
Functional Verification of Arithmetic Circuits:
Survey of Formal Methods

Maciej Ciesielski, Atif Yasin, Jiteshri Dasari
University of Massachusetts, Amherst, MA, USA

ciesiel@umass.edu, atifyasin2@gmail.com, jdasari@umass.edu

Abstract—This paper gives a brief survey of current state-

of-the-art techniques for formal verification of arithmetic cir-

cuits with suggestions for future work. In contrast to standard

BDD or SAT-based approach that require a reference circuit it

concentrates on Symbolic Computer Algebra (SCA) and related

techniques that verify the circuits w.r.t. its abstract arithmetic

specification. We examine the original computer algebra method;

review the algebraic techniques of forward and backward rewrit-

ing; and AIG rewriting. We also propose a "hardware rewriting"

method, which replaces algebraic rewriting by hardware synthe-

sis of the circuit under verification appended with an inverse of

the circuit, expecting it to be reduced to a redundant one.

I. INTRODUCTION

Verification of arithmetic circuits and datapaths poses a
considerable challenge due to its size and large bit-widths
of their operands. Strictly Boolean methods, based on BDDs
[1] and SAT [2], model the problem as equivalence checking
problem, which requires “bit blasting”, flattening of the design
into a bit-level netlist. This makes it inefficient for complex
circuits such as multipliers. Furthermore, these approaches rely
on a trusted reference circuit, which may not be available. The
state of the art techniques for arithmetic circuit verification are
largely based on Symbolic Computer Algebra (SCA), which
represents arithmetic circuits in algebraic domain and model
the word-level operands and outputs as polynomials.

There are two basic flavors of these techniques: the clas-
sical methods, based on Gröbner basis polynomial reduction
[3][4][5][6]; and others, based on a more practical implemen-
tation, called algebraic rewriting [7]. The goal of this paper is
to briefly review the existing techniques in this domain and put
them in the context of formal SCA theory. We also describe
how these methods can be implemented using efficient modern
synthesis tools, such as ABC [8].

The rest of the paper is organized as follows: Section II
reviews basic concepts of Symbolic Computer Algebra (SCA)
approach. Section III describes the backward and forward
algebraic rewriting scheme and use of AIG representation
to speed up the rewriting process. It also reviews the idea
of spectral method. Section IV introduces a new concept of
hardware rewriting, which replaces the expensive algebraic
rewriting with hardware synthesis. Finally, Section V discusses
applications of the described methods to arithmetic circuit
verification and shows some state-of-art results in this field.

II. COMPUTER ALGEBRA APPROACH

The work in formal verification of arithmetic circuits was
pioneered by [9] and [10] who applied concepts from computer
algebra and algebraic geometry to formal verification of inte-
ger arithmetic circuits and was then extended to Galois Fields
[4]. In this approach, the circuit elements and the specification
are represented in algebraic domain, as polynomial rings. The
circuit components are represented by a set of polynomials G
(implementation), and its functionality is given by polynomial
F (specification). The verification problem is then formulated
as a proof obligation that the implementation (G) satisfies the
specification (F) [3][4][5][11].

Mathematically, such a proof is achieved by reducing the
specification polynomial F modulo G to a normal form and
testing if it reduces to zero (i.e., vanishes over Z2n), known as
the ideal membership test. The reduction can be accomplished
using a computer algebra system, such as Mathematica or
Singular [12]. If the result of such a reduction is zero, the
circuit satisfies the specification, proving that the circuit is
functionally correct. However, in order to trust the result, the
set G must satisfy certain properties, given in a canonical form
called Gröbner basis [13]. In general, computing a complete
Gröbner basis is computationally expensive. However, in the
case of combinational circuits, with properly ordered set of
components (such as logic gates or circuit modules), the
resulting set G already constitutes a Gröbner basis (GB).
Specifically, if variables in each polynomial of G are ordered
from the gate outputs to their inputs, then all leading monomi-
als of the polynomials are relatively prime. This ensures that
the corresponding set G automatically constitutes a Gröbner
basis, obviating the expensive computation of the complete
GB. In gate-level circuits with logic gates the solution must
be further restricted to binary variables by imposing additional
constraints, hx2 � xi, known as field polynomials.

