
Combining Formal Verification and Testing for
Debugging of Arithmetic Circuits

Jiteshri Dasari and Maciej Ciesielski
University of Massachusetts Amherst, MA, USA

jdasari@umass.edu ciesiel@umass.edu

Abstract—Formal verification has been successfully used to
verify different types of digital circuits, including combinational
and sequential logic, arithmetic circuits, and datapath designs.
However, the verification techniques concentrate on confirming
whether the circuit performs its intended function, while the
issue of debugging, i.e., detection and correction of functional
errors of the design, remains an open problem. Elaborate testing
techniques have been developed that target certain types of
manufacturing faults, but there are no general techniques that
address the debugging issue for functional bugs.

This paper addresses the issue of debugging of arithmetic cir-
cuits that due to their large size and complexity are particularly
hard to verify and debug. Current debugging techniques handle
only simple types of bugs: gate replacement, wrong gate polarity,
or a missing gate, but cannot handle more realistic faults, such
as wrong wiring or using a wrong combination of logic gates. We
describe a novel method that combines formal verification and
testing techniques to enable efficient identification and correction
of faults. The technique involves setting select signals to some
predefined constants to reduce the design to easily verifiable
circuit components; these components are then verified using
logic equivalence checking and SAT tools. The fault can then
be identified in form or a small logic area (with a few logic
gates) to be replaced by a new, functionally correct logic. The
proposed technique is illustrated with debugging of different
types of divider circuits up to 1024 bit-wide.

I. INTRODUCTION

Verification of arithmetic circuits poses a considerable chal-
lenge due to their size and large bit-widths of their operands.
Strictly Boolean methods, such as those based on BDDs [1]
and SAT [2], require “bit blasting”, i.e., flattening of the design
into bit-level netlists. A large size of such netlists makes
it inefficient for handling complex arithmetic circuits, such
as multipliers and dividers. On the other hand, higher level
inductive techniques, such as Theorem Provers, do not offer
sufficient insight into their structure [3][4], required for gate-
level debugging. They are highly interactive, require intimate
knowledge of the design and user guidance, and offer no
guarantee for a successful termination.

Recent work in arithmetic circuit verification has relied
mostly on computer algebra (SCA) techniques, successfully
applied to the verification of datapaths and multipliers. While
the goal of verification is to confirm whether the circuit
performs its intended function, the issue of debugging, i.e.,
detection and correction of functional errors of the design,
remains an open problem. Elaborate techniques have been
developed by the testing community that target certain types of
manufacturing faults, such as stuck-at/open, or bridging faults,

but there are no general techniques that address the debugging
issue for functional rather than manufacturing fault detection
and debugging, i.e., identifying and fixing logical design errors
that affect functionality of the design.

This paper addresses the issue of debugging of arithmetic
circuits and illustrates the debugging technique on the divider
circuits. Currently available debugging techniques target only
simple types of bugs: gate replacement, wrong gate polarity,
or a missing gate, but cannot handle more realistic faults, such
as wrong wiring or an incorrect logic. The proposed method
combines formal verification and sensitizability techniques to
enable efficient identification, localization and correction of
the fault. The technique is based on setting some properly
chosen observable and controllable signals to predefined con-
stants, which reduces the design to easily verifiable circuit
components. These components are then verified using logic
equivalence checking and Boolean satisfiability (SAT) tools.
This allows one to localize a fault to a small logic area,
composed of just a few logic gates, that can be replaced
by a new, functionally correct and clearly defined logic. The
proposed debugging technique is illustrated on different types
of array divider circuits.

II. RELATED WORK

The state of the art techniques for arithmetic circuit ver-
ification are largely based on Symbolic Computer Algebra
(SCA). In this approach, an arithmetic circuit is represented
in algebraic (rather than Boolean) domain, with the gate-
level implementation and its specification modeled as pseudo-
Boolean polynomials. There are two basic flavors of this
technique: the classical methods, based on Gröbner basis
polynomial reduction [5][6][7]; and others, based on a more
practical implementation, called algebraic rewriting, origi-
nally proposed in [8]. Algebraic rewriting is the process of
transforming the polynomial representing binary encoding of
the output, called output signature, into a polynomial of the
binary encoding of primary inputs, the input signature, using
algebraic models of logic gates implementing the circuit. In a
functionally correct circuit, the resulting input signature should
match the specification polynomial. If the specification is not
known, the resulting input signature provides the arithmetic
function computed by the circuit. Hence, the method can be
used as a reverse engineering tool for arithmetic function
extraction.



