HIGH-LEVEL TRANSFORMATIONS OFDATA FLOwW COMPUTATIONS
USING CANONICAL TED REPRESENTATION

M. Ciesielski, J. Guillot*, D. Gomez-Prado, E. Boutillon*
ECE Dept., University of Massachusetts, Amherst, MA, USA
*Lab-STICC, Université de Bretagne Sud, Lorient, France

Abstract plication. Such a transformation and DFG optimization is

carried in a systematic way using a canonical representatio

This article describes a systematic method and an exper- - Rejated Work: Automatic transformation of design spec-
imental software system to perform high-level transforma- ification is an old concept. In fact, software compilers com-
tion of the functional design specifications prior to highde monly use such optimization techniques as dead code elim-
synthesi_s. The initial specification is_first transformetbin ination, constant propagation, common subexpression elim

a canonical form and then converted into a data flow graph jyation, and others, to simplify and optimize the targetecod
(DFG) optimized for a particular application. The optimiz- jmpjementation. Some of those compilation techniques are
ing transformations are based on a canonical Taylor Expan- 515 used by academic and commercial HLS tools, such

sion Diagram (TED) representation. The system is intended ;¢ Spark [2], Cyber [3] and Catapult-C [1]. In general,
for data flow and computation-intensive designs used in COM-thase methods rely on manipulations of algebraic expres-
puter graphics and digital signal processing applications - gjons hased on term rewriting and basic algebraic propertie

This methodology has been implemented in an experimenta,ssociativity, commutativity, and distributivity) theb not
software tool, TDS. Results of several experiments are PrO-guarantee optimality. Algebraic factorization decompiosi

vided. .) methods, successfully used in logic synthesis, have akso be
Keywords: High-level synthesis, data flow graphs, sym- ;sed to optimize polynomial expressions of linear DSP trans
bolic algebra, Taylor Expansion Diagrams. forms and non-linear filters [4]. However, the polynomial

representation employed by these methods is not canonical,
which seriously reduces the scope of optimization.

A number of systems have been developed for domain-

A considerable progress has been made during the lasBPecific applications sugh as _digital filters and discrege si
two decades in behavioral and High-Level Synthesis (HLS), N@l transforms [S]. Optimizations employed by these sys-
making it possible to synthesize designs specified usimg sta €MS rely on the knowledge of mathematical properties of
dard programming languages, such C, C++ or system C [1]_the trgnsforms. In_general, they _cannot handle computatlo_n
Those tools automatically generate a Register TransfeglLey described by nonlinear polynomials, such as those found in
(RTL) specification of the circuit from a bit-accurate algo- COmputer graphics and nonlinear filter applications.
rithm description for a given target technology and the ap- This article describes a systematic method for transform-
plication constraints (latency, throughput, resourcéizati ing an initial design specification ofgenericnonlinear com-
tion, etc.). The algorithmic description used as input to putation into an optimized DFG. The generated DFGs are
high-level synthesis does not require explicit timing info better suited for high-level synthesis than those exttacte
mation and thus provides a higher level of abstraction thandirectly from the initial specification, or obtained using
the RTL model. Thanks to high-level synthesis, the designerstructural DFG transformations and algebraic decompuositi
can faster and more easily explore different architecewal ~ methods. The optimizing transformations are based on a
lutions. An important productivity leap is thus achieved. canonical graph-based representation, called Taylor Expan-

However, the optimization algorithms used by high-level sion Diagram (TED) [6]. The goal is to generate a DFG,
synthesis, such as scheduling, resource binding and allocawhich, when given as input to a standard high-level synthe-
tion, operate on a fixed Data Flow Graph (DFG), extracted Sis tool, will produce hardware implementation optimized f
directly and without any modification from the initial desig latency and/or hardware cost.
specification. In this approach the scope of the ensuing ar- Figure 1 illustrates the idea of design space exploration
chitectural optimization and the quality of the resultiragd+ based on functional TED representation. In traditionalsyn
ware implementation strongly depends on such a specificathesis flow a single DFG is extracted from the initial (func-
tion. In order to explore other solutions the user needs totional) specification and used by high-level synthesissool
rewrite the original specification, from which another DFG to generate the final implementation (hardware architegtur
is derived and synthesized. Optimization of the resulting architectural design obéain

A novel method is proposed here whereby the initial func- from a fixed DFG is limited to local modifications on the
tional specification is first transformed into a canonicaifo ~ RTL level. The set of such solutions is shown in the figure
and then converted into a DFG optimized for a particular ap- as a cone associated with a given DFG. In order to improve

1 Introduction

(TED)

a) b)

Figure 2. Effect of high-level transformations on DFG struc-
ture: a) Initial design specificatio = AB + AC and the

))]]) corresponding scheduled DFGs; b) Transformed specifica-
Figure 1. Design space exploration from functional canoni- tion F = A(B + C) and the resulting DFG.

cal specification.