III. ALGEBRAIC REWRITING

A different approach has been proposed in [7], whereby the
expensive polynomial reduction modulo GB has been replaced
by a computationally simpler algebraic rewriting technique.
The circuit is modeled as a network of interconnected logic
gates and each gate is modeled as a unique polynomial
fi[X] with binary variables X and coefficients in Z2. Such a
polynomial is also referred to as a pseudo-Boolean polynomial.
Table I presents algebraic models of some of the basic Boolean
operators [7].978-1-6654-9431-1/22/$31.00 ©2022 IEEE

TABLE I: Algebraic models of basic logic functions.
Operation Boolean model Algebraic model
INV (a) ¬a 1 � a
AND(a,b) a ^ b ab
OR(a,b) a _ b a + b � ab

XOR(a,b) a � b a + b � 2ab
XOR3(a,b,c) a � b � c a + b + c � 2ab � 2ac � 2bc + 4abc
MAJ3(a,b,c) a ^ (b _ c) _ b ^ c ab + ac + bc � 2abc

The function computed by an arithmetic circuit is repre-
sented as a specification polynomial in the primary input
variables, denoted Fspec. For example, the specification of
an n-bit unsigned integer multiplier, Z = A · B with inputs
A = [a0, · · · , an�1] and B = [b0, · · · , bn�1], is described by
Fspec =

Pn�1
i=0

Pn�1
j=0 2i+jaibj . The result of the computa-

tion, stored in the primary output bits, is similarly expressed
as a polynomial, called output signature, Sout. For circuits
such as adders and multipliers, such a polynomial is linear,
uniquely determined by the m-bit encoding of the output. For
example, for an unsigned arithmetic circuit with m output bits,
Sout =

Pm�1
i=0 2izi. As we shall see later, Sout can be non-

linear for functions such as dividers, SQRT and others.
Algebraic rewriting is the process of transforming output

signature Sout into a polynomial expressed in primary inputs,
the input signature, Sin, using algebraic models of the internal
gates of the circuit, as in Table I. In addition to the gate
polynomials shown in the Table, each Boolean variable x is
represented by a field polynomial < x2 � x >. The zeros of
this polynomial (0 or 1) impose the desired Boolean value on
the variable.

In a functionally correct circuit, the resulting Sin should
match the specification polynomial, Fspec. If the specification
is not known, the resulting Sin provides the arithmetic function
computed by the circuit. Hence, the method can be used as a
reverse engineering tool for arithmetic function extraction.

In Computer Algebra approach, adopted in [3][5][6] the
specification F of the circuit is defined as the difference
between the output polynomial and the actual functional
specification in the primary inputs; in our terminology, F =
Sout � Fspec. The verification goal is then to prove that
F mod G reduces to zero, where G is the set of implementa-
tion polynomials. In the approach based on algebraic rewriting,
it is the output signature Sout that is being reduced modulo
G to the input signature Sin, instead of reducing F to 0. In
the correct circuit, the resulting Sin is expected to match the
specification polynomial, Fspec. That is, we need to check if
Sout

G�!+ Sin = Fspec.
The reduction can be actually performed in both direc-

tions, either by forward rewriting or backward rewriting. In
computer algebra approach this is equivalent to the reduction
using topological (forward) term order vs reverse topological
(backward) order.

The work of [6] revisits the algebraic rewriting techniques
from [7] and [5] and provides the proof of correctness for
the underlying rewriting and its equivalence to the Symbolic
Computer Algebra (SCA) approach. Specifically, the paper
justifies the use of the theory of ideal membership (in principle

applicable to Q[X]) to prove properties of integer arithmetic
circuits. It points out that, since the leading coefficients of
the gate polynomials forming the Gröbner basis are +1 or -1,
polynomial reduction never introduces fractional coefficients
and their computation remains in Z. Hence the "dedicated
implementations in [7] and [5] can rely on computation in
Z only, while remaining sound and complete" [11].

