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ABSTRACT
This paper presents a fast and effective computer algebraic method
for analyzing and verifying non-linear integer arithmetic circuits
using a novel algebraic spectral model. It introduces a concept of
algebraic spectrum, a numerical form of polynomial expression; it
uses the distribution of coefficients of the monomials to determine
the type of arithmetic function under verification. In contrast to
previous works, the proof of functional correctness is achieved by
computing an algebraic spectrum combined with local rewriting of
word-level polynomials. The speedup is achieved by propagating
coefficients through the circuit using And-Inverter Graph (AIG)
datastructure. The effectiveness of the method is demonstrated
with experiments including standard and Booth multipliers, and
other synthesized non-linear arithmetic circuits up to 1024 bits
containing over 12 million gates.
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1 INTRODUCTION
Importance of arithmetic verification problem grows with an in-
creased use of arithmetic modules in modern systems, such as signal
processing, security engineering, and cryptographic applications.
There has been a considerable progress in formal verification of
arithmetic designs in the last decade. In particular, computer algebra
techniques that use polynomial representation of a gate-level arith-
metic circuit, show significant advantages in analyzing arithmetic
circuits [17][5][25][18][21][19]. This is in contrast to other formal
methods, such as BDDs or SAT, that rely on a strictly Boolean circuit
representation. The verification problem using computer algebraic
methods is typically formulated as a proof that the implementation
satisfies the specification, which is solved by polynomial division
or by algebraic rewriting.

The techniques that play a major role in synthesis and verifica-
tion, are abstraction and reverse engineering [22][27]. Formal verifi-
cation techniques can benefit greatly from abstracting functionality
of the circuits being verified. For example, word-level abstraction
specifically focuses on extracting a word-level representation of
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the function implemented by a gate-level design, which can signifi-
cantly reduce the complexity of verifying a large system. In the past,
the verification and abstraction problems relied entirely on explicit
functional methods. In this paper, we describe an implicit approach
to verification and word-level abstraction of arithmetic circuits by
introducing a novel representation, called algebraic spectrum. We
describe an efficient algorithm for constructing such a spectrum, a
compact way to represent the polynomial model of the circuit.

2 BACKGROUND
2.1 Formal Verification of Arithmetic Circuits
Verification of arithmetic circuits is performed using a variant of
combinational equivalence checking, referred to as arithmetic com-
binational equivalence checking (ACEC) [21]. Several approaches
have been applied to verify an arithmetic circuit against its func-
tional specification, including decision diagrams, satisfiability, theo-
rem proving, and computer algebra. Different variants of canonical,
graph-based representations have been proposed, including Binary
Decision Diagrams (BDDs) [2], Binary Moment Diagrams (BMDs)
[3], Taylor Expansion Diagrams (TED) [4], and other hybrid dia-
grams. While BDDs have been used extensively in logic synthesis,
their applicability to verification of arithmetic circuits is limited by
the prohibitively high memory requirements imposed by complex
arithmetic circuits, such as multipliers. Boolean satisfiability (SAT)
and satisfiability modulo theories (SMT) solvers have also been
applied to solve ACEC problems [9]. Several state-of-the-art SAT
and SMT solvers have been applied to those problems, including
MiniSAT[23], Lingeling[1], Boolector [16], and others. However, the
complexity of ACEC for large arithmetic circuits has been shown to
be extremely high [18] [25]. Alternatively, the problem can be mod-
eled as equivalence checking against an arithmetic specification
given by a bit-vector formula, but the complexity of this method is
the same as the ACEC method [25].

2.2 Computer Algebra Approach
Computer algebra methods are considered to be best suited to solve
arithmetic verification problems [25][19]. Using these methods, the
verification problem is formulated as a proof obligation, stating that
the implementation satisfies the specification [17][5][25][18][21][19].
Computer algebra offers a way to accomplish this using the theory
of Gröbner basis and the ideal membership testing to check if the
specification belongs to the ideal generated by the implementation.
It can be solved by performing a series of divisions of the specifica-
tion polynomial by a set of polynomials (bases) representing circuit
components and checking if the remainder of the division reduces
to zero.

