
1

Formal Verification of Integer Dividers:
Division by a Constant

Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski

Abstract—Division is one of the most complex and hard to verify
arithmetic operations. While verification of major arithmetic operators,
such as adders and multipliers, has significantly progressed in recent
years, less attention has been devoted to formal verification of dividers.
A type of divider that is often used in embedded systems is divide
by a constant. This paper presents a formal verification method for
different divide-by-constant architectures and the generic restoring
dividers based on computer algebra approach. Our experiments for
different divider architectures and comparison with exhaustive simula-
tion demonstrates the effectiveness and scalability of the method.

I. INTRODUCTION

AConsiderable progress has been made in recent years in
verification of arithmetic circuits, such as multipliers, fused

multiply-adders, multiply-accumulate, and other components of
arithmetic datapaths, both in integer and finite field domain [1][2].
However, the verification of hardware dividers has received limited
attention, with a notable exception for theorem provers and other
inductive, non-automated systems. Division is one of the most
complex arithmetic operators to implement and requires careful
hardware implementation and verification [3][4]. The difficulty of
formally verifying a hardware implementation of dividers can be
attributed to the iterative nature of the division algorithm and the
remainder computation.

An operation that comes up frequently in digital systems is a di-
vision of an integer by a constant. For example, such an operation is
required in computer simulations which use Jacobi stencil algorithm
to computes an average of three numbers; in arithmetic for base
conversions, number theoretic codes, and graphics codes; in signal
processing for computing the sample mean, the sample variance,
or the automatic gain control. Finally divide-by-constant is useful
for memory bank multiplexing which requires division by small
integers, or to support compilers optimization to generate integer
divisions to compute loop counts and subtract pointers [5]. The
frequent appearance of such operation in many applications justifies
creating a specialized operator in embedded systems design, referred
to as "divider by a constant" [6]. In this paper, we concentrate on the
verification of a division by a constant and conclude it by presenting
a preliminary verification analysis of a restoring generic division
algorithm.

While division by a constant 2k can be efficiently implemented
by shifters, division by other constants is more complex. Many
algorithms for division by a constant use table-based approach and
implement it using look-up tables (LUT). A notable example of such
an implementation is a table-based SRT division implemented in an
Intel Pentium Processor. The infamous Pentium bug in its floating
point division (FDIV) instruction has galvanized the verification
efforts [7][8] for divider circuits.

This paper describes the verification technique for a divide-
by-constant circuit, generalized to the verification of a restoring
generic divider. Our work is based on an algebraic rewriting model,
which performs arithmetic function extraction, originally proposed
and successfully applied to the verification of integer and Galois
Field multipliers [9] [10]. The method has been suitably modified
for dividers by identifying and taking advantage of the "vanishing
monomials", which are an intrinsic property of table-based divide-
by-constant architecture.

The rest of the paper is organized as follows. Section II provides
the necessary background and literature survey for the implementa-
tion and verification of the divide-by-constant architecture. Section
III shows the detailed verification methodology while Section IV

presents the verification results and their analysis. We also compare
our approach to an exhaustive simulation of the respective circuits.
Preliminary results for a restoring generic divider are also presented,
showing the applicability of our technique to a more generic case.
Finally, Section V concludes the paper and briefly discusses the
future work.

II. BACKGROUND

A. Canonical Diagrams

Several techniques have been applied to formal verification of
arithmetic circuits, such as adders, comparators, and multipliers.
These techniques address functional verification and equivalence
checking using various canonical diagrams, such as BDDs [11],
BMDs [12], or TEDs [13]. BMDs have been useful in proving
floating point multipliers, but the literature is rather scarce on divider
circuits. A notable exception in this domain is the work of Bryant
[8]. Although effective and being able to catch the Pentium bug,
it requires generating a checker circuit, which itself needs to be
proved. However, no reliable means were offered for the verification
of the checker circuit itself.

The technique that received most attention in industry in arith-
metic circuit verification is Theorem Proving. In this domain, a
circuit is characterized by a set of rules, which are used to make
complex formulas to represent the circuit [14][15][16]. However,
generating these predefined set of rules for a particular circuit
requires a significant human effort and cannot be easily automated.