The remainder of this section compares two types of al-
gebraic rewriting: backward rewriting and forward rewriting,
emphasizing their relationship to Gröbner basis reduction.

A. Backward Rewriting

In the example of Figure 1 the output signature of the circuit
is Sout = 4r2+2r1+r0. It is rewritten into an input signature
Sin to be compared with the circuit specification Fspec =
2a1+2b1+a0+b0. The following backward rewriting steps are

p1 = r0 � (a0 + b0 � 2a0b0)

p2 = c � a0b0

p3 = d � (a1 + b1 � 2a1b1)

p4 = r1 � (c + d � 2cd)

p5 = f � cd

p6 = e � a1b1

p7 = r2 � (e + f � ef)
(1)

Fig. 1: A two-bit adder circuit and gate polynomials G.

applied starting with Sout = 4r2+2r1+r0 and ending at Sin =
2a1+2b1+a0+b0. In the following, F/p denotes the division
of polynomial F by the gate polynomial p. The subsequent
divisions by next polynomials are denoted as F/...p

F = Sout = 4r2 + 2r1 + r0

F/p7 = 4e + 4f � 4ef + 2r1 + r0

F/...p4 = 4e + 4f � 4ef + 2c + 2d � 4cd + r0

F/...p5 = 4e � 4edc + 2c + 2d + r0

F/...p1 = 4e � 4edc + 2c + 2d + a0 + b0 � 2a0b0

F/...p2 = 4e � 4eda0b0 + 2d + a0 + b0

F/...p3 = 4e � 4ea0b0(a1 + b1 � 2a1b1) + 2(a1 + b1 � 2a1b1) + a0 + b0

F/...p6 = 4a1b1 � 4a1b1a0b0(a1 + b1 � 2a1b1) + 2(a1 + b1) � 4a1b1

+ a0 + b0 = 2a1 + 2b1 + a0 + b0

F/(G, J0) = Sin = 2a1 + 2b1 + a0 + b0
(2)

Note that the computed Sin matches the expected specification
Fspec, proving that the circuit correctly implements a two-bit
adder.

A number of rewriting ordering strategies are employed to
enable cancellation of terms as early as possible and signifi-
cantly reduce the size of the intermediate polynomials. They
include keeping the polynomials of gates with same inputs
adjacent and recognizing "vanishing monomials" (see Section
V, [14]). The most important cancellations occur due to the
reduction of monomials x2 to x, whenever a nonlinear term x2

is generated during the rewriting. This is more efficient than
performing division by polynomials < x2 � x >, associated
with internal variables x, as done by the traditional SCA
reduction.

B. Forward Rewriting

In this variant of algebraic rewriting the base polynomials
G representing the gates are ordered in topological order,
from gate inputs to outputs. In our two-bit adder example the
forward term order is {a0, b0, a1, b1} > {c, d, } > {e, f} >
{r0, r1, r2} The function to be reduced is

F = (a0 + b0 + 2a1 + 2b1)� (r0 + 2r1 + 4r2)

and the corresponding implementation base G is:

p1 = �2a0b0 + a0 + b0 � r0

p2 = a0b0 � c

p3 = �2a1b1 + a1 + b1 � d

p4 = �2cd + c + d � r1

p5 = cd � f

p6 = a1b1 � e

p7 = �ef + e + f � r2

(3)

In this case, the input variables of the gates are among the
leading terms of the polynomial, and the gate output is in
the tail. Set G under such a term order does not form Gröbner
basis, since the same variable may appear more than once as a
leading term (primary inputs and signals with fanout); and the
leading terms are not relatively prime. In this case, a Gröbner
basis must be computed to effect this reduction. In addition,
the set of field polynomials J0 =< x2 � x > needs to be
added to the base for all the circuit variables x, which further
adds to the complexity.