2 Taylor Expansion Diagrams (TED)
the solution, an attempt can be made to transform the DFG

into gnother .DEG. However, such a Frgngformation, if at all Taylor Expansion Diagram is a compact, graph-based data
possible, is limited to structural modifications of the d¥ap qy,cture that provides an efficient way to represent word-
such height tree reduction and balancing, which are limited g 6| computation in a canonical, factored form [6]. It is-pa

In scope and can explore only a small fraction of the entire o, 511y syitable for computations modeled as polynomial

solution space.]] __ expressions. Here we briefly review the basic formalism of
In contrast, the transformations of the design specifioatio TEp described in detail in [6].

performed on the functional level can produce a set of func- A multi-variate polynomial expressioff(z, y, ...), can be

tionally equivalent DFGs. One such DFG can be selected,represented using Taylor series expansion w.r.t. variable
based on a given objective and design constraints, t0 genyound the origin: = 0 as follows:

erate the final architecture. This approach provides a much 1
larger scope of architectural optimization and has thedsgg f(z,y,...) = f(0,y,..)+zf(0,y, .. .)+§x2f” (0,9y,...)+...

impact on the final hardware implementation. (1)
To illustrate the concept of functional-level transforma- where f/(0,y,...), f”(0,y,...), etc, are the successive
tions supported by TED consider a simple computafioa derivatives off w.r.t. =, evaluated at = 0. The individ-

AB + AC, where variablesi, B, C' are word-level signals. yal terms of the expression are then decomposed iteratively
Figure 2(a) shows two possible schedules of a DFG derivedwith respect to the remaining variables on which they depend
directly from this expression. The two DFGs have the same(y, .. ., etc.), one variable at a time.
structure and differ only in the scheduling of arithmetic op The resulting decomposition is stored as a directed acyclic
erations. The DFG on the left has minimum latency and re- graph, called Taylor Expansion Diagram (TED). Each node
quires two multipliers and one adder. The one on the right of the TED is labeled with the name of the variable at the
needs only one multiplier and one adder, at a cost of the in-current decomposition level and represents the expression
creased latency. rooted at this node. The top node of the TED represents
Figure 2(b) shows a solution that can be obtained by the main functionf(z,y, . ..) and is associated with the first
transforming the original specificatiail = AB + AC into variable,z. Each term of the expansion at a given decompo-
F = A(B+ C), which results in alifferent DFG This DFG sition level is represented as a directed edge from themturre
requires only one adder and one multiplier and can be scheddecomposition node to its respective derivative term.
uled in two control steps. Such an implementation cannotbe Each edge is labeled with a pditp, w), where”p rep-
obtained from the initial DFG by simple structural transfor resents the power of the corresponding variable @arnep-
mation and requirefunctionaltransformation (in this case resents the edge weight (multiplicative constant) assetia
factorization) of the original expression which preserites with this term. Here we concentrate on a classliof
original behavior. The solution with best hardware cost can ear TEDs, which represent linear multi-variate polynomi-
then be chosen for the final hardware implementation. als. Nonlinear expressions can be easily converted into lin
The remainder of the article describes how such a trans-ear ones, by transforming each occurrence of a nonlinear
formation and the optimization of the corresponding DFG termz* into a productr; - - - %, wherer; = ;. A linear
can be obtained using a canonical TED representation. TheTED contains only two types of edges: thdditive edges
optimizing transformations are implemented in an experi- (labeled with power*0), represented in the graph as dotted
mental software system, called TDS, intended for data-flow edges; and thinear edges (labeled with1), represented as
and computation-intensive designs used in computer graphsolid lines. Linear edges are also referred tonadtiplicative
ics and digital signal processing applications. The syseem edges, since they represent multiplication of terms. ERpli
available online [7]. labels on the edges can be dropped whenever the graph con-