B. Computer Algebra Approach

The most advanced approach to formal verification of arithmetic
circuits is based on computer algebra. In this approach, the arith-
metic function specification and its implementation are represented
as polynomial rings in a given field; the verification problem is then
posed as checking if the implementation satisfies the specification.
This is achieved by reducing the specification polynomial modulo
the implementation polynomials, given as canonical Groebner basis,
known as ideal membership testing [17]. The method has been
successfully adapted for the verification of Integer and Galois field
multipliers [18][19][2].

An alternative approach to arithmetic verification of gate-level
circuits has been proposed in [1], using algebraic rewriting of the
specification polynomial. In this approach, the polynomial repre-
senting the encoding of the primary outputs (the output signature)
is transformed into a polynomial expressed in terms of the primary
inputs (called the input signature) using algebraic models of circuit
elements, such as logic gates. This method extracts an arithmetic
function implemented by the circuit and hence is termed as function
extraction. The method has been successfully applied to multipliers
and complex adders [1][18] but not to divider circuits, mostly
because of the difficulty of modeling the divider’s specification. A
thorough review of the state-of-the-art computer algebra methods
for multiplier circuit verification can be found in [20], which also
proves completeness and soundness of the algebraic technique of
[1].

The work of [21] addresses the verification of array dividers
by extracting a high-level arithmetic model from the low-level
circuit implementation. The technique applies column-based XOR
extraction, which relies on a regular structure of the adder trees and
the presence of sum generation and carry propagation components.
A lack of those components at the right places indicates a potential

2

bug. The limitation of the method is the requirement that adders
be represented with XOR gates, which may not be the case in a
synthesized circuit.

C. Divider Circuit Implementation

There are two main approaches to implementing arithmetic divi-
sion: 1) division by addition/subtraction, such as SRT, restoring, and
array dividers; and 2) division by reciprocation, or multiplication
by the inverse via Newton-Raphson or Goldsmith algorithm [22].
A wide majority of practical division algorithms, such as SRT,
resort to a look-up table (LUT) based implementation, a table-
based combinational logic technique studied in [6][23][4]. These
algorithms use a reference table, precomputed for a particular value
of the divisor, implemented as a LUT. Such an implementation is
particularly well-suited for the division by a constant. The dividend
X is divided by the divisor D to produce quotient Q and the
remainder R, which provides an input carry for the next block.

Fig. 1: High school division operation and the basic divider block.

The author of [4] prove that this computation is still valid for
any arbitrary radix of X. Thus the division can be implemented as
a single block handling n bits, or n blocks handling one bit each,
or any intermediate values. Another divider architecture analyzed in
this paper is based on restoring algorithm, discussed in Section IV.

III. VERIFICATION

Our verification scheme is based on the functional extraction
method of [1] [24], reviewed briefly in the next Section. We first
illustrate our method for table-based divider with a single block of
the divider, and then show how to verify the whole circuit unrolled
by the required number of blocks. We will also discuss the case
when the divider is faulty, with bugs injected in the implementation.

A. Function Extraction

Algebraic approach used in this work relies on polynomial
representation of the circuit specification and its gate level model. In
an arithmetic circuit, such as adder or a multiplier, the input-output
relationship is well defined, with the outputs and inputs appearing
on the opposite sides of the equation, e.g. S = A+B for an adder,
and Z = A · B for a multiplier. The operands A, B are given as
polynomials in a binary expansion form, e.g., A =

∑n−1
i=0 ai. Right-

hand side of those equations is referred to as the Input Signature,
denoted Sigin; it provides the specification of the arithmetic circuit.
Similarly, the binary encoding of the result on the left-hand side of
the equation (here S for the adder, or Z for the multiplier) is a
polynomial called the Output Signature, and denoted Sigout.

The goal of function extraction is to extract a unique bit-level
polynomial function from the low-level hardware implementation
(typically gate-level), in order to compare it to the expected spec-
ification Sigin. This is accomplished by transforming the output
signature Sigout using the algebraic expressions of the circuit
components (logic gates, etc.) into the input signature [9][10]. This
process is referred to as the backward rewriting, since it performs

rewriting in a reverse-topological order. It uses the following alge-
braic models for the basic logic gates:

¬a = 1− a

a ∧ b = a · b
a ∨ b = a+ b− a · b
a⊕ b = a+ b− 2(a · b)

(1)

In the above equation and throughout the paper, we will use
symbols ¬, ∧, ∨, and ⊕ to indicate Boolean operations of the
complement, AND, OR, and XOR, respectively. The signs −, +,
and · will denote algebraic operations of subtraction, addition, and
multiplication, respectively.