An alternative approach to arithmetic verification of gate-level
circuits has been proposed using an algebraic rewriting technique,
described in more detailes in the next section. With this approach,
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the polynomial representing the encoding of the primary outputs
(the output signature) is transformed into a polynomial expressed in
terms of the primary inputs (the input signature) [5]. This method,
in fact, extracts an arithmetic function implemented by the cir-
cuit, hence it is termed function extraction. It has been successfully
applied to standard, non-optimized 512-bit multipliers due to the
simplification of polynomials achieved during rewriting [25] [21].
Although these approaches show good performance in verifying
arithmetic circuits with well-defined structure, they suffer from
polynomial size explosion when applied to synthesized and heavily
bit-optimized gate-level netlists.

A comprehensive review of the state-of-the-art computer alge-
bra methods for arithmetic circuit verification can be found in [19].
The authors formally prove soundness and completeness of the two
complementary approaches: the polynomial rewriting method of
[25][21] and the ideal membership testing of [17]. The difficulties
of verifying bit-optimized and technology mapped multipliers have
been discussed as well. They also propose an incremental approach
to arithmetic circuit verification by column-based polynomial reduc-
tion. In addition, computer algebra methods have been applied to
logic debugging [6, 8, 13] and approximations of arithmetic circuits
[7, 24].

2.3 Function Extraction using Algebraic
Rewriting

This section briefly reviews the function extraction technique that
motivation our approach. It computes a unique bit-level polynomial
function implemented by the circuit directly from its gate-level
implementation [5]. It uses an algebraic model of the circuit, with
logic gates represented by the following algebraic expressions, with
circuit signals treated as Boolean variables.

¬a = 1 − a

a ∧ b = a · b

a ∨ b = a + b − a · b

a ⊕ b = a + b − 2a · b

(1)

Functional correctness of the circuit is proved by rewriting the
word-level expression of the output signature, Siдout , into a word-
level expression at the primary inputs (PI), the input signature, Siдin .
The rewriting process successively applies Eq. (1), combined with
algebraic simplification of the polynomial, to arrive at each step at
a unique polynomial expression. Specifically, such an expression
is a pseudo-Boolean polynomial in the variables associated with
the set of signals separating primary inputs from primary outputs
(PO), referred to as a cut. The rewriting is performed in reverse-
topological order, from PO to PI: once a given variable (output of a
gate) is substituted by an algebraic expression of the gate inputs, it
will be eliminated from the current cut expression and will never
appear again. As a result, the final polynomial (Siдin ) is expressed
only in the primary input variables, and hence provides the function
computed by the circuit.

This paper describes a novel and more efficient approach to
function extraction by applying two new concepts: 1) generating
polynomial coefficients without explicit polynomial rewriting, using
AIG traversal; and 2) spectral analysis to reason about the function
of the intermediate polynomials by analyzing their coefficients.

a3 a2 a1 a0
b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
z7 z6 z5 z4 z3 z2 z1 z0

N(i) 0 1 2 3 4 3 2 1
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Figure 1: Spectrum of a four-bit Multiplier

3 SPECTRAL METHOD
3.1 Algebraic Spectrum
Consider the n-bit integer multiplication scheme, shown in Figure
1(a) for n = 4. The ovals represent partial product terms that are
added column-wise for each bit of the result. Let i be a bit position
of the result, i = 0, ..., 2n − 1. Note that N (2n − 1)=0 since there are
no partial product with coefficient of 22n−1.

Let Ci = 2i be the coefficient associated with column i of the
result, and let Ni be the number of product terms added at that bit
position. The polynomial expression corresponding to the encoded
word-level result is then:

F =
n−1∑
j=0

2jaj ·
n−1∑
k=0

2kbk =
n−1∑
j=0

n−1∑
k=0

2j+k (ajbk ) (2)

It is easy to see that each monomial 2j+kajbk , for any pair of values
of j,k , has the same coefficient, Ci = 2j+k , where i = j + k . The
number of monomials with coefficient Ci are represented using
Ni . For example, for a 2-bit unsigned multiplier with output F =
(a0 + 2a1)(b0 + 2b1) = a0b0 + 2a0b1 + 2a1b0 + 4a1b1, there is one
monomial with coefficient 20=1, two monomials with coefficient
21=2, and one monomial with coefficient 22=4. Hence, the set of
coefficients for this polynomial, listed in the increasing order of
coefficient value, is C = {1, 2, 2, 4} and the set N = {1, 2, 1}.