The idea of algebraic rewriting is conceptually simple but
computationally challenging, as it is plagued by the exponen-
tial growth in the number and size of polynomials generated
during rewriting. A number of techniques have been invented
to limit this growth and successfully applied in verification of
multipliers [9] [10] [11]. Some of the recent works attempted
to apply algebraic rewriting to divider circuit verification. In
[12], a special type of don’t cares, representing disallowed
inputs values at the internal arithmetic blocks, are extracted;
they are then used in the ILP-based optimization procedure to
reduce the number of intermediate polynomials. This method,
however, relies on reverse engineering to extract basic arith-
metic blocks (half- and full-adders) and on a computationally
expensive ILP optimization.

In another approach, termed Hardware Rewriting, [13][14]
the circuit is appended with an inverse circuit and the modified
circuit is re-synthesized; if the resulting circuit is reduced to
identity (bare wires) it proves that the original circuit is correct,
i.e., performs the required arithmetic function. This method
however is limited by the power of logic synthesis tool, which
may not be able to reduce large circuits to such a redundant
state. In a novel method proposed in [15] verification is
accomplished by setting some signals to predefined constants
in order to isolate its essential subfunctions to facilitate their
verification. However, none of these approaches solves the
actual debugging problem, i.e., identifying and fixing logical
design errors that affect the functionality of the design. Most of
the debugging and fault detection methods rely on traditional
testing techniques designed to uncover manufacturing faults;
they do not apply to arithmetic circuits, where the goal is to
find logical errors and the design space is too large.

In one of the first works on arithmetic circuit debugging
[16], potential bugs are identified by performing forward
and backward rewriting and analyzing the difference between
the resulting polynomials, pointing to an incorrect gate. The
method requires guidance as to which area of the circuit to
target for bugs and is not scalable because of large size of
the generated "difference" polynomials. In the works of [17]
and [18] an automated method has been proposed to generate
tests to detect potential logical faults in arithmetic circuits.
However, these methods handle only gate replacement and
signal inversion as the adopted fault model.

An attempt to provide automatic debugging of complex
multipliers has been described in [19]. It uses a combination of
symbolic computer algebra (SCA) and Boolean satisfiability
(SAT) but still suffers from a large number of intermediate
polynomials generated during rewriting that may overload
the memory. The method proposed in [20] also computes a
set of corrector polynomials that are added to the original
circuit to compensate for the error. All these methods require
significant computational resources to compute Gröbner basis
or to perform memory intensive rewriting and do not scale
to larger circuits. Furthermore, they are limited to correcting
errors in adders and multipliers and does not work well with
other types of arithmetic circuits, such as dividers.

The work on debugging of divider circuits is almost non-

existent. A notable exception in this domain is the work
of [21], which applies reverse engineering and structural
matching of the extracted circuit against a known structure.
However, the reliance on the knowledge of the circuit structure
limits its applicability to general architectures.

The debugging method described in this paper applies
the techniques of controllability and observability, commonly
used in testing in the context of manufacturing faults. The
method was originally proposed in [15] for logic verification
of circuits such as dividers. It has been already applied to
the debugging of restoring dividers in [22] and is extended
here to the debugging of nonrestoring dividers (the terms
to be defined in the next Section). Unlike in testing, which
typically concentrates on well defined types of manufacturing
faults, this approach covers a wide range of faults, including
gate replacement, wrong gate polarity, missing or miss-wiring
connections, and wrong logic blocks.