This model of function extraction cannot be directly applied to the
generic dividers that do not have a close-form input/output relation.
Specifically, they are governed by the following I/O relation:

X = D ·Q+R, with R < D (2)

However, in the case of a constant divider, input divisor D is a
known constant making the analytical I/O relationship straightfor-
ward. In this context, Sigin = X and Sigout = D ·Q+R.

B. Verification of the Divider

In the iterative, divide-by-constant circuit, the divider is parti-
tioned into a number of blocks, each having the structure shown in
Figure 1(b). Figure 2 shows a generic configuration, where multiple
blocks can be cascaded together.

Fig. 2: Generic divider block for X divided by const. d.

Let N be the number of blocks, and k the size in bits of the
dividend X . If k/N is not an integer, the most significant block will
have some inputs appended with the respective numbers of zeros.
The bit size m of Ri and Ci is the same, and it is determined by
the size of the divisor D.

Consider block Bi, shown in Figure 1. In the following, index
i refers both to the block position and to the chunk of the
respective word, Ci, Xi, Qi, Ri, associated with the given block.
The following summarizes the terms and parameters of the divider
block:

• D - divisor (a hardwired constant), D 6= 0
• Xi, Ci - dividend and carry-in for block Bi

• Qi, Ri - quotient and remainder for block Bi

• n = dk/Ne - number of bits of Xi and Qi

• m = (blog2 (D − 1)c+ 1) - bit-width of Ci and Ri

C. Single Block Verification

To explain the basic idea, consider a single-bit block architecture,
n = 1, for the division by constant D = 3, with m = 2.

In the LUT-based division algorithm, each basic block is imple-
mented as a lookup table with entries for all possible inputs, Ci, Xi,
and the values of the corresponding outputs Qi, Ri.

3

(a) Function Table (b) Truth table of LUT

Fig. 3: Divide-by-3 block specification tables

Figure 3 shows the specification tables (i.e., the function table
and the LUT truth table) for the basic block of divide-by-3 divider.
From the function table, one can derive the word-level input/output
relation, shown in Equation 3, where Ri is fed to the next block
as Ci−1. To verify the functionality of the basic block, we need to
prove that the Equation 3 is correct for every input assignment.

2Ci +Xi = 3Qi +Ri (3)

The coefficient 2 of Ci comes from the fact that Ci and Xi form
one word. In radix 2, the term Ci =

∑n−1
k=0 2kCik, where Cik refers

to bit k of block i. The coefficient 3 of Qi is determined by the
value of the divisor, D = 3 in our example.

Equation 4 shows the generic bit-level equation for an arbitrary
block i. It is derived from Eq. 3 by substituting for a given block
i, Ci = 2Ci1 + Ci0 and Ri = 2Ri1 +Ri0, since m = 2.

4Ci1 + 2Ci0 +Xi0 = 3Qi0 + 2Ri1 +Ri0 (4)

The left-hand-side of equation (4) is the Input Signature, Sigin
while the right-hand-side is the Output Signature, Sigout, as defined
above in Section III-B. In order to prove correctness, we just need
to rewrite Sigout using algebraic expressions of the logic-gate
implementation and compare the resulting expression with Sigin.
If the two expressions are equal, the circuit is proved to be correct.

(a) Correct circuit (b) Faulty circuit

Fig. 4: Gate level implementation of a single-block, one-bit architecture
of a X/3 divider. Output signature Sigout = 3Q0 + 2R1 + R0; the
expected input signature is Sigin = 4C1 + 2C0 +X0.

To illustrate the rewriting process, consider the one-block gate-
level implementation of the division of X by constant 3, shown
in Figure 4. The output signature for this circuit, using the index
notation in the figure, is Sigout = 3Q0 + 2R1 + R0. Each of
the output variables, Q0, R1, R0 are successively replaced by the
algebraic expression of their respective gates, as defined by Eq. 1.
Each of the internal signals are in turn replaced by the expression of
the logic gate they represent, etc., until the final expression contains
only the primary input variables. In a functionally correct divider
circuit, as in Figure 4(a), the resulting input signature should be

Sigin = 4C1 + 2C0 +X0 (5)

However, the expression Sig obtained by rewriting Sigout through
the logic gates of the correct 1-bit divisor is actually equal to:

Sig = (4C1 + 2C0 +X0)− 2C0C1X0 (6)

which does not match the expected specification Sigin in Eq.(5).

