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Abstract—
The last few decades have witnessed an explosive growth in

the development and use of cyber-physical and digital embedded
systems. As more and more of those systems become security- and
safety-critical, assuring correctness and dependability of digital
hardware that implements those systems becomes of paramount
importance. This keynote addresses formal verification of digital
hardware and in particular of arithmetic circuits, essential
components at the heart of those systems. It gives an overview
of the methods used in arithmetic circuit verification, how they
evolved from pure mathematical models to practical engineering
solutions, and problems they face; and a brief look into the future
and the inevitable challenges.

I. INTRODUCTION

The last few decades have witnessed an explosive growth
in the development of cyber-physical and embedded systems.
As more and more of those systems become security- and
safety-critical, assuring functional correctness and depend-
ability of digital hardware implementation of those systems
became critical. Essential elements of those systems are arith-
metic circuits: different types of adders, multipliers, multiply-
accumulate, and divider circuits that need to be efficiently de-
signed and optimized for area, delay and power. The increasing
complexity of those circuits, containing millions of logic gates,
makes them error-prone, which requires thorough verification
and testing to guarantee their integrity. This keynote addresses
some of these issues and concentrates on formal verification
of hardware implementation of arithmetic circuits. It gives a
brief overview of modern methods used in arithmetic circuit
verification, including theorem proving, canonical diagrams,
Boolean satisfiability, and symbolic computer algebra and its
derivatives. It shows how these methods evolved from being
based on pure mathematical models to practical engineering
solutions. It discusses challenges they face and offers a look
into the future.

II. THEOREM PROVERS

The verification approach that gained particular attention
in industry is Theorem Proving. Theorem Provers are highly
interactive, inductive systems designed to prove that an im-
plementation satisfies the specification using mathematical
reasoning. The proof system is based on a set of axioms
and inference rules, such as simplification, term rewriting, and
induction [1] [2]. The basic element of theorem proving is term
rewriting, a conceptually simple computational paradigm that
uses repeated application of simplification rules and axioms, in

which terms of one formula are replaced by other terms. The
goal is to prove that the original formula of the implementation
is syntactically identical to that of the specification.

Theorem prover systems are highly interactive, require
intimate knowledge of the design domain and extensive user
guidance and expertise. Success of the proof strongly de-
pends on the choice and on the order in which the rules
are applied, with no guarantee of a conclusive termination.
Theorem Provers have been used in floating-point arithmetic
verification [3][4], where other verification methods fail. Most
of these systems, however, concentrate on proving correctness
of the underlying algorithms to effect the computation and on
the resulting architecture rather than on the actual hardware
verification. Some of the most popular theorem proving tools
are PVS [3], ACL2 [5], Coq [6] and Isabelle [7], among others.

The following fragment of Coq Proof Assistant illustrates
the proof of correctness of a binary adder with inputs A,B,
and Cin, and outputs S and Cout. It defines the implementation
and Boolean properties of the adder, and proves that the
properties hold for the implementation. Specifically, the goal
is to prove that logic-level implementation satisfies logic
properties of the adder: the sum output S = A⊕B⊕Cin; and
the carry-out output Cout = (A∧B)∨ (B∧Cin)∨ (A∧Cin).
Most of the theorem prover systems use this type of approach
and format.

-----------------------------------------------
(* Define the input and output signals as

Boolean variables *)
Variable A B Cin S Cout : bool.

(* Define the logical equations for the adder *)
Definition eq1: Prop := S = xorb (xorb A B) Cin.
Definition eq2: Prop := Cout = orb (andb A B)

(orb (andb B Cin) (andb A Cin)).
(* Define a theorem stating that the
implementation satisfies the properties *)
Theorem binary_adder_correct : eq1 /\ eq2.
Proof.
(* Simplify the logical equations *)

simpl. unfold eq1. unfold eq2.
(* Prove that the properties hold for all

possible input combinations *)
destruct A; destruct B; destruct Cin;
reflexivity.

QED.
---------------------------------------------



III. CANONICAL DIAGRAMS

Binary Decision Diagrams (BDD) [8] and their derivatives,
such as Binary Moment Diagrams (BMD) [9][10], Taylor
Expansion Diagrams (TED) [11], and other hybrid diagrams
[12] belong to the class of canonical diagrams. Of particular
importance is BDD, a data structure constructed specifically
for efficient representation and manipulation of Boolean func-
tions.