tains only additive and linear edges with weight 1. Edges 3(b). Note that this ordering does not expose any particular
with weight 0 are not shown as they correspond to empty factored form, and hence is not useful for factorization.
terms. In summary, TED is a graphical representation of finite
The expression encoded in the TED graph is computed agnulti-variate polynomials which maps word-level (integer
a sum of the expressions of all the paths, from the TED rootinputs into word-level outputs. TED is reduced and normal-
to terminal 1. An expression for each path is obtained as aized in a similar way as BDDs and BMDs [8]. Finally, the re-
product of the edge expressions, each being a product of theluced, normalized and ordered TED is canonical for a given
variable in its respective power and the corresponding edgevariable order. It should be pointed out that despite appare
weight. Only non-trivial terms, corresponding to edgeswit similarity between linear TEDs and BDDs (or BMDs), the
non-zero weights, are stored in the graph. three representations are different. TED representsénteg
functions of integer inputs; BDDs represent Boolean func-
tions of Boolean inputs; and BMDs are integer functions of
binary inputs. In particular, a TED for the expressig+ a
reduces tai(b + 1), while a BDD forab + a reduces tas.
A BMD for the same function will be the same as TED only
if the inputsa, b are single bit variables; otherwise each in-
put must be represented in terms of its component bits. A
detailed description of the TED representation with itslapp
cation to verification and high-level synthesis can be found
in [6] and [10].

3 TED-based Decomposition

The principal goal of algebraic factorization and decom-
position is to minimize the number of arithmetic operations

Figure 3. TED for expressiorf’ = AB + AC for different (additions and multiplications) in the algebraic expressi
ordering of variables: a) TED for variable ordér B, C; b) A simple example ofactorizationis the transformation of
TED for variable orde3, A, C. the expressiol’ = AB + AC into F' = A(B + C), which

reduces the number of multiplications from two to one. If
a sub-expression appears more than once in the expression,
The construction of a TED is illustrated in Figure 3foran it can be extracted and rep|aced by a new Variab|e, which
expressiot’(4, B, C') = AB+ AC for two variable orders. reduces the overall complexity of an expression and its-hard
First assume the variable orded, B, C'}, see Figure 3(a). ware implementation. This process is knowncasnmon
subexpression eliminatiofCSE). Simplification of an ex-
pression (or of a set of expressions) by means of factooizati
and CSE is commonly referred to dscomposition
Decomposition of algebraic expressions can be performed
directly on the TED graph, as it already encodes the expres-
sion in a compact, factored form. The goal of TED decompo-
sition is to find a factored form of the expression and the cor-
responding DFG that will minimize the latency and/or hard-
ware cost of the scheduled and synthesized design.
B =00 = 1] i q label _ _This section d_escribes twq methods for TED (_:iecompo-
(B =00) =1 IS a linear eage, labe ed'1,1), sition, each applicable to a different class of designs. One
connected to the terminal node 1. is based on factorization and common subexpression extrac-
e Third level, variableC: C(0) = 0 is an empty additive tjon performed on astatic TED, with a fixed variable order.
term (not shown). The last ternd’ = 1, is a linear This method is applicable to generic algebraic expressions
edge leading to the terminal node 1. that do not exhibit any particular structure. The other rodth
. . P . is based onlynamicCSE, where common subexpressions are
The resulting TED is shown in Figure 3(a). The expression derived by dynamically modifying the TED variable order in

encoded in the graph is computed as a sum of two paths from) . . .
TED root to terminal node 14 - BandA-B®.C — A . C a systematic way. This method is more suitable for strudture

ie., AB + AC. In fact, TED encodes such an expression in linear DSP transforms, with common computing patterns.

factored form F' = A(B + C), since variabled is common . .

to both paths. This is manifested in the graph by the presence3'1 Static TED Decomposition
of the subexpressidiB+C), rooted at nodé3, which can be Static decomposition consist of hierarchical cut-based de
factored out. This feature of the TED structure is partidyla composition and subgraph extraction, followed by trans-
useful for effecting factorization and common subexp@ssi formation of the decomposed TED into a data flow graph
extraction of algebraic expressions. TED construction for (DFG). The details of the complete TED decomposition pro-
variable orde{ B, A, C'} results in a graph shown in Figure cedure are givenin [9, 10].