The reason for this mismatch can be understood by analyzing the
truth table in Figure 3. Note that the table contains some entries,
namely {C1C0X} = 110, 111, for which the quotient Q0 cannot
be encoded in one bit, with the remainder being strictly less than the
divisor; hence those entries are considered invalid. In this case the
combination {C1C0} = 11 is invalid. This can be translated into
a logic constraint, expressed by expression C1C0 = 0 and used to
simplify the resulting signature. Indeed, substituting C1C0 = 0 into
Equation 6 reduces it to the expected Sigin, proving that the circuit
in Figure 4(a) is correct.

D. Vanishing Monomials

In our verification work, the monomials that correspond to invalid
entries, like C1C0 above, are defined as vanishing monomials, since
in the functionally correct implementation they always evaluate to
zero. The vanishing monomials help to remove the redundant terms
during the verification process. The vanishing monomials and the
corresponding simplifying constraints can readily be derived from
the architecture and the value of the divisor, see Figure 3, where
invalid input assignments correspond to don′t-care conditions.
The following theorem relates vanishing monomials to the input
signature computed for the circuit.

Theorem: The input signature Sigin of the circuit contains
vanishing monomials associated with the dc-set of the truth table,
regardless whether these don’t-care products are used during
synthesis or not.

Proof. Let F be some single-bit output of the arithmetic function,
corresponding to one of the output columns of the truth table.
It can be implemented as a disjunction (OR) of product terms.
Since product term is a conjunction (AND) of literals of individual
variables, it is represented in algebraic form as a product of the
corresponding variables. This is also true for products that include
complemented variables; for example a∧¬b = a·(1−b) = a−a·b,
and similarly for arbitrary variable polarities. Hence, any product
from the valid entries of the truth table may contain vanishing
monomials. The same argument applies to the case when the input
variables (in this case C) appear in different product terms; a
disjunction of those terms will also create a product of the respective
literals, according to the Equation (1): a∨ b = a+ b− a · b, where
a, b can be any product term. As a result, the signature expression
generated during rewriting may contain product of variables that
correspond to vanishing monomials.

We illustrate this theorem for the circuit with the truth table in
Figure 3. Assume that output Q is implemented without don’t-cares
as Q = C1 ∧ ¬C0 ∨ ¬C1 ∧ C0 ∧ X . This can be represented
algebraically using Equation 1 as

Q = C1 + C0X − C1C0 − C1C0X (7)

The invalid product C1C0 (to be removed from the final expression)
will therefore appear as a vanishing monomial, even if the circuit
is synthesized without don′t-cares. The result of the theorem can
be readily extended to an arbitrary form, including product of sums
and factored forms, which also include AND and OR operations.

The generation of vanishing monomials is illustrated here with
an example of a single-bit block of the divide-by-5 circuit. For the
divisor D = 5, the remainder R and carry-in C are strictly less than
5, and hence will be encoded with m = 3 bits. This means that the
don’t care entries 101, 110, 111 for variables C2C1C0 are invalid
and can be treated as don′t-care. Even if they are not provided
explicitly, they can be readily extracted knowing the bit size of the
divisor.

4

We can compute the algebraic expression for the invalid entries
using algebraic rewriting discussed in Section III-A. The logical
sum of the three terms can be computed in the algebraic domain as

C2(1− C1)C0 + C2C1(1− C0) + C2C1C0

= C2C1 + C2C0 − C2C1C0

(8)

This is in fact an algebraic equivalent of the Boolean cover of
the three terms, with prime implicants, C2C0, C2C1, C2C1C0, or,
equivalently {1−1, 11−, 111}. Of the three, only the first two suf-
fice to represent the logic, since each of them dominates C2C1C0,
which can be removed. Hence only the first two monomials, C2C0

and C2C1 are needed and are identified as vanishing monomials.
In summary, the automatic generation of vanishing monomials

(for single and multiple blocks) includes the following steps:

1) Extract the unused (dc) entries from the truth table.
2) Compute algebraic expression of the product terms associated

with the dc entries.
3) Remove the negative and redundant monomials.