The effect of the reduction, obtained by dividing the current
polynomial by the leading terms of the elements of G is
illustrated by the following sequence.

F = a0 + b0 + 2a1 + 2b1 � r0 � 2r1 � 4r2

F/(a0 + b0) = 2a0b0 + 2a1 + 2b1 � 2r1 � 4r2

F/...(a0b0) = 2c + 2a1 + 2b1 � 2r1 � 4r2

F/....(a1 + b1) := 2c + 2d + 4a1b1 � 2r1 � 4r2

F/....(c + d) = 4cd + 4a1b1 � 4r2

F/....(cd) = 4f + 4a1b1 � 4r2

F/....(a1b1) = 4f + 4e � 4r2

F/....(e + f) = 4ef

(4)

The result of this reduction is a non-empty remainder, R =
4ef , which cannot be reduced further, neither with G nor with
J0. For example, reduction over < e2 � e > would produce
R = 4e2f2 = 4ef = 4e2f2, etc., and similarly with reduction
with p7, creating an infinite loop. Furthermore, since G is not a
Gröbner basis, the result cannot be trusted, while it is possible
that the circuit is correct. To confirm this, one needs to check
if R = 4ef can be reduced to 0 by other means. This, in fact,
can be achieved using backward rewriting with base G. The
reduction is shown below.

R0 = ef = (a1b1)(dc)

= (a1b1)(a1 + b1 � 2a1b1(a0b0))

= (a1b1)(a1a0b0 + b1a0b0) � 2a1b1a0b0

= (a1b1a0b0 + a1b1b1a0b0 � 2a1b1a1b1a0b0)

= (a1b1a0b0 + a1b1a0b0 � 2a1b1a0b0) = 0

(5)

This successful reduction uses the relationship a21 = a1 and
b21 = b1, implied by the field polynomials J0 =< a21�a1; b21�
b1 >. In summary, in order to solve this problem, one can

either prove the residual expression to be a zero function by
backward rewriting, or create a complete Gröbner basis B =<
G, J0 > and use it to effect the reduction. Both solutions are
computationally expensive and not scalable. In the case of a
faulty circuit, the residual reduction will not be able to reduce
R to zero, or, alternatively, the constructed Gröbner basis B
will not be able to reduce F to 0, indicating that the circuit
is faulty.

In conclusion, forward reduction is not complete as it may
not terminate with a conclusive reduction. However, it can be
useful in debugging; under certain conditions propagation of
the input signature to the outputs can reveal the location of a
bug [15], [16].

C. AIG Rewriting

The process of algebraic rewriting can be significantly
improved by using a functional, And-Invert Graph (AIG)
representation employed in ABC tool [8]. ABC uses the cut
enumeration to detect the XOR and Majority (MAJ) functions
with a common set of variables. Those nodes are essential in
identifying half-adders (HA) and full-adders (FA), the basic
components of an arithmetic circuit. AIG rewriting then skips
over significant portions of the circuitry, from the inputs to the
outputs of the adders, as shown in Figure 2(b), significantly
speeding up the rewriting process.

a) b)

Fig. 2: Full Adder: a) circuit diagram; b) AIG representation

In fact, the AIG data-structure makes it possible to directly
propagate the coefficients of the polynomials, without actually
performing alphanumeric string manipulation and term substi-
tution. This gives a rise to the spectral method, [17], which
has been integrated with ABC as command ”&poly � w”.