III. VERIFICATION OF ARRAY DIVIDERS

This work addresses debugging of an array divider circuit
X/D. Arithmetic operation of the divider can be described as
X = Q ·D +R, where X,D,Q,R are the dividend, divisor,
quotient and remainder, respectively. The vectors D,Q and R
are n-bit wide, and the bit-width of a dividend is 2n-1. While
in principle the divider can be constructed as an array of n
rows and (2n− 1) columns, additional constraint is typically
imposed on the divider to ensure the same bit-width of D
and Q and to guarantee that the resulting quotient Q will not
overflow. For the integer version of the divider this constraint
takes the form X < 2n−1D [23]. With this, the optimized
version of the divider takes the form shown in Figure 1.

There are two types of array dividers, restoring and non-
restoring, depending of the type of the applied "long di-
vision" algorithm. Both types perform division by a series
of controlled subtract/add operations organized in n rows of
add/subtract circuits, each row producing a partial remainder.
The top "remainder" is the dividend X and the bottom one is
the final remainder R. Each step of the division corresponds
to a physical layer i which performs a controlled subtraction
and produces quotient bit qi. The layers are labeled from n−1
on top to 0 at the bottom. The inputs to layer i are the partial
remainder Ri+1 and divisor D, and the outputs are Ri and qi.

An example of a 5-bit divider is shown in Figure 1a)
for a restoring divider, and Figure 1b) for a nonrestoring
divider. In a restoring divider the division is performed by
a repeated subtraction of the partial remainder by the divisor
D, shifted one bit to the right after each subtraction. If the
result of the subtraction is positive, the subtraction takes place;
otherwise the subtraction is not performed and the unchanged
("restored") partial remainder is propagated to the next level.
In contrast, in the nonrestoring divider the current remainder
is subjected to either subtraction or addition, depending on the
result of the value of previous remainder. If it is positive, the
subtraction takes place, otherwise a correction is made in the
subsequent layer by adding D. If the final remainder has a



a) Restoring divider b) Nonrestoring divider

Fig. 1: Array integer divider: Restoring and Nonrestoring types.

different sign than the dividend X , a correction is made by
adding D; this is accomplished by an additional adder layer.

Each of those dividers can perform either integer or frac-
tional division, and the only difference between the two is
the ordering of bits, with the position of MSB and LSB
interchanged. In the following we consider an integer version
of the divider. Note the difference between the two divider
types in terms of how the quotient bits qi interact with the
circuit and affect the computation: in a restoring divider the
quotient bit qi controls the flow of data of the same layer
i (to choose between the subtraction and passing the input
remainder to the output); in a nonrestoring divider the quotient
bit qi controls the operation of the next layer that produces
quotient bit qi−1.

The layers are either provided explicitly in the structured
HDL/Verilog input and preserved during synthesis (using
"don’t touch" directives of the Synopsys DC compiler); or they
need to be extracted using reverse engineering with structural
matching, such as in the works of [21] and [12]. In our
approach the internal layered structure of the divider doesn’t
need to be provided; instead, the method will automatically
identify the signals on the layer boundaries, enabling its
verification and debugging, regardless of the type of the
divider. This is achieved by selectively setting some internal
signals to predefined constants and synthesizing the circuit,
which will expose the signals at the layer boundaries.

A. Layer Extraction

The layer extraction procedure is based on the observation
that each quotient bit qi produced by layer i is used to control
the operation of the same layer (in case of the restoring
divider), or of the next layer (in case of the nonrestoring
divider), as shown in Figure 1.

• In the restoring divider circuit, signal qi determines
whether the input vector Ri+1 or the difference Ri+1−D
is produced as the output remainder, Ri. That is, Ri =
Ri+1 − qiD.

• In the nonrestoring divider the operation of layer i is
controlled by the bit qi+1 of the previous layer, to choose

between subtracting D (for qi+1 = 1) or adding D (for
qi+1 = 0). In this case, Ri = Ri+1 + (1− 2qi+1)D.

In both cases the signal that controls the operation of the layer
can be readily derived from the corresponding quotient bit, qi
or qi+1. By gaining access to that signal one can control the
operation of the layer, reducing it to a simpler logic. This,
in turn, will make it possible to reason about the functional
correctness of the layer without explicitly extracting it by
structural matching.