E. Verifying Multiple Blocks

Figure 5 shows a block level diagram of an X/3 divider using a
two-block architecture, each with n = 2 and m = 2.

Fig. 5: Division of a 4-bit divide-by-3 in a two-bit block Divider Circuit.
Rewriting is applied in the opposite direction to the data flow.

In the following, to simplify the notation, a single-letter index i
represents the bit position of the entire circuit, rather than the block
number. The internal signals are indexed by a pair, ij, referring
to block i, bit j. The rewriting starts with the primary outputs
Q3, Q2, Q1, Q0, R1, R0, with the output signature

Sigout = 3(8Q3 + 4Q2 + 2Q1 +Q0) + 2R1 +R0 (9)

It propagates through both blocks, B1, B0 until all the primary
inputs, C1, C0, X3, X2, X1, X0 have been reached. The expected
input signature at the primary inputs of the divider circuit is

Sigin = 32C1 + 16C0 + 8X3 + 4X2 + 2X1 +X0 (10)

In this particular stand-alone two-block configuration, C1 and C0

are set to zero, but in general they are coming from a 2-bit remainder
of the higher level block. However, as explained earlier, the rewriting
process will generate additional terms related to the product of
the carry-in signals, the vanishing monomials, defined in Section
III-D. The actual input signature obtained by the rewriting contains
additional terms, denoted below as F (V,C,X), in addition to the
expected input signature of Equation 10.

Sig = F (V,C,X) + 32C1 + 16C0 + 8X3 + 4X2 + 2X1 +X0 (11)

The term F (V,C,X) is a polynomial containing the terms associ-
ated with the vanishing monomials V , in this case C11, C10, and
with the redundant terms containing C and X . In a correct circuit,
F (V,C,X) will reduce to zero, proving that the circuit meets the
specification.

Vanishing monomials expressed in terms of C11, C10 for block
0 gets transformed in terms of C11, C10 and X for block 1. Hence

the size of these terms may grow during the successive rewriting
steps over multiple blocks, which in a correct circuit will evaluate
to zero. This build-up of a vanishing expression can be large, and it
may significantly decelerate the performance of function extraction,
often known as fat-belly effect. In a large circuit, this effect is even
more pronounced since the vanishing monomials may be rewritten
into more complex (yet redundant) monomials, causing a potential
blow-up in the size of the computed signature.

One way to address this problem is to remove redundancy
(vanishing monomials and boundary conditions) at the boundary
of a given block before propagating the signature to the next
block. However, in an unrolled circuit, synthesized across the block
boundaries, it may be impossible to determine the boundary between
the adjacent blocks. Fortunately, in the case of the division by a
constant this information is readily available from the invalid (don’t-
care) entries in the lookup table, as explained in Section III-D, unless
those signals are renamed by the synthesis process. The extraction,
detection, and removal of vanishing monomials is fully automated
in our methodology.

F. Faulty Circuit Verification

Let us consider the divide-by-3 circuit discussed in the previous
sections. The output signature is Sigout = 3Q0 + 2R1 + R0 and
the expected input signature of the correct circuit is Sigin = 4C1+
2C0 +X0. Assume that the fault is caused by swapping the second
and third entries in the truth-table of Figure 3. Then the gate-level
implementation will be different, as shown in Figure 4(b), causing
the algebraic transformations also to be different. As a result, the
input signature obtained by backward rewriting, after removing the
vanishing monomials, is Sigin = −C1X0 + C0 + 2X0 + 4C1.
The mismatch between such obtained expression and the expected
specification indicates that the circuit is faulty.

It should be noted that if there is a fault in the circuit that
causes R11R10 = 1, then the removal of this product as a
vanishing monomial will not result in a wrong conclusion about
the correctness of the circuit. Assume that block B1 in Figure 5 is
faulty and block B0 is correct. Rewriting process starts from signals
Q01, Q00, R01, R00 and transforms them into signals C01, C00,
X01, X00. Since block B0 is correct, the output signature across
this block is also correct and linear after removing the vanishing
monomials. In the next step, even when the vanishing monomial
C01C00 (which in block B1 becomes R11R10) is set to zero, the
individual signals R11, R10 are not removed from the expression
and they are rewritten up to primary inputs, regardless of what
their actual value is. This is also apparent by examining Equation
6, where the product C0C1 is removed as vanishing monomial,
but the individual variables C0 and C1 are not! If block B1 is
faulty, the final computed signature will not match the correct signa-
ture/specification, because the expressions for R11, R10, propagated
to the PIs, are faulty. Therefore, removing the vanishing monomials
in any of the earlier stages will not affect the correctness of the
signature in the subsequent blocks; and they never appear as a
product in the output signature for a given block since the output
signature is linear.