A BDD is a rooted directed acyclic graph, whose internal
nodes represent binary variables, with two terminal nodes rep-
resenting constant 1 and constant 0. The BDD representation
is based on Shannon expansion of the function at variable
x onto its cofactors, f(x) = x′fx′ + xfx. Each internal
node has two children: one representing the function with
variable x taking value 1 (positive cofactor, fx), the other
one with variable x taking value 0 (negative cofactor, fx′ ).
The BDD encodes a Boolean function in a set of paths from
the root to terminal node 1 in a compact way. An example
of a multi-rooted BDD is given in Figure 1 for a 3-bit adder,
where each root represents one output of the adder. The solid
lines represent positive cofactors and the dashed lines negative
cofactors of the function w.r.t. the variable associated with the
node.

For a given order of variables, a BDD is minimal (in the
number of nodes), unique, and irredundant, i.e., there are
no two internal nodes that represent the same function. An
important feature of the reduced and ordered BDD is that it is
canonical; two syntactically different Boolean function that are
functionally equivalent will have the same BDD representation
under the same ordering of variables. This feature makes it
possible to check equivalence between two Boolean functions
by constructing and comparing their BDDs.
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Fig. 1: BDD or a 3-bit adder.

BDDs are commonly used in equivalence checking of
logic circuits and some simple arithmetic circuits, such as
adders/subtractors. However, their use for complex arithmetic
circuits, such as multipliers and dividers, is limited by an
exponential growth of their size with the number of bits of
the circuit.

Another class of canonical methods includes Binary Mo-
ment Diagrams (called *BMD due to their multiplicative na-
ture), whose representation is based on moment decomposition,
f(x) = fx′ +x(fx− fx′) [13]. While a BDD represents map-
ping between Boolean inputs and Boolean outputs, B → B,
*BMDs represent mapping from Boolean inputs to Integer
outputs, B → Z, and as such are better equipped to represent
arithmetic functions. Attempts have been made to use *BMDs
to verify multipliers [14][10], but even they do not scale well
for those designs.

Figure 2a) shows a *BMD diagram for a 3-bit adder. Solid
edges in this diagrams represent multiplication, while the
dashed edges represent addition. The solid edges are labeled
with constants to indicate a multiplicative factor of the respec-
tive subgraph. In this example the *BMD diagram represents
the result of a 3-bit adder as a sum S of the binary encoded in-
puts A and B, namely: S = (4a2+2a1+a0)+(4b2+2b1+b0).

Another representation, termed TED (for Taylor Expansion
Diagrams) offers a higher level of abstraction by providing
mapping between inputs and outputs both represented as
Integers, Z → Z [15]. It uses finite Taylor expansion of a
function w.r.t. to its inputs, and as such can be used to encode
arithmetic functions whose specifications can be represented
as polynomials.

Figure 2b) shows a TED for an adder with arbitrary bit-
width; it simply encodes the adder function as S = A + B.
We can see dramatic decrease in the complexity of the TED
compared to BDD and *BMD diagrams, albeit at the cost of
loosing the bit-level composition of the circuit.
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Fig. 2: A 3-bit adder represented as a) *BMD: S = (4a2 +
2a1 + a0) + (4b2 + 2b1 + b0) and b) TED: S = A+B.

The example in Figure 3 illustrates the use of TED to verify
correctness of the resource sharing transformation often used
in industrial designs. Its goal is to maximize sharing of the
resources, in this case the multipliers. Standard verification
approach of identifying "similarities" between the internal
points of the circuit cannot solve this problem because there
are no internal equivalent points or they are lost during such
transformation. In contrast, TEDs can solve this problem



efficiently for arbitrary bit-width of the operands by generating
symbolic expressions for the original and the transformed form
and proving that their TEDs are isomorphic.

Fig. 3: Verification of resource sharing: using TED to prove
equivalence of the two expressions: Z = (A · B · sel + (C ·
D) ·(1−sel) = (A ·sel+C ·(1−sel))(B ·sel+D ·(1−sel)).

