
Formal Verification of Restoring Dividers
made Fast and Simple

Jiteshri Dasari and Maciej Ciesielski
University of Massachusetts Amherst, MA, USA

jdasari@umass.edu, ciesiel@umass.edu

Abstract—The paper describes a formal verification method
for hardware implementation of restoring divider circuits. The
method is based on setting select signals to predefined constants to
reduce the design to easily verifiable circuit components, followed
by their verification using standard equivalence checking and
SAT. It is then concluded by a global proof that the composition
of those components indeed implements a divider. In contrast
to previous approaches, the verification is done on a functional
level without any reverse engineering of the internal structure.
The results show significant improvement in verification time
compared to other methods. The proposed approach can also be
used in debugging by localizing the source of a bug. This feature
is currently not available in the existing verification tools and
will be a subject of future work.

I. INTRODUCTION

Division plays a major role in several domains, including
computer arithmetic, computational geometry, encryption, and
other special purpose applications. Considerable progress has
been made in recent years in verification of arithmetic circuits,
such as multipliers, multiply-accumulate, and other compo-
nents of arithmetic data-path, both in the integer and finite
field domain [1][2]. However, with the exception of theorem
provers and inductive non-automated systems that concentrate
on proving the correctness of the underlying algorithms and
on the resulting architecture [3], there has been little work
devoted to dividers [4] [5] [6] [7].

This paper describes a formal verification method for gate-
level implementation of restoring array divider circuits, the
divider type commonly used in commercial applications. The
method is based on setting select external signals to constants
to reduce the design to easily verifiable circuit components,
such as those involved in quotient bit and partial remainder
generation. The verification of those component is combined
with high-level reasoning about the correctness of the entire
circuit composed of such components under the imposed input
constraints. This approach is in line with the one given in a [8]
advocating a "step-wise verification of circuit sub-components
leading to polynomial complexity".

The main contribution of the paper is that it replaces the
memory-intensive symbolic computer algebra (SCA) and al-
gebraic rewriting techniques, successfully used in verification
of integer and Galois Field multipliers [1][9][10][2], with a
novel method specifically applied to dividers.

II. BACKGROUND

The most advanced approach to arithmetic circuit veri-
fication is based on SCA and algebraic rewriting. Initially

proposed in [11], it is based on representing the circuit in the
algebraic domain, where both the circuit specification and the
logic gates of its hardware implementation are represented as
pseudo-Boolean polynomials. In this method, the polynomial
representing the output bit vector is rewritten using polynomial
representation of the logic gates all the way to the input
bits, where it is compared to the circuit specification to
reason about its correctness. The method has been successfully
used by numerous authors in verification of multipliers [12]
[1][10][13]. The method, however is plagued by excessive
number of polynomials generated during the rewriting. Even
though most of those polynomials eventually get reduced to
zero (hence called vanishing polynomials), they can cause
memory overload prohibiting the rewriting from completion.
These issues have been addressed to some extent in the above-
mentioned papers in the context of multiplier verification, but
the verification of dividers requires more insight.

Recently, a promising approach has been proposed to use
a combination of symbolic computer algebra and SAT in a
method called SAT-based Information Forwarding (SBIF) [6].
The method uses SAT to gain information about vanishing
monomials by propagating logic information in the direction
opposite to the rewriting, i.e., from inputs to outputs. The
method relies on the observation that the signs of the operands
involved in computing intermediate remainders are always
opposite, which allows one to eliminate a large number of
intermediate monomials produced during rewriting. This, how-
ever, applies only to non-restoring dividers, while the restoring
dividers do not share this feature. Furthermore, this technique
does not help in proving an important constraint on the value
of the final remainder R relative to the divisor D, namely
that R < D. The authors of [6] resort to BDDs and SAT
to solve this problem, claiming that the size of the resulting
BDD is linear in the number of variables. This, however is the
most expensive part of the method as it requires time-intensive
variable ordering and construction of the BDD.

