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Abstract

This article describes a systematic method and an exper-
imental software system to perform high-level transforma-
tion of the functional design specifications prior to high level
synthesis. The initial specification is first transformed into
a canonical form and then converted into a data flow graph
(DFG) optimized for a particular application. The optimiz-
ing transformations are based on a canonical Taylor Expan-
sion Diagram (TED) representation. The system is intended
for data flow and computation-intensive designs used in com-
puter graphics and digital signal processing applications.
This methodology has been implemented in an experimental
software tool, TDS. Results of several experiments are pro-
vided.

Keywords: High-level synthesis, data flow graphs, sym-
bolic algebra, Taylor Expansion Diagrams.

1 Introduction

A considerable progress has been made during the last
two decades in behavioral and High-Level Synthesis (HLS),
making it possible to synthesize designs specified using stan-
dard programming languages, such C, C++ or system C [1].
Those tools automatically generate a Register Transfer Level
(RTL) specification of the circuit from a bit-accurate algo-
rithm description for a given target technology and the ap-
plication constraints (latency, throughput, resource utiliza-
tion, etc.). The algorithmic description used as input to
high-level synthesis does not require explicit timing infor-
mation and thus provides a higher level of abstraction than
the RTL model. Thanks to high-level synthesis, the designer
can faster and more easily explore different architecturalso-
lutions. An important productivity leap is thus achieved.

However, the optimization algorithms used by high-level
synthesis, such as scheduling, resource binding and alloca-
tion, operate on a fixed Data Flow Graph (DFG), extracted
directly and without any modification from the initial design
specification. In this approach the scope of the ensuing ar-
chitectural optimization and the quality of the resulting hard-
ware implementation strongly depends on such a specifica-
tion. In order to explore other solutions the user needs to
rewrite the original specification, from which another DFG
is derived and synthesized.

A novel method is proposed here whereby the initial func-
tional specification is first transformed into a canonical form
and then converted into a DFG optimized for a particular ap-

plication. Such a transformation and DFG optimization is
carried in a systematic way using a canonical representation.

Related Work: Automatic transformation of design spec-
ification is an old concept. In fact, software compilers com-
monly use such optimization techniques as dead code elim-
ination, constant propagation, common subexpression elim-
ination, and others, to simplify and optimize the target code
implementation. Some of those compilation techniques are
also used by academic and commercial HLS tools, such
as Spark [2], Cyber [3] and Catapult-C [1]. In general,
these methods rely on manipulations of algebraic expres-
sions based on term rewriting and basic algebraic properties
(associativity, commutativity, and distributivity) thatdo not
guarantee optimality. Algebraic factorization decomposition
methods, successfully used in logic synthesis, have also been
used to optimize polynomial expressions of linear DSP trans-
forms and non-linear filters [4]. However, the polynomial
representation employed by these methods is not canonical,
which seriously reduces the scope of optimization.

A number of systems have been developed for domain-
specific applications such as digital filters and discrete sig-
nal transforms [5]. Optimizations employed by these sys-
tems rely on the knowledge of mathematical properties of
the transforms. In general, they cannot handle computations
described by nonlinear polynomials, such as those found in
computer graphics and nonlinear filter applications.

This article describes a systematic method for transform-
ing an initial design specification of agenericnonlinear com-
putation into an optimized DFG. The generated DFGs are
better suited for high-level synthesis than those extracted
directly from the initial specification, or obtained using
structural DFG transformations and algebraic decomposition
methods. The optimizing transformations are based on a
canonical, graph-based representation, called Taylor Expan-
sion Diagram (TED) [6]. The goal is to generate a DFG,
which, when given as input to a standard high-level synthe-
sis tool, will produce hardware implementation optimized for
latency and/or hardware cost.