IV. BOOLEAN SAT AND SMT SOLVERS

To mitigate the limitations of the decision diagrams, several
techniques have been developed to reduce the complexity of
equivalence checking and other verification tasks. The one
that made a significant impact on the verification field is
Boolean Satisfiability (SAT). The goal of SAT is to find an
assignment of variables for which a given Boolean formula
evaluates to 1. Typically the formula is given in a conjunctive
normal form (CNF), a conjunction of clauses, where a clause
is a disjunction of literals. For example, Boolean formula
φ = (a + ¬b)(¬a + ¬b + c) can be satisfied by setting
a = 1, b = 0, c = 0, which makes φ = 1. If the assignment
of variables that makes the Boolean formula φ = 1 does not
exist, the problem is called unsatisfiable (unSAT).

Several SAT solvers have been developed to solve Boolean
decision problems, including GRASP [16], Chaff [17] and
MiniSAT [18], among others. All SAT solvers are based
on the basic Davis-Putnam (DPLL) search algorithm with
backtracking [19]. A number of techniques, such as non-
chronological backtracking, resolution, recursive learning, and
conflict-driven clause learning, have been developed to im-
prove the efficiency of SAT solver.

SAT methods are widely used in formal verification; they
are particularly applicable to equivalence checking between
two circuits: the implementation and the reference circuits.
The equivalence check is accomplished by adding a miter, a
cluster of XOR and OR gates, at the outputs of the two circuits
and observing its output. An example of such a configuration
is shown in Figure 4, with two circuits F,G connected by
a miter. If the two circuits are functionally equivalent, then,
for any input assignment, the same values should be observed
at their outputs and the output of the miter should be 0. In
case of a mismatch between the circuit outputs, the miter
will generate 1. The equivalence checking problem is then

solved by checking if the output of the miter is always 0;
or, equivalently that it never evaluates to 1. This condition is
known in the verification jargon as unSAT.

Fig. 4: Equivalence checking using SAT

SAT solvers can solve this efficiently by creating a Boolean
expression of the miter structure in a CNF form and solve
the corresponding SAT problem. If the problem is satisfiable,
indicating that the circuits are not equivalent, the SAT solver
returns a counter-example, an assignment of inputs for which
the two circuits produce different outputs.

An extension of Boolean SAT is Satisfiability Modulo
Theories (SMT) [20]. It covers Boolean and non-Boolean
domains (bit vectors, integer and real arithmetic, linear in-
equalities, uninterpreted functions, etc.) and integrates them
into a DPLL-style SAT decision procedure. Some of the
common SMT solvers include Boolector [21], Z3 [22] and
CVC [23]. However, SMT solvers still model the problem as
a decision problem, and are not efficient at verifying large
arithmetic circuits.

It should be noted that the Boolean methods based on BDDs
and SAT require “bit blasting”, flattening of the design into
a bit-level netlists. Unfortunately, this makes it inefficient for
complex arithmetic circuits, such as multipliers and dividers.
Furthermore, equivalence checking approach supported by
these tools relies on a trusted reference circuit, which may
not be available. Next section provides a remedy to this prob-
lem by providing verification techniques based on symbolic
computer algebra (SCA).

V. COMPUTER ALGEBRA METHODS

A recent approach to formal verification of arithmetic cir-
cuits is mostly based on Symbolic Computer Algebra (SCA)
[24], which represents arithmetic circuits in an algebraic
rather than Boolean domain. There are two basic flavors of
these techniques: a method based on polynomial reduction
using Gröbner basis [20][25][26][27]; and one based on a
more practical, engineering implementation, called algebraic
rewriting [28]. The following sections briefly review these
techniques and describe how they can be implemented using
efficient synthesis tools, such as ABC [29].

A. Symbolic Computer Algebra (SCA) Approach

The SCA-based verification research was pioneered by [30]
and [31], who applied concepts from computer algebra to
formal verification of integer and Galois Fields arithmetic



circuits. In this approach, the circuit elements and the specifi-
cation are represented as polynomial rings. Specifically, logic
gates of the circuit are modeled by a set G of pseudo-Boolean
polynomials, with binary variables and coefficients in Z2.
Table I presents algebraic models of some of the basic logic
gates [28]. The function computed by the circuit is represented
as a specification polynomial, F , composed of two parts:
1) an input signature, Sigin, which describes the arithmetic
function in terms of its input variables; and 2) the output
signature, Sigout, which provides the encoding of the result
in the output variables. With this, the specification polynomial
can be expressed as F = Sigout − Sigin.

TABLE I: Boolean and algebraic models of basic logic gates.