o Firstlevel of decomposition, associated with variatle
The termF(A = 0, B,C) = 0 corresponds to an ad-
ditive edge leading to an empty term (not shown). The
next term,F’'(A = 0, B,C) = B + C, is represented
by a linear edge, labelgd 1, 1), leading to node3. Let
us denote the terd’ = B + C by G(B, C).

e Second decomposition level, associated with variable
B: ThetermG(B = 0, C) = C corresponds to an addi-
tive edge, labele"0, 1), incident to nod&”. The term

Cut-baseddecomposition is based on identifying a se-
guence of cuts in the TED structure that decomposes the
TED into disjoint subgraphs [9]. Aadditive cut denoted
by A;, applied to an additive edge, partitions the graph into
two sub-graphs, resulting in a disjunctive decomposition:
F = Fy + F>. A multiplicative cuf denoted byM;, is ap-
plied to special nodes callatbminators A dominator is a
node with a property that all the paths from the TED root
to terminal node 1 must pass through this node. Cutting
the TED at such a node decomposes the expression conjunc-
tively: F' = Fy - F5», whereFy, F» are the subgraphs above
and below the cut.

Figure 4(a) shows the hierarchical TED decomposition
for an expressiol® = G + H + F(I + J). Each time an
additive or multiplicative cut is applied to a TED, a hardwar
operator ADD or MULT) is introduced in the the resulting
DFG to perform the required operation on the two subex-
pressions. This way, thieinctional TED representation is
eventually transformed intostructural DFG representation.

An important property of this decomposition is that dif-
ferent cut sequences generate different DFGs, from which
the one with the required property (such as minimum latency
or resource utilization) can be selected. Figures 4(b),(c)
show two DFGs resulting from two different cut sequences,
(Ag, Al, My, AQ) and (141, A3, My, AQ), applled tothe TED
in Figure 4(a). The two DFGs differ in their structure (tree
;/escfl:arr;zil) and hence will produce different hardware archi- pressionP — G + H 1 F(I_) for cut sequence

' e . . (As, A1, My, A2); (b) DFG obtained for this cut sequence;

In summary, the cut-_basec_j decompo_smon is a hlerarchl- (c) DFG for cut sequenced(, As, My, As).
cal, top-down process in which a TED is successively de-
composed into smaller, disjoint subgraphs until reaching a
trivial structure composed of only a single node connected
to the terminal node 1 by a multiplicative edge. It should in Section 4 in the context of DFG generation.
be noted that the cut-based decomposition is applicable onl
to those TEDs, which at every decomposition step have ad-3 2 Dynamic TED Factorization
ditive or multiplicative cuts, resulting in disjoint sulaphs.
The decomposition of TEDs that do not exhibit such a prop-
erty must be handled differently.

A non-disjoint decomposition is illustrated in Figure 5
for the expressiot” = ac + bc + ad + bd + ab, encoded
in the TED in Figure 5(a) with a variable ordée, d, a, b}.
There is no top-level additive or multiplicative cut thanca
decompose this TED into two disjoint subgraphs. Instead, N—1
the A-cut applied to this TED decomposes the graphintotwo y () = Z xkcos[lj(k‘ + 1)], k=0,1,2,...N—1
non-disjoint subgraphdyy = ab andF» = (¢ + d)(a + b), =0 N 2
with subgraphb being common to both partitions, as shown
in Figure 5(b). Such a decomposition is accomplished by This computation can be represented in matrix forny as
explicit extraction of common subgraphs. Expressiaris M -z, wherex andy are the input and output vectors, ahd

Figure 4. (a) Hierarchical TED decomposition for ex-

An alternative approach to TED decomposition is based
on a dynamic factorization and common subexpression elim-
ination (CSE). This approach is illustrated with an example
of the Discrete Cosine Transform (DCT), used frequently in
multimedia applications. The DCT of type 2 is defined as

then decomposed using-cut into(c + d) and(a + b). The is the transform matrix composed of the cosine terms. Matrix
resulting decomposition is shown in Figure 5(c). M for N = 4 is shown in eq. (2).
Figure 5(d) shows a non-disjoint decomposition of the _
same expression encoded in a TED with a different variable cos(0) cos(0) cos(0) cos(0)
order, namely{a, b, ¢, d}. In this case a common subgraph 3y _ | ©0s(§) cos(5F) cos(5F) cos(F)
that needs to be extracted $ = (c + d). The resulting cos(F) cos(°F) cos(5F) cos(TF)
decomposition is” = a(b + S) + b - S, with S = (c + d). | cos(3F) cos(TF) cos(§) cos(5F)
Note that the resulting expression depends on the struc- A4 A A A
ture (and the variable order) of the TED. Such an expression B C -C -B
is referred to as Normal Factored Form (NFF) for a given = D -D -D D ©)
TED. We will formally define NFF and prove its properties ¢ -B B -C