The work published in [7] recognizes that the failure of
the straightforward application of algebraic rewriting comes
not only from the excessive number of vanishing monomials.
Additional problem comes from the fact that all commercial
divider circuits are optimized based on the input constraint
X < 2n−1D. This constraint is imposed on the design to
limit the bit-width of quotient Q and divisor D to n and
to avoid overflow of Q [14]. As a result, the MSB cells of
the divider have unused (redundant) outputs, making them



"unclean" for rewriting. The polynomials associated with those
redundant outputs are analogous to don’t cares (DC) in logic
circuits: certain input values at local adders/subtractors cannot
occur under the required input constraint and can be used as
satisfiability don’t cares. The authors of [7] use forward signal
propagation to detect such don’t cares (DC) and remove the
affected monomials before they get propagated further to avoid
potential memory overload. Instead of computing all don’t
cares, they propose a method to select a subset of the DCs
that will minimize the number of polynomials at that level.

To accomplish this, they extract atomic blocks of the
divider (half and full adders) and use standard Boolean logic
techniques to compute satisfiability DCs at the inputs to these
blocks. When the size of the polynomial increases by some
predefined rate, they stop the procedure, backtrack to the pre-
vious step, apply the ILP optimization to reduce the number of
vanishing monomials, and continue with polynomial rewriting.
This approach proved quite efficient in restricting the size of
the intermediate polynomials during rewriting. It can handle
non-restoring 256-bit and 512-bit dividers in 16.5 min and
162 minutes, respectively. This method, however, uses reverse
engineering to extract the single-bit adder/subtractor (HA/FA)
blocks to gain access to the inputs on which to apply don’t
cares. As such, it makes certain assumptions about the internal
structure of the divider, which may vary depending on the
design style.

The work of [4] addresses the verification of array dividers
by extracting a high-level arithmetic model from the low-
level circuit implementation. The resulting arithmetic oper-
ations are compared with the abstract model of the divider
using structural matching. The technique applies column-
based XOR extraction, which relies on a regular structure
of the adder/subtracter trees and the presence of the sum
generation and carry propagation components. A lack of
those components at the right places indicates a bug. The
method requires the divider circuit to have a well defined
architecture, and the adders to be represented with XOR gates,
which is often not the case in a synthesized circuit. Their
method performs structural analysis to see if the circuit’s
structure matches that of a divider but it does not explicitly
verify its actual arithmetic function. In contrast, the method
described here actually verifies whether the circuit performs
the division operation, regardless of the internal structure of its
components. In practice, there is a need for both approaches:
a complete functional verification on a higher level combined
with equivalence checking against known reference subcir-
cuits.

Yet another attempt to divider verification applies a con-
troversial technique of hardware rewriting [5][15]. It accom-
plishes verification by appending the circuit with a block that
implements an inverse function, followed by logic resynthesis.
If the circuit under verification is correct, the resulting logic
becomes trivially redundant. In case of dividers, the method
works well when applied to individual layers of the divider
(each producing a quotient bit), but not for the entire circuit.
Its disadvantage, therefore, is similar to that of [7] that needs

access to the internal layered structure of the divider.
In contrast, our method does not require any reverse engi-

neering and instead relies on functional analysis of the circuit.
Access to partial remainders to verify the flow is achieved by
setting signals (derived from the quotient bits) to constants
0/1 in order to reduce the design to easily verifiable circuit
components, regardless of their internal structure. This is
then followed by their verification using equivalence checking
or SAT; and a global proof that the composition of those
components does implement a divider. As shown in Section
VI Experiments, this approach can verify 256 and 512-bit
restoring dividers in a matter of 17 seconds and 2 minutes,
respectively (50× and 76× speedup compared to [7]); and a
1023-bit divider in 9.4 minutes, something that none of the
methods could achieve.

III. RESTORING DIVIDER

We start by reviewing a typical architecture of a restoring
integer divider, shown in Figure 1. The idea is to gain
understanding of the underlying division algorithm without a
need to rely on the internal structure.

Fig. 1: Restoring integer divider.

The inputs are unsigned integer numbers. X is the dividend,
D the divisor, Q the quotient and R the remainder. Typically,
for an n-bit D,Q and R, the bit-width of a dividend is
2n-1. To ensure the same bit-width of D and Q, and to
guarantee that the resulting quotient Q will not overflow, a
condition X < 2n−1D is imposed on the inputs, X,D [14].
With these constraints the optimized divider is implemented
in an n × (2n − 1) array structure shown in Figure 1.
The division is performed by a repeated subtraction of the
dividend by a divisor D shifted to the right by one bit after
each subtraction. If the result of a given subtraction is non-
negative, the subtraction takes place; otherwise the subtraction
is not performed and the partial remainder is subjected to
the next level subtraction.1 The resulting partial remainder is
then subjected to a controlled subtraction, with the last step
producing the final remainder R.