Figure 1 illustrates the idea of design space exploration
based on functional TED representation. In traditional syn-
thesis flow a single DFG is extracted from the initial (func-
tional) specification and used by high-level synthesis tools
to generate the final implementation (hardware architecture).
Optimization of the resulting architectural design obtained
from a fixed DFG is limited to local modifications on the
RTL level. The set of such solutions is shown in the figure
as a cone associated with a given DFG. In order to improve
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Figure 1. Design space exploration from functional canoni-
cal specification.

the solution, an attempt can be made to transform the DFG
into another DFG. However, such a transformation, if at all
possible, is limited to structural modifications of the graph,
such height tree reduction and balancing, which are limited
in scope and can explore only a small fraction of the entire
solution space.

In contrast, the transformations of the design specification
performed on the functional level can produce a set of func-
tionally equivalent DFGs. One such DFG can be selected,
based on a given objective and design constraints, to gen-
erate the final architecture. This approach provides a much
larger scope of architectural optimization and has the biggest
impact on the final hardware implementation.

To illustrate the concept of functional-level transforma-
tions supported by TED consider a simple computationF =
AB + AC, where variablesA, B, C are word-level signals.
Figure 2(a) shows two possible schedules of a DFG derived
directly from this expression. The two DFGs have the same
structure and differ only in the scheduling of arithmetic op-
erations. The DFG on the left has minimum latency and re-
quires two multipliers and one adder. The one on the right
needs only one multiplier and one adder, at a cost of the in-
creased latency.

Figure 2(b) shows a solution that can be obtained by
transforming the original specificationF = AB + AC into
F = A(B + C), which results in adifferent DFG. This DFG
requires only one adder and one multiplier and can be sched-
uled in two control steps. Such an implementation cannot be
obtained from the initial DFG by simple structural transfor-
mation and requiresfunctional transformation (in this case
factorization) of the original expression which preservesits
original behavior. The solution with best hardware cost can
then be chosen for the final hardware implementation.

The remainder of the article describes how such a trans-
formation and the optimization of the corresponding DFG
can be obtained using a canonical TED representation. The
optimizing transformations are implemented in an experi-
mental software system, called TDS, intended for data-flow
and computation-intensive designs used in computer graph-
ics and digital signal processing applications. The systemis
available online [7].

A CB A A B A C

F = A*(B+C)

A B C

F = A*B + A*C

a) b)

Figure 2. Effect of high-level transformations on DFG struc-
ture: a) Initial design specificationF = AB + AC and the
corresponding scheduled DFGs; b) Transformed specifica-
tion F = A(B + C) and the resulting DFG.

2 Taylor Expansion Diagrams (TED)

Taylor Expansion Diagram is a compact, graph-based data
structure that provides an efficient way to represent word-
level computation in a canonical, factored form [6]. It is par-
ticularly suitable for computations modeled as polynomial
expressions. Here we briefly review the basic formalism of
TED, described in detail in [6].

A multi-variate polynomial expression,f(x, y, ...), can be
represented using Taylor series expansion w.r.t. variablex

around the originx = 0 as follows:

f(x, y, . . .) = f(0, y, . . .)+xf ′(0, y, . . .)+
1

2
x2f”(0, y, . . .)+. . .

(1)
where f ′(0, y, . . .), f ′′(0, y, . . .), etc, are the successive
derivatives off w.r.t. x, evaluated atx = 0. The individ-
ual terms of the expression are then decomposed iteratively
with respect to the remaining variables on which they depend
(y, . . ., etc.), one variable at a time.

The resulting decomposition is stored as a directed acyclic
graph, called Taylor Expansion Diagram (TED). Each node
of the TED is labeled with the name of the variable at the
current decomposition level and represents the expression
rooted at this node. The top node of the TED represents
the main functionf(x, y, . . .) and is associated with the first
variable,x. Each term of the expansion at a given decompo-
sition level is represented as a directed edge from the current
decomposition node to its respective derivative term.