F = a(b+c+d)+b(c+d)

Figure 5. Example of cut-based TED decomposition for expressios ac + bec + ad + bd + ab: a) Initial TED for variable order
{c,d, a,b}; b) Component TEDs after applying additive clitc) TEDs after applying multiplicative cu¥/, and the resulting normal
factored formF = (c¢+ d)(a + b) + ab; d) TED for variable ordefa, b, ¢, d} resulting in normal factored forrd = a(b+.5) +b- S,
with S = (¢ + d).

In its direct form the computation involves 16 multipli- variablex,; and(z; — x2), rooted at the rightmost node of
cations and 12 additions. However, by recognizing the de-variablex;. The first two expressions are extracted and sub-
pendence between the cosine terms it is possible to expresstituted by new variableS1 = (xg—x3) andS2 = (zg+x3)
the matrix using symbolic coefficients, as shown in the aboveas they correspond to the nodes located lowest in the TED.
equation. The coefficients with the same numeric value areVariablesS1, S2 are then pushed up, below constant nodes,
represented by the same symbolic variable. Matfixor the and the TED is reordered to expose new candidates for ex-
DCT example has four distinct coefficients, B, C, D. This traction. The result is shown in Figure 6(b). New candidate
representation makes it possible to factorize the expressi expressionsjz; — z3) and(x; + x2), are then extracted and
and reduce the number of operations to 6 multiplications andsubstituted by variable$,3, S4, resulting in the TED shown
8 additions, as shown in eq.(3). This simplification can be in Figure 6(c). At this point there are no more nontrivial ex-

achieved by extracting subexpressiong+ z3), (zo — x3), pressions to be extracted, and the algorithm terminates. Th
(z1 +x2), and(x; — z2), shared between the respective out- details of the dynamic CSE algorithm are described in [11].
puts, and substituting them with new variables. As a result, the above TED-based common subexpression
elimination results in the following simplified expressson
Yyo=A- ((.230 + 173) + (Il + 12))
y1=B-(x0—x3)+C-(w1—x2) y():A(S2+S4)
y2 = D - ((xo + x3) — (w1 + x2)) yl=B-51+C-53
ys = C - (z0 — 23) — B - (1 — 22) A3) y2=D-(S2— 54)
y3=C-S1—-B-53 (4)

The initial TED representation for the DCT matrix in eq.
(2) is shown in Figure 6(a). The subsequent parts of the fig- Considering tha#i=1, the computation of such optimized
ure show the transformation of the TED that produces the expressions requires only 5 multiplications and 8 addstjon
above factorization. a significant reduction from the 16 multiplications and 12
The key to obtaining efficient TED-based factorization additions of the initial expressions. This result is ideali
and CSE for this class of designs is to represent the coef+to the one that can be obtained using SPIRAL, a specialized
ficients of the expressions as variables and to place them orsystem for DSP transform optimization [5].
top of the TED graph. Thisis in contrast to a traditional TED
representation, where constants are represented as¢abels 4 DFEG Generation and Optimization
the graph edges. In the case of the DCT transform, the co-
efficients A, B, C, D are treated as symbolic variables and The recursive TED decomposition procedures described
placed on top of the TED, as shown in Figure 6(a). in the previous sections produces simplified algebraic ex-
The candidate expressions for factorization in such a TED pression(s) in factored form. By imposing additional rules
are obtained by identifying the nodes with multiple incognin regarding the ordering of variables in the expression, such
(parent) edges. The subexpression rooted at such nodes aferm can be made unique. We refer to such an expression (or
extracted from the graph and replaced by new variables. As aa set of expressions) &rmal Factor Form(NFF).

rule, a node pointed to by the largest number of parentedges . _ _
is chosen first; in case of a tie the one located closer to theDefinition 1 The factored form expression associated with

bottom is chosen. a given TED is called Normal Factored Form (NFF) if the
The TED in Figure 6(a) exposes several subexpressiongrder of variables in the expression(s) is compatible wiii t
for possible extraction(zy — x3) and(zy + z3), rooted at ~ order of variables in the TED.