Operation Boolean model Algebraic model
Inv(a) ¬a 1− a

AND(a,b) a ∧ b ab
OR(a,b) a ∨ b a+ b− ab

XOR(a,b) a⊕ b a+ b− 2ab

For example, the specification of an n-bit unsigned integer
multiplier, Z = A · B with inputs A = [an−1, · · · , a0] and
B = [bn−l, · · · , b0], is given by F =

∑n−1
i=0

∑n−1
j=0 2i+jaibj−∑2n−1

k=0 zk. The first part of the specification polynomial is the
input signature, and the second part is the output signature.
The verification problem is then formulated as a proof obli-
gation that the implementation (G) satisfies the specification
(F ) [20][25][26][32]. Mathematically, such a proof is achieved
by reducing the specification polynomial F modulo G to a
normal form and testing if it reduces to zero, known as the
ideal membership test [20]. The reduction can be accomplished
using a computer algebra system, such as Mathematica or
Singular [33]. If the result of such a reduction is zero, the
circuit satisfies the specification, proving that the circuit is
functionally correct. However, for the result to be trusted, the
set G must constitute a canonical form called Gröbner basis
[24].

While computing a complete Gröbner basis is computa-
tionally expensive, it has been shown that for combinational
circuits with logic gates given in reverse topological order,
the resulting set G already constitutes a Gröbner basis (GB).
However, an additional constraint must be imposed on the
internal signals to restrict them to binary values. This is
achieved by adding for each signal x a field polynomial,
⟨x2 − x⟩. The zeros of this polynomial (0 or 1) automatically
restrict variable x to binary.

B. Algebraic Rewriting

A more practical approach to solve this problem has been
proposed in [28], whereby the expensive polynomial reduction
modulo GB has been replaced by a computationally simpler
algebraic rewriting.

Algebraic rewriting is the process of transforming the output
signature Sigout into an input signature, Sigin, using algebraic
models of the logic gates given in Table I. To satisfy the

requirement of the implementation set G to be Gröbner basis,
the logic gates of the circuit represented by polynomials in G
are ordered in reverse topological order. In addition, in order
to restrict the signals to binary values, whenever variable x is
raised to x2, it is lowered to x, so it never appears in higher
degree and the polynomial remains multi-linear. This operation
is equivalent to a division by the field polynomial < x2−x >
but simpler to implement. In a functionally correct circuit,
the resulting Sigin should match the expected functional
specification of the circuit (adder, multiplier, etc). In fact, the
specification needs not to be known; in this case the resulting
Sigin provides the arithmetic function computed by the circuit.
In this sense, the rewriting performs a functional extraction,
and the method can be used as a reverse engineering tool for
arithmetic function extraction.

Algebraic rewriting is illustrated with a 2-bit adder cir-
cuit shown in Figure 5. The output signature of the circuit,
Sigout = 4r2 + 2r1 + r0, is rewritten into an input signature
Sigin. It is then compared with the circuit specification of an
adder (2a1 + a0 + 2b1 + b0) to check if the circuit performs
this arithmetic function.

p1 = r0 − (a0 + b0 − 2a0b0)

p2 = c − a0b0

p3 = d − (a1 + b1 − 2a1b1)

p4 = r1 − (c + d − 2cd)

p5 = f − cd

p6 = e − a1b1

p7 = r2 − (e + f − ef)
(1)

Fig. 5: A two-bit adder circuit and gate polynomials G.

The rewriting starts with F = Sigout = 4r2 + 2r1 + r0.
Each variable in F that represents an output of a logic gate p
is replaced with the respective input expression for that gate,
denoted as F/p. For example, F/p7 means that in the starting
polynomial F the output r2 of gate p7 is replaced by the
algebraic expression of its inputs, r2 = e + f − ef . This is
equivalent to dividing polynomial F by the gate polynomial
p, as done in the standard CSA approach.
F = Sigout = 4r2 + 2r1 + r0

F/p7 = 4e + 4f − 4ef + 2r1 + r0

F/...p4 = 4e + 4f − 4ef + 2c + 2d − 4cd + r0

F/...p5 = 4e − 4edc + 2c + 2d + r0

F/...p1 = 4e − 4edc + 2c + 2d + a0 + b0 − 2a0b0

F/...p2 = 4e − 4eda0b0 + 2d + a0 + b0

F/...p3 = 4e − 4ea0b0(a1 + b1 − 2a1b1) + 2(a1 + b1 − 2a1b1) + a0 + b0

F/...p6 = 4a1b1 − 4a1b1a0b0(a1 + b1 − 2a1b1) + 2(a1 + b1) − 4a1b1

+ a0 + b0 = 2a1 + 2b1 + a0 + b0

F/(G) = Sigin = 2a1 + 2b1 + a0 + b0
(2)

Here, the computed Sigin matches the expected specification
of a 2-bit adder, (2a1+a0+2b1+ b0), proving that the circuit
correctly implements the function of an adder.