Each edge is labeled with a pair(∧p, w), where∧p rep-
resents the power of the corresponding variable andw rep-
resents the edge weight (multiplicative constant) associated
with this term. Here we concentrate on a class oflin-
ear TEDs, which represent linear multi-variate polynomi-
als. Nonlinear expressions can be easily converted into lin-
ear ones, by transforming each occurrence of a nonlinear
termxk into a productx1 · · ·xk, wherexi = xj . A linear
TED contains only two types of edges: theadditiveedges
(labeled with power∧0), represented in the graph as dotted
edges; and thelinear edges (labeled with∧1), represented as
solid lines. Linear edges are also referred to asmultiplicative
edges, since they represent multiplication of terms. Explicit
labels on the edges can be dropped whenever the graph con-
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tains only additive and linear edges with weight 1. Edges
with weight 0 are not shown as they correspond to empty
terms.

The expression encoded in the TED graph is computed as
a sum of the expressions of all the paths, from the TED root
to terminal 1. An expression for each path is obtained as a
product of the edge expressions, each being a product of the
variable in its respective power and the corresponding edge
weight. Only non-trivial terms, corresponding to edges with
non-zero weights, are stored in the graph.
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Figure 3. TED for expressionF = AB + AC for different
ordering of variables: a) TED for variable orderA, B, C; b)
TED for variable orderB, A, C.

The construction of a TED is illustrated in Figure 3 for an
expressionF (A, B, C) = AB+AC for two variable orders.
First assume the variable order{A, B, C}, see Figure 3(a).

• First level of decomposition, associated with variableA:
The termF (A = 0, B, C) = 0 corresponds to an ad-
ditive edge leading to an empty term (not shown). The
next term,F ′(A = 0, B, C) = B + C, is represented
by a linear edge, labeled(∧1, 1), leading to nodeB. Let
us denote the termF ′ = B + C by G(B, C).

• Second decomposition level, associated with variable
B: The termG(B = 0, C) = C corresponds to an addi-
tive edge, labeled(∧0, 1), incident to nodeC. The term
G′(B = 0, C) = 1 is a linear edge, labeled(∧1, 1),
connected to the terminal node 1.

• Third level, variableC: C(0) = 0 is an empty additive
term (not shown). The last term,C′ = 1, is a linear
edge leading to the terminal node 1.

The resulting TED is shown in Figure 3(a). The expression
encoded in the graph is computed as a sum of two paths from
TED root to terminal node 1:A · B andA · B0 ·C = A · C,
i.e.,AB + AC. In fact, TED encodes such an expression in
factored form, F = A(B + C), since variableA is common
to both paths. This is manifested in the graph by the presence
of the subexpression(B+C), rooted at nodeB, which can be
factored out. This feature of the TED structure is particularly
useful for effecting factorization and common subexpression
extraction of algebraic expressions. TED construction for
variable order{B, A, C} results in a graph shown in Figure

3(b). Note that this ordering does not expose any particular
factored form, and hence is not useful for factorization.

In summary, TED is a graphical representation of finite
multi-variate polynomials which maps word-level (integer)
inputs into word-level outputs. TED is reduced and normal-
ized in a similar way as BDDs and BMDs [8]. Finally, the re-
duced, normalized and ordered TED is canonical for a given
variable order. It should be pointed out that despite apparent
similarity between linear TEDs and BDDs (or BMDs), the
three representations are different. TED represents integer
functions of integer inputs; BDDs represent Boolean func-
tions of Boolean inputs; and BMDs are integer functions of
binary inputs. In particular, a TED for the expressionab + a

reduces toa(b + 1), while a BDD forab + a reduces toa.
A BMD for the same function will be the same as TED only
if the inputsa, b are single bit variables; otherwise each in-
put must be represented in terms of its component bits. A
detailed description of the TED representation with its appli-
cation to verification and high-level synthesis can be found
in [6] and [10].