Throughout the paper we use the following notation:
• Each layer i is labeled with the same index as the quotient

bit qi: top layer with n-1, bottom with 0.

1This is in contrast to a non-restoring divider, which performs subtraction
and makes a correction in the next step by adding back the divisor D.



• Layer i has inputs Ri+1, D and outputs qi, Ri.
• The input to the top layer is Rn, part of the dividend X .2

• The output of the bottom layer R0 = R, the remainder.
The quotient bit qi produced as the MSB of each subtractor

layer serves as a select signal, which determines whether the
input vector Ri+1 or the difference Ri+1 − D is selected as
the output, Ri. The verification process has two basic steps:

1) verify if the gate-level implementation computes a cor-
rect partial remainder Ri in each subtraction step; and

2) prove that the circuit composed of such controlled
subtractions performs the required division under the
required input constraint X < 2n−1D.

Such a conceptually simple array structure turns out to be
rather difficult for the SCA approach, mainly because of the
dependence of quotient qi on the n-bit subtractor with inputs
Ri+1 and D. Here is why.

The equation that characterizes layer i of the divider is:

Ri = Ri+1 − qiD (1)

Backward rewriting at this level rewrites the output polynomial
Ri + qiD into Ri+1. Note that the quotient bit qi is a
non-linear polynomial function of the n-bit subtractor inputs
Ri =

∑n−1
k=0 2

kRi(k) and D =
∑n−1

k=0 2
kD(k), which is then

multiplied by D. This, in addition to the fact that some higher-
significant output bits are not used (redundant), but should be
included in the rewriting, causes an exponential increase in
the number of monomials. The authors of [7] recognize this
problem and attempt to solve it using satisfiability don’t cares
and ILP, but this is computationally expensive and, in our
opinion, unnecessarily complex.

IV. VERIFICATION APPROACH

Instead of blindly rewriting the polynomials associated with
layer i, we consider two separate cases, depending on the value
of the the quotient qi. We basically separate the output signal
qi from the control over the subtractor, and create a new input
signal seli. This is done readily by manipulating the input
Verilog or blif 3 file by replacing all the occurrences of signal
qi as input with a new input seli, while keeping qi as the output
quotient bit. When seli = 0, the input bits of Ri+1 become
connected directly to the output bits of Ri, i.e. Ri = Ri+1. On
the other hand, when seli = 1, the layer performs subtraction,
Ri = Ri+1 −D. Verifying these two cases on the logic level
is significantly simpler than performing rewriting. And, most
importantly, access to individual bits of a given layer need
not to be known or derived by structural extraction or reverse
engineering, as in the earlier works [4][6] [7].

A. Case seli = 0: Vertical Flow Verification

This case can be implemented for each division step i
(corresponding to a circuit layer i) by setting seli = 0 and
resynthesizing the circuit. If in the resulting simplified circuit
the input and output bits are directly connected, the layer

2In our notation R is an n-bit vector, while the dividend X has 2n-1 bits
3BLIF = Berkeley Logic Intermediate Format

correctly implements the condition Ri = Ri+1. This proves
that the circuit for this layer correctly implements the design
for the case when the subtractor generates qi = 0.

It may first seem that in order to perform this check one
needs to have access to the input and output signals, Ri and
Ri−1, of the given layer. Fortunately, those signals can be
readily discovered also by setting seli to 0. Only the input
signals at the top layer (Rn part of the dividend X) and
output signals at the bottom layer (the remainder, R = R0)
are needed. All the intermediate signals of partial products Ri

can be learned from such generated circuit.
Specifically, starting with the top layer with signals Rn,

setting seln−1 = 0 should reduce the logic between Rn and
Rn−1 to bare wires. This automatically exposes the signal
names of the next-level partial remainder, Rn−1, which are
otherwise hidden and not recognizable in the original input
(Verilog) file. The result of such a reduction can be seen in
the circuit diagram of a 5-bit divider (called 5-3 divider, since
n = 3) in Figure 2, marked with colored lines in the respective
column bits. Logic synthesis tools, such as ABC [16], can
accomplish this reduction, while also providing the needed
signal names of the output vector Ri−1. This is shown in
Figure 3 for this example. This process is then repeated for
each layer, by selectively setting seli to 0 for that layer.