(b)

Figure 6. a) Initial TED of DCT2-4; b) TED after extracting, = (xo — x3) andS2 = (xo + x3); ¢) Final TED after extracting
S3 = (.7)1 — 1’2) andsS; = (1’1 —|—.Z‘2).

Theorem 1 Normal Factored Form derived from a linear sense the NFF is also minimal for a given TED.

TED is unique. In summary, the NFF for a given TED depends on the
structure of the initial TED and the ordering of its variable
Several variable ordering algorithms have been developed
for this purpose, including static ordering and dynamic re-
ordering schemes, similar to those in BDDs. However, the
ordering of the TED is driven by the complexity of the re-
sulting NFF and the structure of the generated DFG, rather
than by the number of TED nodes. The structure of the DFG

in the expression foF' be determined by the position of the can be evaluated by performing a fast ASAP or list schedul-

top variable of each TED. That is, the expression whose topIng to derive & Iower_bound on '_[he DFG latency.

TED node is placed higher in the original TED will be listed ~ Once the algebraic expression represented by a TED has
first. This rule is applied recursively 1, andF;, eachtime ~ Peendecomposed, a structural DFG representation of the op-
ordering a pair of subexpressions according to the positiontiMized expression is obtained by replacing the algebmaic o
of their top variables. By imposing this rule, the orderirig o erations in the resulting NFF with hardware operators. This

subexpressions is unique, hence the resulting NFF is uniqueProcess is fast and done in the background during the TED
QED decomposition. However, unlike Normal Factored Form, the

The uniqueness of Normal Factored Form is illus- DFG representation is not unique. While the number of op-
trated with the TED in Fig.5(a)-(c) for the variable order €ratorsremains fixed (dictated by the structure of the edler
{c,d,a,b}. On the top decomposition level, shown in Fig. TED), the DFG can be further restructured and balanced to
5(b), the TED is split into two non-disjoint subgraptis,= minimize its latency. In addition to replacing operatoricisa
Fy + Fy, whereF, = (¢ + d)(a + b) andF, = a - b (vari- by logarithmic trees, standard logic synthesis methodd) su
ablec is placed above). At the next decomposition level, s collapsing and re-decomposition, can be applied. Furthe
subgraph? is split into F - F,, whereFy = (c + d) and more, multiplications by constants are replaced by slsifter
Fy = (a + b), each with variable order compatible with that @nd adders to minimize the number of multipliers. Standard

Proof: By construction, each time a TED is decom-
posed disjunctively (or conjunctively) an arithmetic oper
tion ADD (or MULT) is introduced in the expression, so that
F = F,0PF;,, whereopr is the respective arithmetic opera-
tion. Each subexpressiof;, F», is represented by a TED,
with variable order compatible with that of the original TED
Let the order of the two subexpressiofsOPF; Vs FrOPFY)

of the TED. Similarly, subgraph, is expressed a&, = a-b, techniques are available to perform such a transformation
since variable: is placed abové in the TED. The final NFF ~ based on Canonical Signed Digit (CSD) representation.
for this TED isF = (¢ + d)(a + b) + ab. The form is An important feature of the TED decomposition is that

unique, and the order of variablés, d, a, b} is compatible it has insight into the final DFG structure. Different DFG
with that of the original TED. This expression contains ¢hre solutions can be generated by modifying the TED variable
additions, corresponding to the three additive edges of theorder during the decomposition, followed by a fast genera-
TED, and two multiplications, for the two local dominators tion of the minimum-latency DFG using heuristic schedul-
inthe TEDs forFy = a - bandF; = (¢ +d)(a + b). Thisis ing. This approach makes it possible to minimize the hard-
the most compact representation for this expression,tresul ware resources or latency in the finatheduledmplemen-

ing in a minimum number of operators of each type. In this tation.