Consider an n-bit integer multiplication scheme, shown in
Figure 3(a) for n = 4. The ovals represent partial product
terms that are added column-wise for each bit of the result.
Let i, be a bit position of the result, and Ni be the number
of product terms added at this bit position. It can be shown
that the graph of N(i) uniquely determines the type of the
arithmetic function implemented by the circuit, regardless
of its hardware representation. We refer to such a graph as
the spectrum of the circuit. Figure 3(b) shows the spectrum
for a 4-bit multiplier. Spectra for 2-operand and 3-operand
multipliers are shown in Figure 4 a) and b), respectively.
Algebraic spectrum for an n-bit adder will be a flat line, since
the number of terms is the same for each bit. The shape of

i=6 i=5 i=4 i=3 i=2 i=1 i=0
 1 2 3 4 3 2 1

2

1

3

N(i)
C(i) 64 32 16 8 4 2 1

N(i)

0 1 2 3 4 5 6

4

i

0
7

a) (b)

Fig. 3: Spectrum of a four-bit Multiplier.

the spectrum remains the same for a given arithmetic function
and can be used to determine its type. The spectrum of a
given circuit does not depend on its hardware implementation
or the internal structure but only on the arithmetic function it
implements. Thanks to this important feature it can be used
to determine the type of arithmetic operation performed by
the circuit. Similar formulas and spectra can be derived for

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

N
(i

)

i

2-bit
3-bit
4-bit
5-bit

(a) F = A ·B.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

N
(i

)

i

2-bit
3-bit
4-bit
5-bit

(b) F = A ·B · C.

Fig. 4: Spectra for multipliers for { 2,3,4,5 } bit-widths.

other datapath operators, such as MAC, fused multiply/add
operation, and others1.

Note that in a monolithic arithmetic function (i.e., function
composed of only one arithmetic operator) each monomial
in its polynomial representation contains the same number
of variables. However, a fused multiplier A + B · C =P

2iai+
P

2j+k(bjck) will contain both single-variable terms
{ai} and two-variable terms {bjck}. In this case, the circuit is
represented by two independent spectra, rather than a single
one. Even though the spectrum can be derived from the
polynomial expression of the input signature Sigin, it can
be computed without algebraic rewriting, using only the AIG
representation, as mentioned in the preceding section.

IV. HARDWARE REWRITING

This section describes an original method for verifying
arithmetic circuits, in which algebraic rewriting is replaced
by hardware synthesis. This approach has been motivated
by a need to verify integer and fractional dividers, essential
components of fixed and floating point datapaths. In contrast to
other arithmetic circuits, such as adders or multipliers, divider
does not have a closed form formula that could its express its
output as a function of the inputs. Instead, its functionality is
governed by the following equation:

X = D ·Q+R, with R < D (6)

1A larger set of algebraic spectra are available in our online spectrum
gallery: https://ycunxi.github.io/cunxiyu/spectrum_gallery.html

where X is the dividend, D the divisor, and Q,R are the
quotient and remainder, respectively.

Fig. 5: Divider verification model.

Figure 5 shows an abstract model that captures this expres-
sion and suggest the way to solve the verification problem. The
upper part of the diagram is the divider under verification. The
lower box "reverses" the division X/D by computing Q·D+R
from the quotient Q and the remainder R, produced by the
divider. The goal is to prove that the computed result matches
the original dividend X , i.e. Q ·D + R = X . Satisfying the
condition R < D is a separate problem, discussed in [18].

One possible way to solve this problem is to create a circuit
Y = Q ·D+R and check the equivalence between its output
Y and the dividend X . This can be handled by a standard
SAT technique: create a miter between the dividend input X
and output Y = QD + R of the circuit and check if the
CNF formula of the resulting miter circuit is unsatisfiable
(unSAT). Unfortunately, the dividers greater than 16 bits could
not be verified using this method. Similarly, an attempt to
affect algebraic rewriting of such a structure, by transforming
Q ·D+R into the dividend X , was not successful: for circuits
with dividends greater than 10 bits the size of intermediate
polynomials becomes prohibitively large, causing memory
blowup.