Fig. 2: Restoring divider - schematic

Fig. 3: Logic view after sel2 = 0 reduction, top layer, showing
direct connections: X4 → R2[2], X3 → R2[1], X2 → R2[0].

It should be noted that this important feature works only in a
correct, bug-free circuit. If the propagation of constant seli =
0 does not simplify the logic by connecting the corresponding



inputs and outputs of that layer, there must be a bug on a logic
path from Ri−1 to Ri at this bit position. Simple analysis of
the divider’s logic indicates that this affects only the logic
along the vertical data flow between the two layers (in this
case a MUX), regardless of the internal structure of the divider.
This is an important information that will help localize the bug,
briefly discussed in Section VII.

In order for the signal names extracted in this manner to
be trusted, we must first check if this logic path is correct.
This can be checked by setting seli = 0 signal to all layers,
i = 1, ., n. If this vertical path of the circuit is correct, then
all the bits of Dividend X will be connected to some partial
remainder bits at the respective layers; refer to the color-coded
paths shown in Figure 2. Let us assume that this is the case, so
we can use the extracted signal names of the partial remainders
at each layer. Otherwise, more insight is needed to determine
correct names of the boundary signals - a subject for future
work on debugging.

B. Case seli = 1: Horizontal Flow/Subtractor Verification

We now need to verify the "horizontal" data flow that
involves computing the difference Ri = Ri+1 −D across the
entire row and generates the quotient bit qi. This can be done
by setting seli = 1, causing the layer i to act as a subtractor.
At this point we already have access to the input Ri+1 and
output Ri signal names, along with the divisor D for each n-bit
subtractor at level i. However, to perform such a verification,
we also need access to the final borrow-out signal (bout) of
each subtractor. While this signal is readily available at the top
layer, where bout = q′n−1, each subsequent layer has additional
logic driven by bout and the MSB of the partial remainder of
the layer above it, namely qi = Ri[n−1]∨ b′out. For example,
for the second layer of our 5-bit divider, q1 = R2[2]∨ b′out[2].
To solve this problem, we set the MSB of Ri+1 (from the layer
above) to 0, which makes bout visible as q′i. In our example
bout[2] can be obtained by setting R2[2] = 0. The complement
of signal bout[2] is then visible at q′1.

At this point we have access to all the signals of the sub-
tractor and can perform the verification using combinational
equivalence checking (CEC) of ABC [16]. This potent tool
can readily prove equivalence between our subtractor and
a reference subtractor (generated by ABC or by any other
means) for 256 bits and beyond in a matter of seconds.

C. Quotient Generation Verification

To complete the verification we also need to verify if the
quotient bits Q are correctly generated by the circuit. Note
that the MSB of Q, i.e., qn−1, corresponding to the top layer,
has been already indirectly verified, by imposing the input
range constraint X < 2n−1D, which imposes qn−1 = 0.
Specifically, the constraint X < 2n−1D, or equivalently
X−2n−1D < 0 represents subtraction of the divisor D shifted
to the left by n − 1 bits. This is performed in the top layer
and the result of this operation should be negative. That is, the
bout generated at this level should be 1, and the corresponding
qn−1 should be 0. In principle, this condition can be verified

by constructing a circuit Z = {X < 2n−1D} derived from the
top layer, and checking if the Boolean expression Z ∧ q′n−1 is
constant 1; or, equivalently if Z ′ ∨ qn−1 is unSAT. However,
this condition is automatically satisfied, as long at the top level
subtractor is verified to be correct. in fact, this has been already
done by "horizontal" verification of each layer (subtractor),
described in Section IV-B.

We now need to verify if the remaining layers also gen-
erate a correct quotient qi. This can be achieved simply
by checking if each signal qi computes the required logic,
qi = Ri+1[n−1]∨b′outi, expressed in terms of the respective
bits Ri+1 and bouti. Note that the names of those signals are
already available, derived in the previous steps. This is a trivial
operation that requires checking equivalence of such a simple
logic with the corresponding reference expression. We should
emphasize that logic expression for qi is known for a given
type of the divisor (in this case restoring) and is independent
of the particular implementation structure. For example, the
logic for qi shown in our 5-bit divider schematic in Figure
2 is qi = R′ ∧ bout, which is equivalent to qi = R ∨ b′out.
Hence, we are not extracting any logic gates but verifying if
qi satisfies the needed logic expression.