5 TDS System the main goal to minimize the DFG latency. Table 1 com-
pares the implementation ofcuintic splinefilter using: 1)
The TED decomposition described here was implementedthe 0rigina| design written in C, 2) the design produced by
as part of a prototype system, TDS, shown in Fig. 7. The in- 3 kernel-based decompositiaystem (KBD) of [4]; and 3)
put to the system is the design specified in C/C++ or given the design produced by TDS. All DEGs were synthesized
in form of a DSP matrix. The left part of the figure shows ysing GAUT. The top row of the table reports the number of
the traditional high'level SyntheSiS ﬂOW, which extracB® arithmetic operations (adders' mu|tip|ier5, Shifter$tm_
from the initial specification and performs standard high- tors) in the unscheduled DFG. The remaining rows give the
level synthesis operations: scheduling, allocation and re nymber of resources used for a given latency is@reduled
source binding. The right part of the figure shows the actual prG: and the datapath area using GAUT. Minimum latency
TDS optimization flow. It transforms the data flow graph ex- for each solution are shown in bold. The results for circuits

tracted from the initial SpeCification into an Optimized DFG that cannot be Synthesized for a given |atency are marked
using a host of TED-based decomposition and DFG opti- with '’ (over-constrained).

mization techniques, and passes the modified DFG to an HLS

tool for synthesis. Currently, an academic synthesis tool, Design %Ziii';i' 8o S;Eti .
GAUT [12], is used for front-end parsing and for the final Tatency
. . . +,%X,&,—| Area +,x,<L,—| Area H,x,&,— Area
high level synthesis, but any of the existing HLS tools can (ns)
. . . . DFG— | 5,28,2,0 5,13,3,0 6,14,4,0
be used for this purpose (provided that compatible inteac o [=110 - = - —— 11510 [460
are available). £ | =120 - - - - [2420] 422
%) L=130 — — — — 1,4,1,0 377
2 L=140 — — 1,4,1,0 377 1,3,1,0 294
% L=150 — — 1,3,1,0 294 1,3,1,0 294
, Tt transforme. & [=160 = — [131,0] 211 | 1,310] 294
=170 = — [1210 211 | 1310 294
Ve — L=180 1,5,1,0 460 1,2,1,0 211 1,2,1,0 211
TED-based Transformations
Variable ordering Table 1. Latency and area for Quintic Spline design pro-

duced by GAUT for different DFGs.

I

TED linearization

Common subexpression
elimination (CSE)

Functional
TED

Structural
elements
Structural
DFG

The latency of DFG obtained by TDS is 110 ns, 21.4%
smaller than that of KBD of 140 ns. While the KBD solu-
tion has the smallest number of operations inthscheduled
DFG, the synthesized design requires more resources for the
minimum latency of 140 ns, obtained by KBD. Specifically,

Original DFG

TED factorization
& decomposition
Constant multiplication
& shifter generation
/

|
| Optimized DFG

-

High Level Synthesis TD network Ve - ~
(GAUT) DFG-based Transformations the design area of the TDS implementation is 22% smaller
than that of the KBD solution. Similar behavior was ob-
Resource constraints served for all the tested designs.
N\ J TDSvs
A) Design Original KBD
HLS flow TDS flow Behavioral Transformations 9 Latency (%Q)J Area (%)| Latency (%) Area (%)
SG Filter 25.00 27.62 0.00 20.73
. Cosine 38.88 50.42 8.33 9.45
Figure 7. TDS system flow. Chrome 9.09 0.00 909 11.86
Chebyshev 41.17 48.68 16.66 15.23
P e . . inti 38.88 54.13 21.42 22.02
The DFG extracted from the initial specification is trans- 83;‘,{@ 3750 2050 2307 e
lated into a hybrid network composed of functional blocks VCI 4x4 0.00 42.98 30.00 2.40
Average 27.22 36.33 15.51 7.64

represented with TEDs, and other operators that cannot be
expressed as TEDs, treated as black boxes. TDS optimizes
the resulting hybrid network and transforms it into a final
DFG using TED- and DFG-related optimizations. The en-
tire DFG network is finally balanced to minimize the latency.
The system provides a set of interactive commands and op-

Table 2. Percentage improvement of TDS vs Original and
KBD on achievable latency, and area at the minimum achiev-
able latency.

Table 2 summarizes the implementation results for these

timization scripts that include: variable ordering, TED-Ii
earization, static and dynamic factorization, decompmsit
replacement of constant multiplications by shifters, DFG

construction, balancing, etc. The quality of the decompo-

sition is controlled by choosing initial TED ordering and re
ordering of component TEDs.