Algebraic rewriting is plagued, however, by an excessive
number of intermediate polynomials generated during rewrit-



ing. Most of them disappear during the rewriting process and
some, called vanishing monomials, eventually evaluate to 0
but take a large amount of space before reaching the state
in which they are removed. The goal is to determine early
in the process how to eliminate the vanishing polynomial
and how to efficiently carry out the rewriting. A number of
rewriting ordering strategies have been employed to reduce the
number and size of intermediate polynomials. They include:
processing the polynomials of gates with same inputs close
to each other; and removing the vanishing monomials, early
in the process [34]. Another simplification performed during
rewriting occurs due to the reduction of monomials containing
x2 to x, whenever a nonlinear term x2 is generated during
the rewriting. As mentioned earlier, this is more efficient than
performing division by polynomials < x2 − x >, associated
with each internal signal x.

C. AIG Rewriting

The process of algebraic rewriting can be significantly
improved by using a functional And-Invert Graph (AIG) rep-
resentation employed by the ABC system [29]. ABC uses cut
enumeration to detect the XOR and Majority (MAJ) functions
with a common set of variables. Those nodes are essential
in identifying half-adders (HA) and full-adders (FA), basic
components of arithmetic circuits. This makes it possible to
skip over the significant portions of the circuitry, from the
inputs to the outputs of the adders, as shown in Figure 6,
significantly speeding up the rewriting process.

a) b)

Fig. 6: Full Adder: a) circuit diagram; b) AIG representation

D. Verification under Input Constraints

While algebraic rewriting works reasonably well for basic
arithmetic functions, including standard multipliers, it be-
comes unmanageable when applied to complex arithmetic
circuits, such as Booth multipliers and dividers. The rewrit-
ing in such circuits is plagued by an excessive number of
intermediate polynomials and vanishing monomials generated
by the rewriting, causing memory overload. This problem is
particularly acute in divider circuits.

The difficulty comes from the fact that typical divider ar-
chitectures are optimized under the input constraint 0 < X ≤
2n−1D, which is in line with the fact that the dividend X is
twice as large in the number of bits than the divisor D, quotient
Q and remainder R. As a result, each row of the divider is

half the length of the dividend X , as shown in Figure 7 for a
restoring divider. This makes it "unclean" for a straightforward
rewriting: a large number of monomials become redundant and
need to be removed from propagating further. Authors of [35]
recognize this problem and propose a method to remove such
monomials early in the rewriting process using a combination
of simulation and SAT. The detection of such monomials
is supported by signal propagation from the primary inputs,
hence termed "SAT-based Information Forwarding" (SBIF).

Fig. 7: Architecture of an optimized restoring divider.

The redundant monomials are analogous to don’t cares (DC)
in logic circuits and are modeled in [35] as satisfiability don’t
cares. The technique proposed there minimizes the number
of polynomials propagating through the circuit using ILP
optimization. When the size of the polynomial increases by
some predefined rate they stop the propagation of polynomials,
backtrack to the previous step, apply the ILP optimization
to reduce the number of vanishing monomials and continue
with the rewriting. One must note, however, that this method
depends on reverse engineering for the extraction of the
HA/FA blocks in order to gain access to the inputs on which
to apply don’t cares.

VI. HARDWARE REWRITING

Recently an original technique for verifying arithmetic
circuits has been proposed, in which algebraic rewriting is
replaced by hardware synthesis [36]. This approach has been
motivated by a need to verify integer and fractional dividers
that don’t have well defined input/output signatures. In contrast
to other arithmetic circuits, such as adders or multipliers,
divider does not have a closed form formula to express its
output as a function of the inputs. Instead, its functionality is
governed by the equation: X = Q·D+R, with R < D, where
X is the dividend, D the divisor, and Q,R are the quotient
and remainder, respectively. In principle, one can apply alge-
braic rewriting to a divider circuit by treating the expression
Q · D + R as the output signature and comparing it with X
as the input signature [37]. It turns out, however, that this
approach is inefficient; the size of intermediate polynomials
becomes prohibitively large, causing serious memory overload.