Similarly, for the 4-bit multiplier shown in Figure 1, we have:
N = {1, 2, 3, 4, 3, 2, 1}, where the values of Ni are listed in the
increasing order of the output bits, from LSB to MSB. In general,
the value of Ni for an n-bit multiplier, with bits i = 0, ..., 2n− 2, can
be computed as follows:

Ni =

{
i + 1 if i≤ n − 1
2n − 1 − i if i≥ n

(3)

The distribution of coefficients values Ni (Ci ) defines the algebraic
spectrum of the polynomial and can be used to determine the type
of the arithmetic function under investigation.

Definition 1: Given a polynomial P =
∑
Cipi , where Ci is an

integer coefficient and pi is a monomial, product of some variables.
Let C = {Ci } be the set of coefficients of P and let Ni represent
the number of product terms pi with the same coefficient Ci . The
algebraic spectrum S for polynomial P is then defined as an ordered
set of pairs (Ni ,Ci ), for all distinct values of coefficients Ci . That
is, S = {(Ni ,Ci )}. Example 1: Let P = 3p3 + 4p2 + 4p4 + 6p1, with
monomials ordered by increasing values of its coefficients, Then
the set of distinct coefficients is C = {3, 4, 6} and the spectrum
S = {(1, 3), (2, 4), (1, 6)}.
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Spectrum S can be visualized by a graph, as shown in Figures
1, 2, and 3. The shape of the spectrum (triangle for two-input mul-
tiplier, bell curve for 3-operand multipliers, or constant line for
adders, etc.) remains the same for a given arithmetic function and
does not depend on the number of bits. Furthermore, it does not
depend on the internal structure of the circuit but only on the arith-
metic function it implements. A correct shape of the spectrum is
one evidence of circuit correctness, but one still needs to perform
canonical rewriting for final confirmation. However, an incorrect
spectrum can effectively prove that the circuit is buggy (Section 4).
Figure 2 shows the spectra for two-operand (2-variable spectrum)
and three-operand multipliers (3-variable spectrum) for different
bit-widths.
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Figure 2: Spectral diagrams for multipliers for { 2,3,4,5 } bit-widths.

Algebraic spectrum for an adder can be similarly derived. Clearly,
for ann-bit binary adderwith two inputsA,B, the sum S =

∑n−1
i=0 2iai+∑n−1

i=0 2ibi =
∑n−1
i=0 2i (ai + bi ). Hence the number of coefficients

Ci with value 2i is exactly two, and the spectrum is a constant
function, Ni=2, where i = 0, ...,n − 1. Again, the (n + 1)st element
of N associated with the carry out bit is not shown since N2n=0.
Algebraic spectrum for a 4-bit adder is shown in Figure 3. Similar
formulas and graphs can be derived for other datapath operators,
such as MAC, fused multiply/add operation, and others1.
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Figure 3: Spectrum of a four-bit Adder: F = A + B .

Note that in a monolithic arithmetic function (i.e., function com-
posed of only one arithmetic operator) each monomial contains the
same number of variables. For example: an adder

∑
2i (ai + bi )

will contain only single-variable terms, regardless of the num-
ber of operands; a 2-input multiplier

∑
2j+k (ajbk ) contains only

two-variable terms; a 3-operand multiplier will contain only three-
variable terms; etc. However, a fused multiplierA+B ·C =

∑
2iai +

1More algebraic spectrum are available in our online spectrum gallery. https://ycunxi.
github.io/cunxiyu/spectrum_gallery.html

∑
2j+k (bjck ) will contain both a single-variable terms {ai } and two-

variable terms {bjck }. In this case the polynomial P representing
the function implemented by the circuit is composed of a set of
polynomials {P(k)}, where k is the number of variables in each
product term pi . The spectrum is then computed for each value of
k , denoted Sk . An example of such a spectrum is shown in Figure
4 for a fused multiply-add function, A + B · C , composed of spec-
tra S1 (with single-variable monomials) and S2 (with two-variable
monomials).
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Figure 4: Spectrum of a 3-bit MAC composed of a single-variable and
two-variable spectra, S = {S1, S2}.