V. GLOBAL FLOW

We conclude our verification with a proof that, once each
layer has been verified to implement a controlled subtractor,
the entire array indeed implements a divider, i.e. satisfies the
characteristic equation:

X = Q ·D +R, and 0 ≤ R < D (2)

First we we need to revisit Equation (1) that characterizes
layer i of the divider as an n-bit subtraction: Ri = Ri+1 −
qiD. The divider performs n successive n-bit subtractions,
each time shifting one bit to the right, so that the combined
length of the input operand (dividend X) is 2n− 1 bit wide.

For this, we introduce a word-level version of the partial
remainder, labeled PRi, each 2n − 1 bit long, and rewrite
Equation (1) as

PRi = PRi+1 − qi2
i−1D (3)

First, recall that in order to satisfy the input range constraint,
PRn = X < 2n−1D, quotient bit qn−1 must be 0. With
this, the output of the first layer PRn−1 = PRn. The
remaining n − 1 layers implement a controlled subtraction
PRi−1 = PRi − qi−12

n−1D, which generate the remaining
bits of quotient Q and the final remainder PR0 = R. A simple
proof is provided here for the 5-3 divider (with n = 3), in
Figure 2. In this example the input constraint is X < 4D,
which requires q2 = 0.

The following arithmetic operations are implemented by the
three layers of the divider, with the upper bound on each partial
remainder provided on the right (to be discussed next):

PR3 = X < 4D

PR2 = PR3 − q2(4D) < 4D



PR1 = PR2 − q1(2D) < 2D

PR0 = PR1 − q0(D) < D

R = PR0

By adding both sides of the above expressions for PRi (and
ignoring for a moment the inequalities on the right) we obtain:

R = X − (4q2 + 2q1 + q0)D

or equivalently X = QD + R. This proof can be easily
generalized to dividers with arbitrary bit-size n. Basically, for
each layer i = n, ..., 1, we have

PRi−1 = PRi − qi−1(2
i−1D) (4)

Then, by induction, we obtain PR0 = PRn − QD or,
equivalently, PRn = QD + PR0, i.e., X = QD +R.

Finally, we need to take a look at the upper bounds on the
partial remainders PRi. It can be shown that it decreases at
each iteration by half, finally leading to the condition 0 ≤
R < D. This is summarized by the following lemma:

Lemma: Given a restoring divider X/D with n layers and
the input constraint X < 2n−1D, the upper bound on the size
of partial product PRi for i = n-1, ..., 0 is determined by the
following formula

PRi < 2iD

hence, for i = 0 R < D.
Proof by induction on i. In the following, refer to Equation 4.

Initial step: with PRn−1 < 2n−1D, the formula is true for
i = n−1. We now prove that this implies to be true for i−1,
i.e., PRi−1 < 2i−1D, where PRi−1 = PRi − qi−1(2

i−1)D.
Consider two cases:

• Case 1: 2i−1D < PRi < 2iD. In this case subtracting
2i−1D from PRi gives a positive result, bounded by
2i−1D, and qi−1 = 1 is generated.

• Case 2: 0 ≤ PRi < 2i−1D. In this case subtracting
2i−1D would generate a negative result, so no subtraction
is performed and qi−1 = 0.

In both cases, the lowest upper bound on PRi−1 at this level
is 2i−1D, i.e. PRi−1 < 2i−1D. Hence PR0 = R < D. QED

VI. EXPERIMENTS AND RESULTS

The verification method described in this paper was im-
plemented as program written in Python with interfaces to
ABC. The designs used for the experiments were generated
in-house, written in Verilog HDL. They were first synthesized
using Yosys [17], which provides a more robust parser and can
handle larger subset of Verilog than ABC. The resulting files
in blif format were synthesized again by ABC to provide a
cleaner version of blif files. Python program then automates
the required verification. The program was tested on the
restoring divider circuits with dividends ranging from 5 to
1023 bit-widths.