3 TED-based Decomposition

The principal goal of algebraic factorization and decom-
position is to minimize the number of arithmetic operations
(additions and multiplications) in the algebraic expression.
A simple example offactorizationis the transformation of
the expressionF = AB + AC into F = A(B + C), which
reduces the number of multiplications from two to one. If
a sub-expression appears more than once in the expression,
it can be extracted and replaced by a new variable, which
reduces the overall complexity of an expression and its hard-
ware implementation. This process is known ascommon
subexpression elimination(CSE). Simplification of an ex-
pression (or of a set of expressions) by means of factorization
and CSE is commonly referred to asdecomposition.

Decomposition of algebraic expressions can be performed
directly on the TED graph, as it already encodes the expres-
sion in a compact, factored form. The goal of TED decompo-
sition is to find a factored form of the expression and the cor-
responding DFG that will minimize the latency and/or hard-
ware cost of the scheduled and synthesized design.

This section describes two methods for TED decompo-
sition, each applicable to a different class of designs. One
is based on factorization and common subexpression extrac-
tion performed on astaticTED, with a fixed variable order.
This method is applicable to generic algebraic expressions
that do not exhibit any particular structure. The other method
is based ondynamicCSE, where common subexpressions are
derived by dynamically modifying the TED variable order in
a systematic way. This method is more suitable for structured
linear DSP transforms, with common computing patterns.

3.1 Static TED Decomposition

Static decomposition consist of hierarchical cut-based de-
composition and subgraph extraction, followed by trans-
formation of the decomposed TED into a data flow graph
(DFG). The details of the complete TED decomposition pro-
cedure are given in [9, 10].
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Cut-baseddecomposition is based on identifying a se-
quence of cuts in the TED structure that decomposes the
TED into disjoint subgraphs [9]. Anadditive cut, denoted
by Ai, applied to an additive edge, partitions the graph into
two sub-graphs, resulting in a disjunctive decomposition:
F = F1 + F2. A multiplicative cut, denoted byMi, is ap-
plied to special nodes calleddominators. A dominator is a
node with a property that all the paths from the TED root
to terminal node 1 must pass through this node. Cutting
the TED at such a node decomposes the expression conjunc-
tively: F = F1 · F2, whereF1, F2 are the subgraphs above
and below the cut.

Figure 4(a) shows the hierarchical TED decomposition
for an expressionP = G + H + F (I + J). Each time an
additive or multiplicative cut is applied to a TED, a hardware
operator (ADD or MULT ) is introduced in the the resulting
DFG to perform the required operation on the two subex-
pressions. This way, thefunctionalTED representation is
eventually transformed into astructuralDFG representation.

An important property of this decomposition is that dif-
ferent cut sequences generate different DFGs, from which
the one with the required property (such as minimum latency
or resource utilization) can be selected. Figures 4(b),(c)
show two DFGs resulting from two different cut sequences,
(A3, A1, M1, A2) and (A1, A3, M1, A2), applied to the TED
in Figure 4(a). The two DFGs differ in their structure (tree
vs serial) and hence will produce different hardware archi-
tectures.

In summary, the cut-based decomposition is a hierarchi-
cal, top-down process in which a TED is successively de-
composed into smaller, disjoint subgraphs until reaching a
trivial structure composed of only a single node connected
to the terminal node 1 by a multiplicative edge. It should
be noted that the cut-based decomposition is applicable only
to those TEDs, which at every decomposition step have ad-
ditive or multiplicative cuts, resulting in disjoint subgraphs.
The decomposition of TEDs that do not exhibit such a prop-
erty must be handled differently.

A non-disjoint decomposition is illustrated in Figure 5
for the expressionF = ac + bc + ad + bd + ab, encoded
in the TED in Figure 5(a) with a variable order{c, d, a, b}.
There is no top-level additive or multiplicative cut that can
decompose this TED into two disjoint subgraphs. Instead,
theA-cut applied to this TED decomposes the graph into two
non-disjoint subgraphs,F1 = ab andF2 = (c + d)(a + b),
with subgraphb being common to both partitions, as shown
in Figure 5(b). Such a decomposition is accomplished by
explicit extraction of common subgraphs. ExpressionF2 is
then decomposed usingM -cut into(c + d) and(a + b). The
resulting decomposition is shown in Figure 5(c).