Layer identification has been described in our earlier work
in [22] in the context of a restoring divider. The following
describes the procedure applicable to nonrestoring dividers.
Recall that each layer of the nonrestoring divider implements
a controlled Add/Subtract (CAS) operation, indicated in Figure
1b) as CAS nodes.

Fig. 2: Setting Dk = qi = 0 to identify layer boundaries: make
Rj[k] accessible from Ri[k].

Consider the LSB of a single layer of the nonrestoring
divider, shown in blue rectangle in Figure 2, with carry-in
coming from qi. We need to find sensitization conditions that
will connect the Rk

i signal at the top of the layer with the
Rk

j signal at the bottom of the layer. This will allow us
to identify the signal name of the lower boundary of the



layer for that bit k; and then apply it to other bits. Standard
sensitization technique shows that this can be accomplished
by setting Dk = qi = 0, as shown in the Figure. With this,
the XOR10 gate and the two AND gates and are set to 0,
while the XOR11 and XOR12 gates pass the partial remainder
signal Ri[k] to Rj [k] at the lower boundary of the layer. This
also causes Cout[k] = 0, which provides a carry-in to the
next cell. Note that this is independent of the actual gate-level
implementation of the cell, and is determined only based on
the expected logic relationship between Rj [k] and Ri[k]. The
same procedure is repeated for the consecutive cells, each
generating Cout[k] = 0 and exposing the partial remainder
signals at the layer boundaries. Even if the add/subtract layer
is implemented with a carry-look-ahead (CLA) circuit, the
individual outputs (partial remainder signals) can be detected
since they have the same logic function.

B. Layer Verification
Once all the signals at the layer boundaries have been

identified, one can perform verification of each layer, one
by one; it is referred to as horizontal verification. To verify
if a given layer performs its intended function, we consider
two cases, determined by the value of the quotient bit qi.
In a restoring divider, setting qi = 0 results in connecting
the partial remainder Ri+1 at the top of layer i to Ri at
the bottom. In a nonrestoring divider, it configures the layer
to an adder. Setting qi = 1 turns both, the restoring and
nonrestoring divider, into a subtractor. These functions can be
readily verified by synthesizing the layer under the respective
values of qi, and checking if the resulting circuit performs the
required ADD or SUB function. This is readily done using
combinational equivalence checking (CEC) or SAT tool of
ABC [24].

Fig. 3: Horizontal verification and debugging. Global: set qi =
0 for ADD and qi = 1 for SUB. Local cell scanning: set qi =
0, Ri[k] = 1 to identify cout[k] from d[k]. Then apply CEC
to the adder cell with inputs Ri[k], D[k], ci[k] and outputs
Rj [k], cout[k]
.

IV. DEBUGGING

The verification approach described in the previous section
provides a mechanism to perform robust gate-level debugging.

The goal of debugging is to pinpoint the exact location of
the fault, specified as a small logic area at the intersection
of the vertical and horizontal flow of data. The vertical flow
is associated with column (bit) k of the partial remainder Ri

across all rows (layers). Horizontal flow is associated with
data propagating along layer i through all bit positions {k}
of Ri. The segment of logic at the intersection of the two
flows is annotated as Rk

i . In the circuits shown in Figure 1
such an area corresponds to an individual full/half-adder (FA,
HA), full/half-subtractor (FS, HS) or a CAS cell, but in other
implementations (such as CLA) it may correspond to some
other logic blocks.

A. Restoring Divider

The debugging of a restoring divider has been described in
detail in [22], briefly reviewed here to provide the necessary
background. It starts with the vertical debugging, setting qi =
0 and checking if the top signals of the Ri+1 directly connect
to the bottom one, Ri, for all bits k. If this fails for some bit
k, there must be a bug at bit k of the layer. In this case the
faulty logic is located on a path from Ri+1 to Ri, typically
containing just two or three logic gates. Figure 4 shows an
AIG (and-inverter-graph) diagram, used by ABC, with a fault
on the logic path between a pair of partial remainder signals
(Ri, Ri+1) that should be connected together.