Another way to solve this problem is to create an "inverse"
circuit Z = Q ·D+R and check the equivalence between its



output Z and the dividend X . A miter is created between
the dividend input X and output Z = Q · D + R of the
circuit, shown in Figure 8, to check if the CNF formula of the
resulting miter circuit is unsatisfiable (unSAT). Unfortunately,
the dividers greater than 16 bits also could not be verified
using this method.

b) a) c)

Fig. 8: Divider verification approaches: a) Divider verification
model; b) solution with SAT, c) result of hardware reduction.

To address this problem, an approach, originally proposed
for SQRT circuits [36], has been investigated, where algebraic
rewriting has been replaced by synthesis, informally referred
to as "hardware rewriting". It has been demonstrated, however,
that this method also cannot handle large circuits. Instead, for
the divider architectures similar to those shown in Figure 7,
verification can be applied to each row (layer) of the divider.
This approach is justified by noting that logic between two
adjacent rows of the divider is not optimized during synthesis
and the partial remainders Ri are preserved during synthesis.
This important feature has been confirmed by [38], and verified
by analyzing the dividers synthesized with Synopsys DC and
academic tools, such as ABC [29] and Yosys [39]. Such a
layer-based verification can also be done in a speculative,
parallel manner, since the form of each polynomial at the layer
boundary is known, and the verification can be halted when
one of the layers does not produce the expected result. This
way the source of an error is constrained to a particular layer
and the propagation of rewriting will stop there to examine
the bug.

The main idea of layer-based hardware rewriting is similar
to that shown in Figure 8 but applied to a single layer. For
layer i computing Ri = Ri+1 − qiD, an "inverse" circuit Zi

is constructed at the bottom of that layer, which computes
Zi = qiD+Ri. This output should obviously match the partial
remainder Ri+1 on the top of the layer. The goal is then to
prove that the n-bit output Zi matches the n-bit input Ri+1

bit-by bit. This is accomplished by synthesizing the circuit
of the layer and checking the equivalence between its input
and output bits. Experiments show that for layers up to 24-
bit wide, the result is a redundant circuit composed of a set
of direct wires/buffers, connecting the bits of Zi with bits of
Ri+1. For larger circuits, where the synthesis does not reduce
the structure to such a redundant state, this can be trivially
verified using bit-by bit SAT, or by a simple XOR comparison.
The verification of the entire circuit is then accomplished by
composing the verification results of individual layers.

The technique of layered verification shows to be efficient
and scalable and can verify dividers of up to 255-bit dividends

in single minutes. This is significantly faster than SBIF-based
verification [35], or a SAT approach, which times out after
one hour on a single 32-bit layer of the divider.

VII. CASING-BASED APPROACH

A novel, recently proposed approach to divider verifica-
tion [40] avoids reverse engineering to determine the layer
boundaries, needed by other techniques, and instead relies on
a low-level functional analysis of the circuit. Specifically, it
uses a "casing" approach by dividing the verification problem
into smaller and easier to perform verification tasks. It has
been applied to a restoring array divider with an (2n − 1)-
bit dividend X and the n-bit divisor D, quotient Q and
remainder R, like the one shown in Figure 7. Recall that the
divider is composed of n layers, each performing computation
Ri = Ri+1 − qiD, where Ri+1 is the partial remainder
associated with the top boundary of layer i, and Ri is the
partial remainder at the bottom of the layer. In addition, layer
i produces a quotient bit qi. At the boundaries of the entire
circuit (i = n − 1 for the top, and i = 0 for the bottom) we
have Rn = X and R0 = R, consistent with the computation
performed by the circuit described by equation X = Q·D+R.

The verification procedure is based on the following ob-
servation: the quotient bit qi, produced as the MSB of each
subtraction step, serves as an internal select signal seli, which
determines whether the input vector Ri+1 or the difference
Ri+1−D is produced at the output Ri of the layer. Specifically,
1) For seli = qi = 0, the signals at the top of the layer are
connected directly to those at the bottom: Ri = Ri+1; this case
is referred to as the vertical flow, shown in Figure 9 by color
lines. 2) For seli = qi = 1, the layer performs subtraction,
Ri = Ri+1 − qiD, referred to as the horizontal flow.