To address this problem, a layered approach, originally
proposed in [18], can be used. Verification is applied to
each row (layer) of the divider, representing one step of the
controlled subtraction of the shifted dividend, and producing
a quotient bit qi. The rewriting can then be applied to one
layer at a time. This approach is justified by noting that logic
between two adjacent rows of the divider is not optimized
during synthesis and the partial remainder signals Ri are
preserved during synthesis. This has been confirmed by [19],
Theorem 2, which states that "In an array divider, there is
no way to optimize carry logics (CL) of adjacent rows i,
i + 1; no optimization technique is able to combine CLi,j

and CL(i+1),j". The circuit can be synthesized horizontally
along each layer, use different types of adders, speed up carry
propagation, etc., but not optimized vertically across their
boundaries. This process can also be done in a speculative,
parallel manner, since the form of each polynomial at the row
boundary is known, and can be stopped when one of the layers
does not produce the expected result. This way the source of
an error is constrained to a particular layer and the propagation
of rewriting will stop there to examine the bug.

Unfortunately, such a layered algebraic rewriting is still non-
scalable for circuits with dividends beyond 21 bits. And this

bring us to the idea of hardware rewriting, originally proposed
in [20] for SQRT circuits.

The main idea is similar to that shown in Figure 5 but
applied to a single layer i, which computes the quotient bit
qi and the partial remainder Ri from the divisor D and the
previous remainder Ri�1. The output Zi of such an inverse
circuit simply computes Zi = D ·qi+Ri = Ri�1. The goal is
to prove that the n-bit output Zi matches the n-bit input Ri�1

bit-by bit. This is accomplished by synthesizing the circuit and
checking the equivalence between its input and output bits.
Our initial experiments show that for layers up to 24-bit wide,
the result is a redundant circuit composed of a set of direct
wires/buffers, connecting the bits of Zi with bits of Ri�1.
For larger circuits, the synthesis does not reduce the structure
to such a redundant state, but it can be trivially verified
using bit-by bit SAT, or by a simple XOR comparison. The
verification of the entire circuit is accomplished by composing

the verification results of individual layers.
The technique of layered verification shows to be efficient

and scalable and can verify dividers of up to 255-bit dividends
in just 123 seconds, as shown in Section V. This is signifi-
cantly faster than SBIF verification of the entire divider at once
(990 sec). This is in contrast to SAT approach, which times
out after one hour on a single 32-bit layer of the divider.

V. APPLICATIONS AND RESULTS

The verification techniques described in this paper have
been successfully applied to a number of large circuits, ranging
from integer and Galois field multipliers to dividers and
sqrt circuits. The following is a brief summary of the main
achievements in the integer arithmetic circuits. The summary
of these results, compiled from different sources, are shown
in Table II. They are not intended for direct comparison but
provided just to give a brief idea of the order of execution
time to solve some of these problems. The CPU time ranges
considerably depending on the circuit architectures, level of
optimization/synthesis, platform used, etc.

ARTi / BitFlow [7][21]: The initial results in multiplier
verification considered basic array architectures, including
standard and Booth multiplier with several types of adder trees.
These tools are capable of solving the verification problem for
multiplier circuits up to 256-bit operands in 285 seconds.

RevSCA 2.0 [14]: An advanced SCA-based technique to
solve large and non-trivial multipliers. It combines reverse
engineering and removal of local vanishing monomials whose
origin are the gates where both outputs of Half Adders
converge at an AND gate. The efficiency of this approach
has been demonstrated using an extensive set of multipliers
of different architectures, including different product term
generation (simple and Booth), different adder trees, and
different final adders. As an example, they report that a 512-bit
multiplier contained 38 million vanishing monomials, whose
removal saved the process from memory explosion.

AMulet 2.0 [22]: This work describes a fully automated
tool, Amulet-2.0. The tool detects the final stage of the adder,
replaces it with a trusted ripple-carry adder and proves the

modified structure using SCA and SAT. The experiments were
performed on simple multipliers up to the input size 2,048
using AOKI benchmark set [23]. On this set AMulet 2.0
outperforms other tools and is an order of magnitude faster
on large multiplier circuits. This is the only tool known to
us that also provides a proof certification. In the certification
mode, AMulet 2.0 tracks polynomial operations in the selected
proof format and prints out the gate constraints, the generated
proof, and the specification to the provided files.