Fig. 4: Faulty area identified during vertical debugging (restor-
ing divider) [22]

The next step, horizontal debugging, is performed by setting
qi = 1, which should result in computing Ri = Ri+1 − D
word-wide. The check if the resulting logic represents a sub-
tractor is accomplished by performing combinational equiva-
lence checking of the layer circuit, synthesized with qi = 1,
against a reference subtractor. If the equivalence check fails,
one needs to scan the layer from its least significant bit (LSB)
to the most significant bit (MSB) and check if each cell is
a single-bit subtractor (HS/FS). This is done by selectively
setting individual bits k of Ri to 0, which will connect the



corresponding bit of D to the borrow-out signal, allowing it
to identify the bout output signal of the subtractor cell. At this
point all inputs and outputs of the cell are available and the
cell can be checked against a reference cell (HS/FS) to identify
the faulty logic. The individual cell of such extracted full/half
subtractor is small enough so it can be replaced entirely.

B. Nonrestoring Divider

A similar procedure has been applied to a nonrestoring
divider, with logic function of layer i described as Ri =
Ri+1 + (1 − 2qi+1)D. If the quotient bit qi+1, coming form
the layer above, is set to 0, layer i is configured as an adder,
computing Ri = Ri+1 + D; otherwise, for qi+1 = 1 the
layer implements a subtractor, Ri = Ri+1 − D. Verifying if
the resulting logic indeed represents an adder or a subtractor
can be readily done using standard combinational equivalence
checking tool, such as CEC of ABC [24]. Any of the trusted
"textbook" adder/subtractor circuits can be used as a reference
circuit. Logic error in any of the cells of the layer will
cause such horizontal verification of the layer to fail during
combinational equivalence checking.

In order to determine in which cell the fault has actually
occurred, one must examine the internal logic of each cell,
scanning the layer from its LSB to MSB and performing
combinational equivalence checking on the cell. To do that,
one needs to gain access to all inputs and outputs of the
cell, which can be done in a similar fashion as for the
restoring divider. Specifically, setting qi = 0, Rj [k] = 1 will
identify cout[k] from d[k], as shown in Figure 3. Then CEC
is applied to the FA cell with inputs Ri[k], D[k], ci[k] and
outputs Rj [k], cout[k]. The cell that does not pass the CEC test
is considered faulty, and its logic should be analyzed, repaired,
or replaced by a correct half- or full-adder logic.

There is one more, essential check that can be performed
on a nonrestoring divider, which does not occur in a restoring
divider. Recall that step i of the division is determined by the
sign of the partial remainder of the previous step i + 1: it
performs subtraction if the partial remainder Ri+1 is positive
(its MSBi+1 = 0); and it performs addition (to correct the
result Ri+1 back to its previous value) if it was negative (i.e.,
MSBi+1 = 1). This condition translates into the following
Boolean invariant: the quotient bit qj generated in layer j and
the most significant bit (MSB) of the layer must be antivalent
(of opposite polarity); that is, qj = MSB′

j , for all layers
j. This invariant is an essential and distinct feature of the
nonrestoring division algorithm. Furthermore, this invariant is
only true for the range condition X < 2n−1D for which
the optimized nonrestoring divider show in Figure 1 was
constructed. In our work this invariant is verified by checking
if qj = MSB′

j is always satisfied for the layer upended with
the range condition X < 2n−1D.