IV. RESULTS AND ANALYSIS

The program implementing the described verification method was
coded in Python and C++ and the experiments were conducted on
a 64-bit Intel Core i7-7600 CPU, 2.80GHz × 2, with 31.0 GB of
memory. The circuits were generated using an open-source hardware
generator, FloPoCo [26], and synthesized using ABC tool [27] onto
standard cell, gate-level circuits.

Four sets of results are presented, including: two types of un-
rolling schemes (modular and unrolled), verification of a restoring
constant divider architecture, and a numerical simulation. We also
show the results for a generic, restoring divider architecture.

5

Fig. 6: Restoring Generic Divider [25].

A. Modular Architecture

In the Modular architecture, each block is instantiated the re-
quired number of times (depending upon the dividend bit-width).
In this scheme, the boundary between adjacent blocks is known
and the vanishing monomials are extracted and removed from the
signature at each block, before rewriting the next block in series.
The experiments include both correct (bug-free) and faulty circuits.
The faults were emulated by randomly injecting multiple faults in
the truth table into the valid portion of the look-up table. The invalid
part of the table is not affected since it is used as a don’t-care in
synthesis.

Table I shows the verification run time for the divide-by-constant,
one-bit block architecture using Modular scheme for a 32-bit
dividend x. The results are shown for divisors value of up to 283
and a 9-bit remainder.

The table shows that the verification time does not change
monotonically with the size of the divisor and can be explained
by the content of look-up table. This non-monotonic behavior can
be explained by examining the content of the truth tables for the
corresponding divisions and its dependence on the value of the
divisor. Consider, for example, a Divide-by-17 in Table I. The size
of the LUT is 6 bits (one bit for the dividend X and 5 bits for the
carry-in C, same as the size of the remainder). Of the 64 entries in
the LUT only 35 are used, while the remaining 29 entries are invalid
and treated as don’t-cares. Whereas in the Divide-by-31, with the
same size of the remainder and the LUT table, 62 out of 64 entries
are used, and only two entries are redundant.

Table I also shows the results for the Modular, two-bit and four-
bit block architectures for different divisors. The lower verification
performance for these circuits compared to a one-bit architecture is
caused by a drastically larger number of gates per block, preventing
efficient removal of vanishing monomials during rewriting.

B. Flat Unroll

In Flat Unroll architecture the circuit is unrolled and synthesized
(optimized) across the block boundaries. This causes any hierarchi-
cal information about the block boundaries to be lost, making the
verification process harder. Since under this scheme the vanishing
monomials are not removed at the block boundaries, the verification
problem is significantly more memory intensive. As a result, the
largest value of the dividend verified under this methodology is 29.

C. Restoring Constant Divider

We also tested an alternative architecture based on a standard
restoring divider [22], in which the divisor D has been hardwired
to a particular constant. The restoring divider has been implemented
and synthesized using ABC. Constants from the bits of D are
propagated through and used to optimize the overall circuit. Our

rewriting-based verification technique has been integrated with the
ABC data structure as a customized polynomial rewriting command
&polyn. Unfortunately, ABC was unable to verify the circuits
beyond 16 bits, resulting in a segmentation fault over 24 GB.

(a) Divisor = 257 (b) Divisor = 283

Fig. 7: Exhaustive simulation run time for divisors D=257 and D=283
for different implementations, as a function of the dividend bit-width.

D. Simulation Based Verification

We simulated the divide-by-constant dividers for different size
of divisors D and dividend X , ranging from 28 to 232. We
used Modelsim SE 10.0 on a Xeon 5650 processor with 6 cores
(2.67GHz), 24 GB of RAM, and 350 GB free hard disk space.