Figure 5(d) shows a non-disjoint decomposition of the
same expression encoded in a TED with a different variable
order, namely{a, b, c, d}. In this case a common subgraph
that needs to be extracted isS = (c + d). The resulting
decomposition isF = a(b + S) + b · S, with S = (c + d).

Note that the resulting expression depends on the struc-
ture (and the variable order) of the TED. Such an expression
is referred to as Normal Factored Form (NFF) for a given
TED. We will formally define NFF and prove its properties
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Figure 4. (a) Hierarchical TED decomposition for ex-
pressionP = G + H + F (I + J) for cut sequence
(A3, A1, M1, A2); (b) DFG obtained for this cut sequence;
(c) DFG for cut sequence (A1, A3, M1, A2).

in Section 4 in the context of DFG generation.

3.2 Dynamic TED Factorization

An alternative approach to TED decomposition is based
on a dynamic factorization and common subexpression elim-
ination (CSE). This approach is illustrated with an example
of the Discrete Cosine Transform (DCT), used frequently in
multimedia applications. The DCT of type 2 is defined as

Y (j) =

N−1
∑

k=0

xkcos[
π

N
j(k +

1

2
)], k = 0, 1, 2, ..., N − 1

This computation can be represented in matrix form asy =
M ·x, wherex andy are the input and output vectors, andM

is the transform matrix composed of the cosine terms. Matrix
M for N = 4 is shown in eq. (2).
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Figure 5. Example of cut-based TED decomposition for expressionF = ac + bc + ad + bd + ab: a) Initial TED for variable order
{c, d, a, b}; b) Component TEDs after applying additive cutA; c) TEDs after applying multiplicative cutM , and the resulting normal
factored formF = (c+ d)(a+ b)+ ab; d) TED for variable order{a, b, c, d} resulting in normal factored formF = a(b+S)+ b ·S,
with S = (c + d).

In its direct form the computation involves 16 multipli-
cations and 12 additions. However, by recognizing the de-
pendence between the cosine terms it is possible to express
the matrix using symbolic coefficients, as shown in the above
equation. The coefficients with the same numeric value are
represented by the same symbolic variable. MatrixM for the
DCT example has four distinct coefficients,A, B, C, D. This
representation makes it possible to factorize the expressions
and reduce the number of operations to 6 multiplications and
8 additions, as shown in eq.(3). This simplification can be
achieved by extracting subexpressions(x0 + x3), (x0 − x3),
(x1 +x2), and(x1 −x2), shared between the respective out-
puts, and substituting them with new variables.

y0 = A · ((x0 + x3) + (x1 + x2))

y1 = B · (x0 − x3) + C · (x1 − x2)

y2 = D · ((x0 + x3) − (x1 + x2))

y3 = C · (x0 − x3) − B · (x1 − x2) (3)

The initial TED representation for the DCT matrix in eq.
(2) is shown in Figure 6(a). The subsequent parts of the fig-
ure show the transformation of the TED that produces the
above factorization.

The key to obtaining efficient TED-based factorization
and CSE for this class of designs is to represent the coef-
ficients of the expressions as variables and to place them on
top of the TED graph. This is in contrast to a traditional TED
representation, where constants are represented as labelson
the graph edges. In the case of the DCT transform, the co-
efficientsA, B, C, D are treated as symbolic variables and
placed on top of the TED, as shown in Figure 6(a).

The candidate expressions for factorization in such a TED
are obtained by identifying the nodes with multiple incoming
(parent) edges. The subexpression rooted at such nodes are
extracted from the graph and replaced by new variables. As a
rule, a node pointed to by the largest number of parent edges
is chosen first; in case of a tie the one located closer to the
bottom is chosen.