V. RESULTS

The verification and debugging method described in this
paper was implemented in Python and tested on both types
of array dividers. The entire verification/debugging process

includes three main phases: layer extraction, verification, and
debugging; each phase has been automated, with the results
reported in Table I. Layer extraction starts with the synthe-
sized blif files generated by Yosys [25] followed by ABC [24]
from the original Verilog description (this time is not included
in the table). It sets signals D, qi to respective constants to
determine layer boundaries and extract the individual layers.
The verification phase includes: configuring each layer i for
two cases, qi = 0 and qi = 1 and synthesizing each with
ABC; performing combinational equivalence checking using
ABC/CEC of each synthesized layer against a reference cir-
cuit; and performing the invariant check qi = MSB′

i for each
layer under the range condition X < 2n−1D. The debugging
phase, once triggered by CEC failure, involves: determining
and scanning the faulty layer; applying CEC against the
corresponding single-bit reference FA/FS or HA/HS circuit;
detecting the cell which fails the CEC test and declaring it as
faulty. As a result, the system is able to identify a bug in form
of a small circuit, containing only a few logic gates.

The entire program was tested on a set of restoring and
nonrestoring divider circuits with dividend bit-widths ranging
from 5 to 1023. The experiments were run on a M1 MacBook
Pro computer using a single core and 8 GB of RAM. The
restoring dividers were generated from a structural Verilog,
parsed using Yosys synthesis tool and synthesized with ABC.
Nonrestoring designs were obtained from a benchmark set
provided by [12].

The results of our experiments are shown in Table I for
both types of dividers. The Table shows the CPU processing
time for all three phases for the correct and faulty divider
circuits, obtained by introducing some randomly placed, up to
five, faults. The faults range from an incorrect gate (e.g., XOR
instead of NAND), wrong polarity (NOR instead of OR, etc),
miss-wired or swapped inputs, to a completely faulty internal
cell. Note that the debugging time depends on the location of
the fault.

Our results are compared with the verification times for
nonrestoring dividers presented in [12], which do not address
the debugging. The only meaningful comparison in terms
of debugging can be made with the work of [21], which
accomplishes debugging by reverse engineering and structural
matching; those experiments, however, are limited to 64 bit-
width dividers. As can be seen from the table, our verification
method for bug-free dividers is competitive with other meth-
ods, but offers a debugging capability that is not available
elsewhere. We believe that the results can be further improved
if the current Python program was rewritten in C/C++.

VI. SUMMARY AND CONCLUSIONS

The paper describes an original approach to debugging of
integer divider circuits, initiated in our earlier works [15][22].
In this approach the debugging is an integral part of verifi-
cation; it is accomplished by setting select signals to prede-
fined constants to make portions of the circuit controllable
and observable, enabling a gate-level debugging. Contrary
to the earlier methods that rely on reverse engineering, our



TABLE I: Divider Debugging times in CPU seconds

Divid Auto-debug DC verif Layer extract Total Verif. time - bug-free Verification + Debug time - Restoring Verification + Debug time - Nonrestoring

bits time (s) [21] time (s) Nonrestoring (this work) (this work) (this work)
[12] (this work) Restoring Nonrestoring 1 bug 3 bugs 5 bugs 1 bug 3 bugs 5 bugs

7 - 0.16 0.64 0.49 0.52 1.43 1.43 3.31 1.16 2.38 2.38
17 10.5/11 0.48 1.28 1.06 1.04 3.06 5.08 7.07 2.23 2.23 6.99
33 22.3/21.6 1.91 2.56 2.07 2.08 5.69 9.31 16.54 4.43 6.78 4.43
65 39.2/42.9 6.79 5.44 4.24 4.80 4.24 11.22 18.18 9.49 14.18 18.87

127 - 28.86 14.08 9.35 10.24 22.25 35.16 48.05 19.62 38.38 29.00
255 - 148.18 46.08 26.16 29.44 52.29 104.57 155.76 48.62 67.80 86.98
511 - 989.91 266.24 174.16 197.12 174.16 282.40 336.79 235.96 235.96 313.64

1023 - 9,668.70 1,976.32 974.23 921.6 974.23 1,205.69 1,436.50 1,003.50 1,085.40 1,249.20

method achieves the debugging by analyzing the logic of
individual layers. The method works for both, the restoring
and nonrestoring dividers, and differs only in the choice of
the sensitizing signals.