SBIF & DCs [24]: This work concentrates on dividers
using SCA/rewriting approach. It recognizes the failure of a
straightforward application of rewriting caused by the exces-
sive number of generated monomials. The reason of failure
ican be summarized as follows:
1) There is a large number of equivalent and antivalent signals
present in the circuit that converge causing many monomials
to vanish; these should be detected and removed as early as
possible. To identify those monomials, the circuit is simulated
with input vectors satisfying the input range constraint, 0 
X  D·2n�1, where n is the size of the divider D. The signals
that fall in the same equivalence class are then checked using
SAT to be classified as equi- or anti-valent. This is supported
by signal propagation from the primary inputs, hence termed
as "SAT-based Information Forwarding" (SBIF). The affected
monomials are removed before they get propagated further to
avoid potential memory blowout.
2) Another important source of the problem is that practical
divider circuits are optimized based on the input constraint,
0  X  D · 2n�1. In the resulting architecture the MSB
cells in the upper levels of the divider have unused outputs,
making them "unclean" for backward rewriting. This deprives
the rewriting process of the monomials that are essential to
annihilate monomials from other outputs generated on the
same level. Because of this incomplete data, no reduction in
polynomial size is possible, causing an uncontrolled increase
in the polynomial size. These redundant polynomials are
analogous to don’t cares (DC) in logic circuits and are modeled
as satisfiability don’t cares.

Instead of computing all don’t cares, the paper proposes
a method to choose a subset of the DCs that will minimize
the polynomial size at that level. To support this method,
they extract atomic blocks (half and full adders) and use
BDDs and standard Boolean logic techniques to compute
satisfiability DCs at the inputs to these blocks. When the size
of the polynomial increases by some predefined rate, they
stop the procedure, backtrack to the previous step, apply the
ILP optimization to reduce the vanishing monomials, and
continue with polynomial rewriting. This approach proved
to be efficient in restricting the size of the intermediate
polynomials. It can handle non-restoring 256-bit and 512-bit
dividers in 16.5 min and 162 minutes, respectively. One must
note, however, that this method depends on the extraction of
the HA/FA blocks to gain access to the their inputs on which
to apply don’t cares, which is another form of the layering
approach advocated in [18].

HW-Rewrite [20]: Our (yet unpublished) recent work on
divider verification applies hardware rewriting with a layered
approach but solves the problem faster. The 256-bit restoring
divider, considered to be a more complex and harder to
verify than the non-restoring divider considered in [24], takes
only 123 sec to verify for all layers. The CPU time can be
two orders of magnitude shorter if the layers are verified
concurrently (0.5 second per layer). A disadvantage of this
approach is that it needs to explicitly know the boundaries
between the layers.

Theorem Provers [25]: There has been much work on for-
mal verification of arithmetic circuits using Theorem Provers,
such as ACL2. They use term rewriting techniques to prove
the correctness of a wide variety of multiplier architectures.
Although relying on knowledge of the design hierarchy, their
CPU runtimes are competitive with other verification methods
described here. In particular, they have been quite successful
in proving large 1024-bit wide multipliers.

Complexity: We conclude this paper with the analysis of
computational and space complexity and theoretical bounds
in arithmetic circuit verification, described in [26]. This work
examines a slew of different approaches (BDD, BMD, SAT,
SCA, and algebraic rewriting), and concludes that the verifi-
cation process for integer arithmetic circuits requires at most
linear space and quadratic time w.r.t. the size of the circuit.
However, as clearly noted there, this result applies only to
"clean" circuits with a regular structures. Circuits with more
advanced and optimized structures, such as carry look-ahead
adders and Booth multipliers are not considered there. This
is in line with a large body of experimental results, which
shows the difficulty and higher computational complexity in
verifying highly synthesized circuits.