The TED in Figure 6(a) exposes several subexpressions
for possible extraction:(x0 − x3) and(x0 + x3), rooted at

variablex0; and(x1 − x2), rooted at the rightmost node of
variablex1. The first two expressions are extracted and sub-
stituted by new variablesS1 = (x0−x3) andS2 = (x0+x3)
as they correspond to the nodes located lowest in the TED.
VariablesS1, S2 are then pushed up, below constant nodes,
and the TED is reordered to expose new candidates for ex-
traction. The result is shown in Figure 6(b). New candidate
expressions,(x1 −x2) and(x1 +x2), are then extracted and
substituted by variables,S3, S4, resulting in the TED shown
in Figure 6(c). At this point there are no more nontrivial ex-
pressions to be extracted, and the algorithm terminates. The
details of the dynamic CSE algorithm are described in [11].
As a result, the above TED-based common subexpression
elimination results in the following simplified expressions:

y0 = A · (S2 + S4)

y1 = B · S1 + C · S3

y2 = D · (S2 − S4)

y3 = C · S1 − B · S3 (4)

Considering thatA=1, the computation of such optimized
expressions requires only 5 multiplications and 8 additions,
a significant reduction from the 16 multiplications and 12
additions of the initial expressions. This result is identical
to the one that can be obtained using SPIRAL, a specialized
system for DSP transform optimization [5].

4 DFG Generation and Optimization

The recursive TED decomposition procedures described
in the previous sections produces simplified algebraic ex-
pression(s) in factored form. By imposing additional rules
regarding the ordering of variables in the expression, sucha
form can be made unique. We refer to such an expression (or
a set of expressions) asNormal Factor Form(NFF).

Definition 1 The factored form expression associated with
a given TED is called Normal Factored Form (NFF) if the
order of variables in the expression(s) is compatible with the
order of variables in the TED.
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Figure 6. a) Initial TED of DCT2-4; b) TED after extractingS1 = (x0 − x3) andS2 = (x0 + x3); c) Final TED after extracting
S3 = (x1 − x2) andS4 = (x1 + x2).

Theorem 1 Normal Factored Form derived from a linear
TED is unique.

Proof: By construction, each time a TED is decom-
posed disjunctively (or conjunctively) an arithmetic opera-
tion ADD (or MULT ) is introduced in the expression, so that
F = F1OPF2, whereOP is the respective arithmetic opera-
tion. Each subexpression,F1, F2, is represented by a TED,
with variable order compatible with that of the original TED.
Let the order of the two subexpressions (F1OPF2 vsF2OPF1)
in the expression forF be determined by the position of the
top variable of each TED. That is, the expression whose top
TED node is placed higher in the original TED will be listed
first. This rule is applied recursively toF1 andF2, each time
ordering a pair of subexpressions according to the position
of their top variables. By imposing this rule, the ordering of
subexpressions is unique, hence the resulting NFF is unique.
QED

The uniqueness of Normal Factored Form is illus-
trated with the TED in Fig.5(a)-(c) for the variable order
{c, d, a, b}. On the top decomposition level, shown in Fig.
5(b), the TED is split into two non-disjoint subgraphs,F =
F1 + F2, whereF1 = (c + d)(a + b) andF2 = a · b (vari-
ablec is placed abovea). At the next decomposition level,
subgraphF1 is split intoF3 · F4, whereF3 = (c + d) and
F4 = (a + b), each with variable order compatible with that
of the TED. Similarly, subgraphF2 is expressed asF2 = a·b,
since variablea is placed aboveb in the TED. The final NFF
for this TED is F = (c + d)(a + b) + ab. The form is
unique, and the order of variables{c, d, a, b} is compatible
with that of the original TED. This expression contains three
additions, corresponding to the three additive edges of the
TED, and two multiplications, for the two local dominators
in the TEDs forF2 = a · b andF1 = (c + d)(a + b). This is
the most compact representation for this expression, result-
ing in a minimum number of operators of each type. In this

sense the NFF is also minimal for a given TED.

