (x)=x233+x159+1, respectively.

Figure 10: Evaluation of the design cost using GF(2233) Mas-
trovito multipliers with irreducible polynomials x233+x159+1 and
x233+x74+1.

VII. CONCLUSION

This paper presents a parallel approach to verification and
reverse engineering of gate-level Galois Field multipliers using
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computer algebraic approach. It introduces a parallel rewriting
method that can efficiently extract functional specification
of Galois Field multipliers as polynomial expressions. We
demonstrate that compared to the best known algorithms, our
approach tested on T=30 threads provides on average 44× and
17× speedup in verification of Montgomery and Mastrovito
multipliers, respectively. We presented a novel approach that
reverse engineers the gate-level Galois Field multipliers, in
which the irreducible polynomial, as well as the bit position
of the inputs and outputs are unknown. We demonstrated that
our approach can efficiently reverse engineer the Galois Field
multipliers implemented using different irreducible polynomi-
als. Future work will focus on formal verification of prime
field arithmetic circuits and complex cryptography circuits.
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