The results shown in Table I give the CPU times in
seconds for the individual steps needed to achieve the com-
plete verification and the total CPU time. A "-" in the table
indicates unavailable results. The results of our verification

are compared in Column 2 with [15], which uses a technique
called "hardware rewriting". This technique relies on the
explicit knowledge of the layered structure of the divider
and rewrites each row separately. The main idea is to add a
circuit that reverses the computation of the partial remainder
implemented by a single layer, called signature linearizer. This
is then followed by resynthesizing the combined circuit, which
should result in a trivial circuit with wires connecting the
partial remainder inputs and outputs of the layer. Although
this technique of layered hardware rewriting is efficient and
scalable, its main drawback is that it requires the explicit
layering structure. No results beyond 255 bits were available.

Columns 3-6 summarize the performance of our method.
Column 3 gives the CPU times of synthesis when all the
select bits {seli} derived from quotient bits {qi} for the entire
divider are set to 0, and Column 4 when each select bit is
set selectively to extract a single layer. Column 5 gives the
total CPU time to perform equivalence checking (CEC) when
seli = 1 is set, one by one, for each subtractor. The reference
circuits used in CEC are subtractors generated by ABC with
the respective bit-width for divisor size n. Finally, Column 6
gives the final verification time for our method. All the times
given in each column reflect the respective CPU time for all
layers.

The last two columns show the results published in [7],
with data for dividers up to 511-bit dividend (available only for
non-restoring dividers). As one can see, our method can verify
256- and 512-bit restoring dividers in a matter of 17 seconds
and 2 minutes, respectively, offering a 50× and 76× speedup,
respectively, compared to [7]. Our method can also handle a
1023-bit divider in 9.4 minutes, something that none of the
methods could complete. The data from [4] are not shown in
the table, as they were available only for dividers with up to
65-bit dividends; and the CPU times for those dividers were
several orders of magnitude larger.

VII. EXTENSIONS AND FUTURE WORK

The proposed verification method, besides its high speed,
low memory overhead and effectiveness, has additional im-
portant feature: it naturally supports debugging.

Assume that the divider has a logic error in one of the cells
(say k) of the subtractor in one of the layers (l). This will
cause the horizontal verification to fail during combinational
equivalence checking (CEC) at that layer. Having already
access to all the partial product signals of the layer, we can
scan the layer from its LSB to its MSB, and examine the
internal logic of the cell (a half- or full-subtractor) one by
one. To access a given cell, we need to isolate it from other
cells, i.e., gain access to the borrowin and the borrowout

signals, while the inputs Rl+1[k], D[k] and the outputs Rl[k]
are already available from the earlier verification steps. This
can be done by setting Rl+1[i] and D[i] at the neighboring
cells i to some controlling values. Similarly, one can verify the
subtractor control logic (MUX) of the buggy cell by setting
some signals to make the cell observable. We can use some of
the known test generation techniques developed by the testing



TABLE I: Restoring Divider Verification times in CPU seconds

Dividend Layered HR-SAT Verification times in seconds (this Work) Don ’t care optimization [7]

bits time (s) [15] Complete divider Step wise re-synth Equivalence checking Total time No. of bits Time (s)re-synth all sel bits=0 selectively set sel=0 sel=1 in each step (re-synth+CEC)
5 0.09 0.04 0.12 0.13 0.29 4 0.16
7 0.12 0.04 0.16 0.18 0.38 8 0.48

11 0.18 0.04 0.23 0.27 0.54 - -
13 0.21 0.04 0.26 0.30 0.60 - -
17 0.27 0.04 0.34 0.40 0.78 16 1.91
19 0.40 0.04 0.39 0.45 0.89 - -
21 0.44 0.04 0.42 0.50 0.96 - -
23 0.48 0.04 0.47 0.56 1.06 24 3.82
33 0.68 0.05 0.65 0.80 1.50 32 6.79
63 4.48 0.08 1.28 1.66 3.02 64 28.86
95 12.96 0.14 1.98 1.97 4.09 96 70.22
127 18.56 0.22 2.66 3.76 6.64 128 148.18
255 123.46 0.89 5.89 10.52 17.30 256 989.91
511 - 3.76 13.76 108.97 126.49 512 9,668.70

1023 - 17.20 35.01 512.28 564.49 1024 TO (>24 CPU hours)

community to facilitate this. These debugging ideas are still
in the conceptual phase and need to be thoroughly researched
in future work.