In summary, the NFF for a given TED depends on the
structure of the initial TED and the ordering of its variables.
Several variable ordering algorithms have been developed
for this purpose, including static ordering and dynamic re-
ordering schemes, similar to those in BDDs. However, the
ordering of the TED is driven by the complexity of the re-
sulting NFF and the structure of the generated DFG, rather
than by the number of TED nodes. The structure of the DFG
can be evaluated by performing a fast ASAP or list schedul-
ing to derive a lower bound on the DFG latency.

Once the algebraic expression represented by a TED has
been decomposed, a structural DFG representation of the op-
timized expression is obtained by replacing the algebraic op-
erations in the resulting NFF with hardware operators. This
process is fast and done in the background during the TED
decomposition. However, unlike Normal Factored Form, the
DFG representation is not unique. While the number of op-
erators remains fixed (dictated by the structure of the ordered
TED), the DFG can be further restructured and balanced to
minimize its latency. In addition to replacing operator chains
by logarithmic trees, standard logic synthesis methods, such
as collapsing and re-decomposition, can be applied. Further-
more, multiplications by constants are replaced by shifters
and adders to minimize the number of multipliers. Standard
techniques are available to perform such a transformation
based on Canonical Signed Digit (CSD) representation.

An important feature of the TED decomposition is that
it has insight into the final DFG structure. Different DFG
solutions can be generated by modifying the TED variable
order during the decomposition, followed by a fast genera-
tion of the minimum-latency DFG using heuristic schedul-
ing. This approach makes it possible to minimize the hard-
ware resources or latency in the final,scheduledimplemen-
tation.
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5 TDS System

The TED decomposition described here was implemented
as part of a prototype system, TDS, shown in Fig. 7. The in-
put to the system is the design specified in C/C++ or given
in form of a DSP matrix. The left part of the figure shows
the traditional high-level synthesis flow, which extracts DFG
from the initial specification and performs standard high-
level synthesis operations: scheduling, allocation and re-
source binding. The right part of the figure shows the actual
TDS optimization flow. It transforms the data flow graph ex-
tracted from the initial specification into an optimized DFG
using a host of TED-based decomposition and DFG opti-
mization techniques, and passes the modified DFG to an HLS
tool for synthesis. Currently, an academic synthesis tool,
GAUT [12], is used for front-end parsing and for the final
high level synthesis, but any of the existing HLS tools can
be used for this purpose (provided that compatible interfaces
are available).

Figure 7. TDS system flow.

The DFG extracted from the initial specification is trans-
lated into a hybrid network composed of functional blocks
represented with TEDs, and other operators that cannot be
expressed as TEDs, treated as black boxes. TDS optimizes
the resulting hybrid network and transforms it into a final
DFG using TED- and DFG-related optimizations. The en-
tire DFG network is finally balanced to minimize the latency.
The system provides a set of interactive commands and op-
timization scripts that include: variable ordering, TED lin-
earization, static and dynamic factorization, decomposition,
replacement of constant multiplications by shifters, DFG
construction, balancing, etc. The quality of the decompo-
sition is controlled by choosing initial TED ordering and re-
ordering of component TEDs.

6 Experimental Results

The system was tested on a number of practical designs
from computer graphics applications and digital filters, with

the main goal to minimize the DFG latency. Table 1 com-
pares the implementation of aquintic splinefilter using: 1)
the original design written in C; 2) the design produced by
a kernel-based decompositionsystem (KBD) of [4]; and 3)
the design produced by TDS. All DFGs were synthesized
using GAUT. The top row of the table reports the number of
arithmetic operations (adders, multipliers, shifters, subtrac-
tors) in the unscheduled DFG. The remaining rows give the
number of resources used for a given latency in anscheduled
DFG; and the datapath area using GAUT. Minimum latency
for each solution are shown in bold. The results for circuits
that cannot be synthesized for a given latency are marked
with ’–’ (over-constrained).