TABLE II: Results compiled from different sources.
Team Circuit size (bits) Circuit type CPU time (sec)

BitFlow/ARTi 128 Mult synth 400
[21][7] 256 Mult clean 285

RevSCA 256 Multipliers 2,500-6,100
[14] 512 Multipliers 48,700-115,500

AMulet 1024 Mult clean 300
[22] 2048 Mult clean 3,000

SBiF/DC 256 Divider 990
[24] 512 Divider 9,669

HW-Rewrite 256 Divider 123
[20] 256 SQRT 91

ACL2 1024 Multiplier 220
[25] 1024 Multiplier 300

ACKNOWLEDGMENT:
This work has been supported by a grant from the National
Science Foundation, Award No. CCF-2006465.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[2] M. Ganai and A. Gupta, SAT-based scalable formal verification solu-

tions. Springer, 2007.
[3] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz, “STABLE: A new

QF-BV SMT solver for hard verification problems combining Boolean
reasoning with computer algebra,” in DATE, 2011, pp. 155–160.

[4] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, September 2013.

[5] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in 2016 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2016, pp. 1048–1053.
[6] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the

algebraic approach for verifying gate-level multipliers,” in 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), March 2018,
pp. 1556–1561.

[7] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verifi-
cation of arithmetic circuits by function extraction,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 12, pp. 2131–2142, 2016.

[8] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[9] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence verification of
polynomial data-paths using ideal membership testing,” TCAD, vol. 26,
no. 7, pp. 1320–1330, July 2007.

[10] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
CAV, pp. 473–486, July 2008.

[11] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD’17, 2017.

[12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
3-1-6 A Computer algebra system for polynomial computations,” Tech.
Rep., 2012, http://www.singular.uni-kl.de.

[13] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms.
Springer, 1997.

[14] A. Mahzoon, D. Große, and R. Drechsler, “REVSCA-2.0: SCA-based
formal verification of non-trivial multipliers using reverse engineering
and local vanishing removal,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2021.
[15] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic

debugging of arithmetic circuits,” in ISVLSI’15, July 2015.
[16] T. Su, A. Yasin, C. Yu, and M. Ciesielski, “Computer algebraic approach

to verification and debugging of Galois field multipliers,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), 2018, pp.
1–5.

[17] C. Yu, T. Su, A. Yasin, and M. Ciesielski, “Spectral approach to verifying
non-linear arithmetic circuits,” Proceedings of the 24th Asia and South

Pacific Design Automation Conference, pp. 261–267, 2019.
[18] A. Yasin, T. Su, S. Pillement, and M. Ciesielski, “Functional verification

of hardware dividers using algebraic model,” in 2019 IFIP/IEEE 27th

International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2019, pp. 257–262.

[19] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to auto-
matically debug and correct various divider circuits,” INTEGRATION,

the VLSI journal, vol. 53, pp. 100–114, 2016.
[20] A. Yasin, T. Su, S. Pillement, and M. Ciesielski, “SPEAR: hardware-

based implicit rewriting for square-root circuit verification,” 2020 De-

sign, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 532–537, 2020.

[21] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model,” IEEE

TCAD, vol. 39, no. 6, pp. 1346–1357, 2019.
[22] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier

circuits.” in TACAS (2), 2021, pp. 357–364.
[23] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Formal design

of arithmetic circuits based on arithmetic description language,” IEICE

transactions on fundamentals of electronics, communications and com-

puter sciences, vol. 89, no. 12, pp. 3500–3509, 2006.
[24] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,

“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in 2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 2021, pp. 1110–1115.
[25] M. Temel and W. A. Hunt, “Sound and automated verification of real-

world RTL multipliers,” in 2021 Formal Methods in Computer Aided

Design (FMCAD). IEEE, 2021, pp. 53–62.
[26] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level

verification of arithmetic circuits,” in Proceedings of the 19th ACM-IEEE

International Conference on Formal Methods and Models for System

Design, 2021, pp. 1–9.