The idea of partitioning the spectrum into components {Sk }, each
for a different monomial size (number of variables), also applies
to intermediate polynomials generated during rewriting. It can
prove useful in determining when a particular arithmetic function
appears in the implementation, as explained in the next section. For
example, during rewriting of a sub-expression P = 2C + S of a half-
adder, with carryC = a · b and sum S = a + b − 2ab, the expression
P = 2C + a + b − 2ab may temporarily exist before C is substituted
with ab, which subsequently reduces P to a + b. This means that
some intermediate polynomials maymap into one-variable and two-
variable spectra, S1, S2. The same is true for the multiplier whose
intermediate polynomials may contain monomials with three or
more variables, while the final spectrum is only of S2 type.

3.2 Using Spectrum for Function Extraction
As mentioned earlier, the spectrum of an arithmetic circuit depends
only on the arithmetic function it computes and not on its gate-
level implementation. This is illustrated with an example of a 3-bit
unsigned Booth and a CSA multiplier. Figure 5 summarizes the
rewriting process by showing the initial spectrum (identical for
both multipliers); one intermediate spectrum for each multiplier
"half way" through the rewriting process; and the final, identical
spectra.

At each step, the intermediate polynomial P is divided into sev-
eral sets, depending on the number of variables in its monomials,
and mapped onto the corresponding spectrum Sk . The first col-
umn in the figure represents S1, the second represents S2, and the
third represents S3. The initial polynomial P = Siдout , contains only
single-variablemonomials, namely z0+2z1+4z2+8z3+16z4+32z5, cor-
responding to the word-level encoding of the output, and is the
same for both multipliers. Hence the initial spectrum is the same
for both, as shown in Figure 5(a). During rewriting, the size of some
monomials increases to 2 or 3 variables, which is captured by the
spectra S2 and S3, shown in Figure 5(b). Upon the completion of
the rewriting the polynomial associated with the primary inputs,
P = Siдin , contains only monomials of size 2, in both multipliers.
Hence, the spectrum S2 of the two multipliers is identical, if the
circuit is a bug-free multiplier. As expected, the intermediate spectra
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for the two multipliers are different, since they are implemented
using different algorithms and have different internal structures.
However, the final spectra of both circuits at the primary inputs
match the spectrum S2 of the multiplication, showing that they
both implement the multiplication function. A buggy circuit may
contain monomials with a larger number of variables with coeffi-
cients that do not match those of the correct circuit, which will be
an indication of a bug.
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(b) Intermediate spectra.
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Figure 5: Spectra of a three-bit Booth-multiplier and a CSA-multiplier of
the four recorded expressions.

3.3 Using Spectrum in Arithmetic Verification
According to Definition 1, algebraic spectrum is a more abstract
and compact representation of an arithmetic function compared
to a polynomial representation. However, the spectrum alone, as
defined here, is not canonical. This is because it only deals with the
distribution of coefficients and does not differentiate between the
variables in the product terms pi . As a result, different polynomials
may map into the same spectrum, as shown in this example.

Example 2: Let P1 and P2 be the polynomial expressions of two
multiplications, P1 = (a0 + 2a1)(b0 + 2b1) = a0b0 + 2a0b1 + 2a1b0 +
4a1b1, and P2 = (a1 + 2a0)(b0 + 2b1) = a1b0 + 2a1b1 + 2a0b0 +
4a0b1; obviously they are not functionally equivalent. The difference
between P1 and P2 is in the bit composition of the first operands.
Yet, the spectrum of both polynomials are identical, S = S2 =
{(1, 1), (2, 2), (1, 4)}, each with distinct coefficients C = {1, 2, 4}.
Hence, such defined spectrum is not canonical.

To make the representation canonical and useful for verification,
we need to relate it to the input variables, while avoiding computing
the input signature by the expensive backward rewriting of the
entire circuit. This can be accomplished by local rewriting of the
polynomial associated with the spectrum, as explained next.

4 SPECTRUM COMPUTATIONWITHOUT
EXPLICIT REWRITING

In this section we introduce a method that extracts algebraic spec-
trum without performing explicit rewriting. We shall rely here on a
functional representation of the circuit using an And-Inverter Graph
(AIG) representation of the gate-level circuit. In particular we will
use AIG to propagate the weights through adder trees, present in
some form in most arithmetic circuits.