Design
Original KBD TDS
design solution solution

Latency
+,×,≪,− Area +,×,≪,− Area +,×,≪,− Area

(ns)

Q
ui

nt
ic

S
pl

in
e

DFG→ 5,28,2,0 5,13,3,0 6,14,4,0
L=110 – – – – 1,5,1,0 460
L=120 – – – – 2,4,2,0 422
L=130 – – – – 1,4,1,0 377
L=140 – – 1,4,1,0 377 1,3,1,0 294
L=150 – – 1,3,1,0 294 1,3,1,0 294
L=160 – – 1,3,1,0 211 1,3,1,0 294
L=170 – – 1,2,1,0 211 1,3,1,0 294
L=180 1,5,1,0 460 1,2,1,0 211 1,2,1,0 211

Table 1. Latency and area for Quintic Spline design pro-
duced by GAUT for different DFGs.

The latency of DFG obtained by TDS is 110 ns, 21.4%
smaller than that of KBD of 140 ns. While the KBD solu-
tion has the smallest number of operations in theunscheduled
DFG, the synthesized design requires more resources for the
minimum latency of 140 ns, obtained by KBD. Specifically,
the design area of the TDS implementation is 22% smaller
than that of the KBD solution. Similar behavior was ob-
served for all the tested designs.

Design
TDS vs

Original KBD
Latency (%) Area (%) Latency (%) Area (%)

SG Filter 25.00 27.62 0.00 20.73
Cosine 38.88 50.42 8.33 9.45
Chrome 9.09 0.00 9.09 11.86
Chebyshev 41.17 48.68 16.66 15.23
Quintic 38.88 54.13 21.42 22.02
Quartic 37.50 30.50 23.07 -28.23
VCI 4x4 0.00 42.98 30.00 2.40
Average 27.22 36.33 15.51 7.64

Table 2. Percentage improvement of TDS vs Original and
KBD on achievable latency, and area at the minimum achiev-
able latency.

Table 2 summarizes the implementation results for these
benchmarks. The implementations obtained by TDS have la-
tency on average 15.5% smaller than that of KBD, and 27.2%
smaller than the original DFGs. The area results reported in
the table are given for thereference latency, defined as the
minimum latency obtained by the two methods under com-
parison. The hardware area of the TDS solutions for the ref-
erence latency is on average 7.6% smaller than that of KBD,
and 36.3% smaller than the original design, without any DFG
modification. These are significant improvements. The rea-
son that the DFG ofQuartic design produced by TDS re-
quires more area than KBD can be explained by the fact that

7



the main objective of the decomposition was to minimize the
DFG latency. In particular, the minimum latency obtained by
TDS for this design was 110 ns, compared to 130 ns obtained
by KBD. The TDS solution is characterized by more paral-
lelism, which for the reference latency of 130 ns required
more resources than the KBD solution.

7 Conclusions

A new approach for transforming the initial specification
of data flow designs, based on TED decomposition, has been
implemented. The TED-based optimization system guides
the algebraic decomposition to obtain solutions with mini-
mum latency and/or minimum cost of resources in a sched-
uled DFG. The resulting designs are better than those ob-
tained by a straightforward minimization of the number of
arithmetic operations in the algebraic expression.

While currently the TDS system is integrated with an
academic high-level synthesis tool, GAUT, we believe that
it could be successfully used as a pre-compilation step in
a commercial synthesis software, such as Catapult C. In
this case, the optimized DFG can be translated back into C
(while preserving the optimized structure) and used, instead
of the original DFG, as input to HLS. Finally, the TED
model implicitly assumes infinite precision arithmetic. The
issue of finite precision of the operators should be addressed
to make the system applicable to real DSP applications.
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