Figure 7 shows the simulation results for D = 257 and 283 for
the following three cases: 1) LUT-based implementation generated
by FloPoCo [26]; 2) Gate-level implementation synthesized with
ABC; and 3) Restoring constant divider implemented with ABC.
As shown in Figure 7, the simulations are faster for gate-level
than the LUT-based implementation. In contrast to our rewriting
approach, the value of divisor D does not have significant impact
on the simulation time.

The results show that the simulation approach is competitive for
dividend bit-widths up to 22 bits (simulation time slightly longer
than of our approach, for constant dividers). With higher bit-widths
however, simulation time becomes prohibitive. For example, the
simulation for dividends larger than 28 bits required 15,264 seconds
(4h24m), with memory out of 24GB for larger bit-widths. Further-
more, the simulation based experiments shown here are run on a
Xeon 5650 with six cores, which is a much more powerful machine
compared to all of the other results (Core i7-7600 CPU with two
cores). Regardless, our technique still outperforms simulation based
verification schemes.

E. Restoring Generic Divider

This section demonstrates the applicability of our approach to the
implementation of constant divider by a generic restoring divider,

6

TABLE I: Verification results for the divide-by-constant divider circuit using our technique for (1) Modular 1-bit block, 2-bit block, and
4-bit block architecture with a 32-bit dividend X (Figure 2). TO = 1200s, MO = 16GB; (2) Restoring Constant Divider with a 16-bit
dividend X . TO = 1200s, MO = 24GB. SF = Segmentation Fault.

Modular Unroll Flat Unroll Restoring (constant)1-bit Block 2-bit Block 4-bit Block

Divisor # Rem.
Bits #Gates Time (s)

No Bugs #Bugs Time (s)
Bugs #Gates Time (s)

No Bugs #Gates Time (s)
No Bugs #Gates Time (s)

No Bug #Gates Time (s)
No Bug

3 2 712 0.06 1 0.06 665 2.26 895 0.90 105 2.96 107 0.66
11 4 1919 1.15 2 1.11 1917 2.23 4045 MO 300 42.6 241 2.42
17 5 1763 0.81 3 .75 2236 5.83 2492 MO 192 6.68 252 4.13
31 5 1825 0.31 5 0.27 1676 0.85 10163 MO 282 169 234 10.4
61 6 3715 3.50 8 3.56

Memory Out Time Out

263 9.12
89 7 4520 13.5 5 16.71 324 10.9

113 7 3652 6.68 7 7.21 284 3.82
139 8 5542 27.9 7 94.75 342 71.1
191 8 4736 9.67 5 11.36 316 SF
251 8 6410 110.4 5 113.5 295 14.53
257 9 6549 22.56 7 23.0 297 16.9
283 9 8951 643.8 9 638.4 336 22.3

shown in Figure 6. Table II shows the preliminary data for the
verification run-time of a restoring divider over an AIG. As the
complexity of the design increases beyond 1000 gates, the abc tool
crashes with a segmentation fault, with a memory consumption
of 20GB. Under this methodology, the divider circuit is heavily
optimized and hence any boundary information between different
modular blocks is lost, as shown in (Figure II). Our constant divider
methodology is not scalable to generic dividers as of yet and cur-
rently the simulation based verification outperforms our technique.
However, it demonstrates the significance of its applicability to
generic divider circuits. We aim to empirically analyze these dividers
in more depth in future to find the vanishing monomials, if any, to
overcome the memory explosion problem.

TABLE II: Verification run time for the Restoring generic Divider.
#Bits show the bit-width of dividend. SF = segmentation fault.

Bits Divisor
Max.Value # Gates Time (s)

This work
Time (s)

Simulation
3 8 119 0.00 0.05
4 16 216 0.01 0.15
5 32 341 0.08 0.19
6 64 494 0.59 0.45
7 128 675 4.78 0.60
8 256 884 36.96 0.97
9 512 1121 SF:264 3.4
10 1024 1386 SF:232 13.55
20 1048576 4325 SF:240 MO

V. CONCLUSION AND FUTURE WORK

The paper presents a methodology to formally verify gate-level
implementation of divide-by-constant divider architectures using
algebraic rewriting verification. To the best of our knowledge this is
the first attempt to accomplish such a verification without resorting
to more labor-intensive methods, such as inductive systems and
theorem provers. Our method can be automated and applied to a
wide range of divider circuits. The results show that it is more
efficient than the exhaustive simulation for circuits with operands
larger than 22 bits(for constant dividers). We aim to improve
the scalability of our technique for generic restoring division
algorithm by exploiting block-level modularity (Figure 6) and
detecting potential vanishing monomials. This initial work on the
verification of constant dividers will offer insight into other divider
architectures: non-restoring, SRT, and for floating point division
algorithms. The future work will include a more challenging issue
of bug identification and removal in faulty dividers.