The method has some limitations. It may not be able to
identify bugs if they are placed in adjacent layers of the same
column; or for architectures where the identification of the
layer boundaries is not possible. The identification of a layer
may fail if there is an error in a vertical logic path for some
cell between the layer boundaries; but this in itself contributes
to the identification of a bug. Currently, the method assumes a
"ripple-carry" implementation of the carry/borrow chain of the
internal adder/subtractor circuits that culminate at the quotient
bits. In principle it is also applicable to implementations
with different types of adders/subtractors, such as carry-look-
ahead (CLA), as long as the partial remainder signals Ri

are accessible via the procedures described here. Whether
this method can be extended to other types of dividers, such
as Goldsmith or SRT that are based on a different division
algorithm, requires more insight.

ACKNOWLEDGEMENT

This work has been supported by a grant from the National
Science Foundation, Award No. CCF-2006465.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[2] M. Ganai and A. Gupta, SAT-based scalable formal verification solu-
tions. Springer, 2007.

[3] M. Temel and W. A. Hunt, “Sound and automated verification of real-
world RTL multipliers,” in 2021 Formal Methods in Computer Aided
Design (FMCAD). IEEE, 2021, pp. 53–62.

[4] D. M. Russinoff, Formal Verification of floating-point hardware design:
a mathematical approach. Springer, 2018.

[5] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz, “STABLE: A new
QF-BV SMT solver for hard verification problems combining Boolean
reasoning with computer algebra,” in DATE, 2011, pp. 155–160.

[6] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, September 2013.

[7] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 1048–1053.

[8] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verifi-
cation of arithmetic circuits by function extraction,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 12, pp. 2131–2142, 2016.

[9] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model,” IEEE
TCAD, vol. 39, no. 6, pp. 1346–1357, 2019.

[10] A. Mahzoon, D. Große, and R. Drechsler, “REVSCA-2.0: SCA-based
formal verification of non-trivial multipliers using reverse engineering
and local vanishing removal,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

[11] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra
and boolean satisfiability,” in ACM/IEEE Design Automation Conference
(DAC), 2022, p. 1183–1188.

[12] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2021, pp. 1110–1115.

[13] A. Yasin, T. Su, S. Pillement, and M. Ciesielski, “SPEAR: hardware-
based implicit rewriting for square-root circuit verification,” 2020 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 532–537, 2020.

[14] ——, “Formal verification of divider circuits by hardware reduction,”
in 2023 19th International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD),
2023, pp. 1–4.

[15] J. Dasari and M. Ciesielski, “Formal verification of restoring dividers
made fast and simple,” in 60th Design Automation Conference (DAC).
IEEE, 2023.

[16] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic
debugging of arithmetic circuits,” in 2015 IEEE Computer Society
Annual Symposium on VLSI, 2015, pp. 113–118.

[17] F. Farahmandi and P. Mishra, “Automated test generation for debug-
ging arithmetic circuits,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), 2016, pp. 1351–1356.

[18] ——, “Automated test generation for debugging multiple bugs in arith-
metic circuits,” IEEE Transactions on Computers, 2018.

[19] A. Mahzoon, D. Große, and R. Drechsler, “Combining symbolic com-
puter algebra and boolean satisfiability for automatic debugging and
fixing of complex multipliers,” in 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2018, pp. 351–356.

[20] N. A. Sabbagh and B. Alizadeh, “Arithmetic circuit correction by adding
optimized correctors based on groebner basis computation,” in 2021
IEEE European Test Symposium (ETS), 2021, pp. 1–6.

[21] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to auto-
matically debug and correct various divider circuits,” INTEGRATION,
the VLSI journal, vol. 53, pp. 100–114, 2016.

[22] J. Dasari and M. Ciesielski, “Efficient formal verification and debug-
ging of arithmetic divider circuits,” in 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), 2023, pp. 1–9.

[23] I. Koren, Computer Arithmetic Algorithms. Universities Press, second
edition, 2002.

[24] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[25] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.

https://yosyshq.net/yosys/

	Introduction
	Related Work
	Verification of Array Dividers
	Layer Extraction
	Layer Verification

	Debugging
	Restoring Divider
	Nonrestoring Divider

	Results
	Summary and Conclusions
	References