6 Experimental Results

benchmarks. The implementations obtained by TDS have la-
tency on average 15.5% smaller than that of KBD, and 27.2%
smaller than the original DFGs. The area results reported in
the table are given for theeference latencydefined as the

minimum latency obtained by the two methods under com-
parison. The hardware area of the TDS solutions for the ref-
erence latency is on average 7.6% smaller than that of KBD,
and 36.3% smaller than the original design, without any DFG
modification. These are significant improvements. The rea-

The system was tested on a number of practical designsson that the DFG ofuartic design produced by TDS re-

from computer graphics applications and digital filterghwi

quires more area than KBD can be explained by the fact that

the main objective of the decomposition was to minimize the [9] M. Ciesielski, S Askar, D. Gomez-Prado, J. Guillot, and

DFG latency. In particular, the minimum latency obtained by
TDS for this design was 110 ns, compared to 130 ns obtained
by KBD. The TDS solution is characterized by more paral-

lelism, which for the reference latency of 130 ns required [10

more resources than the KBD solution.

7 Conclusions [11]

A new approach for transforming the initial specification

of data flow designs, based on TED decomposition, has beer12]

implemented. The TED-based optimization system guides
the algebraic decomposition to obtain solutions with mini-
mum latency and/or minimum cost of resources in a sched-
uled DFG. The resulting designs are better than those ob-
tained by a straightforward minimization of the number of
arithmetic operations in the algebraic expression.

While currently the TDS system is integrated with an
academic high-level synthesis tool, GAUT, we believe that
it could be successfully used as a pre-compilation step in
a commercial synthesis software, such as Catapult C. In
this case, the optimized DFG can be translated back into C
(while preserving the optimized structure) and used, atste
of the original DFG, as input to HLS. Finally, the TED
model implicitly assumes infinite precision arithmetic. eTh
issue of finite precision of the operators should be adddesse
to make the system applicable to real DSP applications.

Acknowledgments This work was supported in part by
the National Science Foundation, award No. CCF-0702506,
and in part by CNRS, contract PICS 3053.

References

[1] P. Coussy and A. Morawiedjligh Level Synthesis from Algo-
rithm to Digital Circuits Springer, Aug 2008.

[2] S.Gupta, R. Gupta, N. Dutt, and A. Nicola8BPARK: A Paral-
lelizing Approach to the High-Level Synthesis of Digitat-Ci
cuits Kluwer Academic Publishers, 2004.

[3] K. Wakabayashi,Cyber: High Level Synthesis System from
Software into ASIQpp. 127-151, Kluwer Academic Publish-
ers, 1991.

[4] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing yRol
nomial Expressions by Algebraic Factorization and Common
Subexpression Elimination”, ilEEE Transactions on CAD
Oct 2005, pp. 2012-2022.

[5] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gaci¢, Y. Voronenko
K. Chen, R. Johnson, and N. Rizzolo, “SPIRAL: Code Gen-
eration for DSP Transforms”Proceedings of the IEEEvol.
93, no. 2, pp. 232-275, 2005.

[6] M. Ciesielski, P. Kalla, and S. Askar, “Taylor ExpansibDi+
agrams: A Canonical Representation for Verification of Data
Flow Designs”,IEEE Trans. on Computersol. 55, no. 9, pp.
1188-1201, Sept. 2006.

[7] “TDS - TED-based Behavioral Decomposition System.”,
http://www.ecs.umass.edu/ece/labs/visicad/tds.html.

[8] R.Bryantand Y. Chen, “Verification of Arithmetic Funotis
with Binary Moment Diagrams”, ifProc. Design Automation
Conference1995, pp. 535-541.

E. Boutillon, “Data-Flow Transformations using Taylor Ex-
pansion Diagrams”, iDesign Automation and Test in Eurgpe
2007, pp. 455-460.

D. Gomez-Prado, M. Ciesielski, Q. Ren, J. Guillot, and
E. Boutillon, “Optimization Data Flow Graphs to Minimize
Hardware Implementations”, iDesign Automation and Test
in Europe, Workshop, DATE 0pp. 117-122, April 2009.

J. Guillot, Optimization Techniques for High Level Synthesis
and Pre-Compilation Based on Taylor Expansion Diagrams
PhD thesis, Lab-STICC, Universié Bretagne Sud, 2008.

Université de Bretagne Sud Lab-STICC, “GAUT, Arcluite
tural Synthesis Tool”, http://www-labsticc.univ-ubgvixvw-
gaut/, 2008.