REFERENCES

[1] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits using function extraction,” IEEE
Trans. on CAD of Integrated Circuits and Systems, 2016.

[2] T. Pruss, P. Kalla, and F. Enescu, “Equivalence Verification of Large
Galois Field Arithmetic Circuits using Word-Level Abstraction via
Gröbner Bases,” in DAC’14, 2014, pp. 1–6.

[3] R. W. Doran, “Special cases of division,” in J. UCS The Journal of
Universal Computer Science. Springer, 1996, pp. 176–194.

[4] H. F. Ugurdag, F. De Dinechin, Y. S. Gener, S. Goren, and L.-S. Didier,
“Hardware division by small integer constants,” IEEE TC, 2017.

[5] T. Granlund and P. L. Montgomery, “Division by invariant integers
using multiplication,” SIGPLAN Not., pp. 61–72, Jun. 1994.

[6] A. Paplinski, “Cse2306/1308 digital logic lexture notes, lecture 8,”
Lecture Notes, 2006.

[7] H. Sharangpani and M. Barton, “Statistical analysis of floating point
flaw in the pentium processor,” Intel Corporation, 1994.

[8] R. E. Bryant, “Bit-level analysis of an srt divider circuit,” in 33rd
(DAC). ACM, 1996, pp. 661–665.

[9] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification of
Gate-level Arithmetic Circuits by Function Extraction,” in 52nd DAC.
ACM, 2015, pp. 52–57.

[10] C. Yu and M. J. Ciesielski, “Efficient parallel verification of galois
field multipliers,” ASP-DAC’17, 2017.

[11] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986.

[12] R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Functions
with Binary Moment Diagrams,” in DAC’95.

[13] M. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyre, “Taylor Expansion
Diagrams: A Compact Canonical Representation with Applications to
Symbolic Verification,” in (DATE-02), 2002, pp. 285–289.

[14] H. Rueß, N. Shankar, and M. K. Srivas, “Modular verification of srt
division,” in (ICCAD). Springer, 1996, pp. 123–134.

[15] R. Kaivola and K. Kohatsu, “Proof engineering in the large: formal ver-
ification of pentium® 4 floating-point divider,” International Journal
on STTT, vol. 4, no. 3, pp. 323–334, 2003.

[16] J. Harrison, “Formal verification of ia-64 division algorithms,” Theorem
Proving in Higher Order Logics, pp. 233–251, 2000.

[17] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz et al., “Stable: A new
qf-bv smt solver for hard verification problems combining boolean
reasoning with computer algebra,” in DATE, 2011, pp. 155–160.

[18] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining grobner basis
with logic reduction,” in DATE’16, 2016, pp. 1–6.

[19] J. Lv, P. Kalla, and F. Enescu, “Efficient groebner basis reductions for
formal verification of galois field arithmetic circuits,” IEEE Trans. on
CAD, vol. 32, no. 9, pp. 1409–1420, 2013.

[20] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in Formal Methods in Computer-
Aided Design (FMCAD), 2017.

[21] M. Haghbayan, B. Alizadeh, P. Behnam, and S. Safari, “Formal
verification and debugging of array dividers with auto-correction mech-
anism,” in VLSI Design and 2014 13th ICES. IEEE, 2014, pp. 80–85.

[22] I. Koren, Computer Arithmetic Algorithms. Universities Press, 2002.
[23] F. De Dinechin and L.-S. Didier, “Table-based division by small integer

constants,” in (ISARC. Springer, 2012, pp. 53–63.
[24] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting

based on and-inverter graphs,” IEEE TCAD of ICS, vol. 37, no. 9, pp.
1907–1911, Sep. 2018.

[25] A. L. Ruiz, E. C. Morales, L. P. Roure, and A. G. Ríos, Algebraic
Circuits. Springer, 2014.

[26] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[27] A. Mishchenko et al., “ABC: A System for Sequential Synthesis and
Verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