VIII. SUMMARY AND CONCLUSIONS

The paper describes a novel approach for verification of
integer divider using a hybrid/hierarchical approach. The ver-
ification is accomplished in three phases:

1) Extracting layer boundaries: accomplished by setting
select signals derived from quotient bits to identify
the boundaries of the internal components (subtractors).
Contrary to the earlier methods that extract components
based on a fixed internal structure of the circuit, our
method does it by functional analysis.

2) Low-level verification of essential components, layers:
based on a standard, fast combinational equivalence
checking (CEC) techniques, supported internally by
SAT. It proves the correctness of the partial remainder
and quotient bits generation components.

3) Global proof that the entire assembly implements a
divider: done in a word-level space to demonstrate that
the overall flow of data performs the division.

The proposed method is directly applicable to other divider
types and architectures, such as non-restoring dividers, by
selecting the set of signals specific to that architecture to
access the internal circuit components. The verification ap-
proach described here addresses a general sentiment that the
verification problem for complex arithmetic circuits cannot be
solved with a single verification technique in polynomial space
and time. w.r.t. to the size of the circuit. However, as discussed
in a recent paper [8], "With additional knowledge about the
boundaries of components, polynomial verification becomes
possible through the step-wise verification of sub-components
and the use of different formal proof engines." We believe that
our paper does exactly that.

ACKNOWLEDGEMENT

This work has been supported by a grant from the National
Science Foundation, Award No. CCF-2006465.

REFERENCES

[1] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model,” IEEE
TCAD, vol. 39, no. 6, pp. 1346–1357, 2019.

[2] T. Pruss, P. Kalla, and F. Enescu, “Equivalence Verification of Large
Galois Field Arithmetic Circuits using Word-Level Abstraction via
Gröbner Bases,” in DAC’14, 2014, pp. 1–6.

[3] D. M. Russinoff, Formal Verification of floating-point hardware design:
a mathematical approach. Springer, 2018.

[4] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to auto-
matically debug and correct various divider circuits,” INTEGRATION,
the VLSI journal, vol. 53, pp. 100–114, 2016.

[5] A. Yasin, T. Su, S. Pillement, and M. Ciesielski, “Functional verification
of hardware dividers using algebraic model,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2019, pp. 257–262.

[6] C. Scholl and A. Konrad, “Symbolic computer algebra and sat based
information forwarding for fully automatic divider verification,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[7] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2021, pp. 1110–1115.

[8] R. Drechsler and A. Mahzoon, “Preserving design hierarchy information
for polynomial formal verification,” in 2022 IFIP/IEEE 30th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), 2022,
pp. 1–7.

[9] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers
by combining sat and computer algebra,” in 2019 Formal Methods in
Computer Aided Design (FMCAD), 2019, pp. 28–36.

[10] A. Mahzoon, D. Große, and R. Drechsler, “REVSCA-2.0: SCA-based
formal verification of non-trivial multipliers using reverse engineering
and local vanishing removal,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

[11] M. Ciesielski, W. Brown, D. Liu, and A. Rossi, “Function Extraction
from Arithmetic Bit-level Circuits,” in IEEE Annual Symposium on
VLSI, July 2014, pp. 356–361.

[12] A. Mahzoon, D. Große, and R. Drechsler, “Polycleaner: Clean your poly-
nomials before backward rewriting to verify million-gate multipliers,”
in Proc. International Conference on Computer-Aided Design, ICCAD,
2018, pp. 129:1–129:8.

[13] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and
boolean satisfiability,” 2022.

[14] I. Koren, Computer Arithmetic Algorithms. Universities Press, 2002.
[15] A. Yasin, “Formal verification of divider and square-root arithmetic

circuits using computer algebra methods,” PhD dissertation; University
of Massachusetts, Amherst, 2020.

[16] A. Mishchenko et al., “Berkeley logic synthesis and verification group,
abc: A system for sequential synthesis and verification,” http://www.
eecs.berkeley.edu/~alanmi/abc, 2007.

[17] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.

http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc
https://yosyshq.net/yosys/

	Introduction
	Background
	Restoring Divider
	Verification Approach
	Case seli=0: Vertical Flow Verification
	Case seli=1: Horizontal Flow/Subtractor Verification
	Quotient Generation Verification

	Global Flow
	Experiments and Results
	Extensions and Future Work
	Summary and Conclusions
	References