The seli signal of layer i can be identified in the synthesized
logic as a signal originating at qi entering as input to the
controlled subtractor. Vertical verification is then accomplished
by setting seli = 0; and the horizontal verification by seli = 1.
It is important to note that the vertical verification makes it
also possible to identify the layer boundaries, without any need
for reverse engineering. This is shown in Figure 9 with the
directed dotted lines.

Verification of the divider considers both the vertical and
horizontal flow. By setting seli = 0 and resynthesizing the
circuit, the vertical flow of layer i is verified by checking if
the condition Ri = Ri+1 holds for that layer. The horizontal
flow is verified using combinational equivalence checking
(CEC) between the layer synthesized with seli = 1 and a
generic reference subtractor. A global proof is then conducted
to demonstrate that once each layer has been verified to
implement a controlled subtractor, the entire array correctly
implements a divider, satisfying the divider’s characteristic
equation: X = Q ·D +R, with 0 ≤ R < D.

The verification approach conducted at the logic level, as
described here, offers a significant advantage over the complex
rewriting techniques and SAT [40].



Fig. 9: Restoring divider: dotted arcs show identification of
boundary signals for Layer 1 by setting sel0, sel2 = 0; vertical
verification shown by color lines.

VIII. CHALLENGES

The techniques described in the paper concentrate on the
verification problem, whose goal is to confirm that the circuit
implements the desired function. However, very little work
has been done on debugging, the detection and correction
of faulty circuits. New methods need to be developed to
address the debugging issue that should work on the lower,
gate level circuits. The debugging approaches offered in the
literature either consider standard stack-at faults or target the
gate replacement, but are unable to handle arbitrary logic
faults. The techniques are needed to pin-point the bug to a
small logic area that can be easily corrected by the designer
of automatically replaced by the correct logic, but not just on
a gate-by-gate manner.

Efficient techniques are also needed to handle floating point
(FP) arithmetic, so they can verify all components of the
FP divider, including normalization, exponent and mantissa
blocks, in addition to the integer portion described here.
Furthermore, new techniques are needed to handle drastically
different division schemes, such as non-array divisors, table-
based SRT, or Goldsmidth division. These methods need new
insight into the underlying division schemes translated into
lower level hardware. Similarly, dedicated verification and
debugging methods need to be developed for custom hardware
accelerators, with non-standard arithmetic components.

Finally, new methods are needed to support modular arith-
metic used in cryptography. Recent advances in cryptography,
needed to support cloud computing with adequate security,
confidentiality and data privacy lead to the development of
advanced encryption techniques. One of the recent and most
ambitious inventions in cryptography is fully homomorphic
encryption (FHE), which makes it possible to perform com-
putation directly on an encrypted data without an intermediate

decryption. Several advanced architectures based on a number-
theoretic transform (NTT) have been developed to support this
new technology [41][42]. These architectures, while offering
significant computing speedup in addition to the required
security, pose a considerable challenge for verification. Cryp-
tographic circuits used in those systems have a high burden of
proof for mathematical correctness that elevates the need for
full circuit verification. In particular, verification of modular
multipliers which perform computations in polynomial ring
R = Z[x] modulo some reduction polynomial f(x), with bit-
widths exceeding 4,096 bits, is a hard mathematical problem.

Figure 10 shows the architecture of a single NTT arithmetic
core taken from [42] with large integer multiplication and the
modular reduction block. Verification tools should be able to
verify the reduction algorithm, such as Barrett or Montgomery,
applied in the system, as well as the circuit itself to prove
functional correctness of the computed result. The modular
multiplier is the costliest one in terms of the CPU computation
time and hardest to verify from the mathematical point of
view. Novel approaches need to be develop to deal with these
challenging tasks.

Fig. 10: Architecture of NTT core [42].

In general, the verification problem for complex systems
composed of arithmetic circuits cannot be solved with a single
verification technique in polynomial space and time w.r.t.
to the size of the circuit. Instead, a hybrid and hierarchical
approach is needed to handle its complexity. Such an approach
should be able to mix formal, simulation and test-like methods
to make it possible to verify the overall system composed of
pre-verified components in polynomial computation time. As
stated in a recent paper "With additional knowledge about the
boundaries of components, polynomial verification becomes
possible through the step-wise verification of sub-components
and the use of different formal proof engines" [43]. Those
techniques should target large systems, composed of large
arithmetic components, combined with higher level models to
prove the functional correctness of the overall system.
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