4.1 Adder-tree Extraction and Coefficient
Propagation

AIG provides a compact way to represent combinational logic cir-
cuits. It is a directed acyclic graph whose internal nodes represent
two-input AND functions and the edges are labeled to indicate an
optional signal inversion [15][12] [14]. Any Boolean network can
be transformed into an AIG using DeMorgan’s law. We will use
AIG structure to extract adder trees by detecting XOR3 andMAJ3
functions with identical inputs since they represent the sum and
the carry of the adder, respectively. ABC provides a method to ex-
tract adder-tree structure from a gate-level netlist[14]. It does it by
computing cuts, sets of AIG nodes called leaves, such that each path
from PIs to n passes through the leaf nodes. A cut isK-feasible if the
number of leaves does not exceed K . This approach, implemented
by an ABC procedure &atree, proceeds as follows:

• Compute 3-feasible cuts of AIG nodes and their truth tables.
• Store the cuts in the hash table ordered by their inputs.
• Detect pairs of 3-input cuts with identical inputs, such that
the Boolean functions of the two cuts with shared inputs
belong to the NPN classes of XOR3 and MAJ3 [11].

As soon as the XOR3 and MAJ3 pairs are detected, the HAs and FAs
are automatically extracted. Details are provided in [11].

Our approach to compute spectrum by extracting adder-tree is
based on the observation that arithmetic circuits, such asmultipliers,
are implemented with an adder-tree and a partial product generator,
in some form. Extraction of adder trees has important advantage
over the computation of individual gates since the adder function
can be represented by a linear relation: a + b + cin = 2C + S ,
where a,b, cin are the binary inputs and C, S are the carry-out and
sum of of the full adder (FA), respectively. Similar formula can
be obtained for a half-adder (HA), with cin = 0. With this, the
signal weights, represented by coefficients Ci , needed to construct
the spectrum can be computed by simply propagating the weights
from the known linear polynomial of the output signature Siдout =∑
2ir i through the adder tree, until they reach the non-linear partial

product generator logic. During the backward propagation, the
weight of the carry bit of HA/FA is always 2× the weights of the
inputs (which always have the same weight), and the weight of the
sum bit is the same as theweight of the inputs. Once the propagation
reaches partial products, standard backward rewriting is applied,
but now to a relatively shallow logic. This can significant reduce the
computation efforts compared to backward rewriting on adder-tree
[26], since weight propagation requires much less computations
than regular backward rewriting. Propagation of the weights in
a Booth multiplier, which contains recorded partial products, is
also possible; it is discussed later in Example 4. We first illustrate
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the algorithm of constructing spectrum with an example of a 2-bit
multiplier, Figures 6 and 7.
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Figure 6: A synthesized two-bit multiplier. (a) gate-level netlist; (b) AIG
representation. Values inside the nodes represents node names.
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Figure 7: Coefficient propagation in a 2-bit multiplier: (a) Netlist with
adder-tree detected; (b) Constructed algebraic spectrum S = S2.

Example 3 (CSA multiplier): A mapped gate-level netlist of
a 2-bit CSA-multiplier and its AIG are shown in Figure 6. Here ni
denotes node labeled i in the figure. Computing 3-feasible cuts in
the AIG reveals the following matching: node n14 is an XOR3 and
node n12 is a MAJ3 on shared inputs (n10, n11, 0). Similarly, nodes
n18 and n16 form an XOR3, MAJ3 pair on inputs (n12, n15, 0). This
corresponds to two half-adders (HA), composed of gates (18, 16),
and gates(14, 12), shown in Figure 7(a). The weights of all the signals
are then propagated backward from PO to PI in reverse-topological
order, using linear expression 2C + S = a + b for the HAs.

First, the weights (signal coefficients) of HA(18,16) are propa-
gated to cut f1. As a result, the weight of gate 18 (signal S) is 22.
Hence, both inputs of gates 18,16 must have weight 22. Similarly, at
cut f0, the weights of inputs of gates 14 and 12 are 21. The algorithm
terminates at this point since there are no more HA or FA nodes.
The spectrum, shown in Figure 7(b) represents the distribution of co-
efficients at cut f0, with outputs of gates 9, 10, 11, 15. The spectrum
indicates that the circuit is a 2-bit multiplier, but, as noted earlier,
we need additional steps to find the composition of the operands
to confirm the results. On the other hand, the incorrect spectrum
can be used to quickly determine that the circuit is buggy, i.e., it
does not satisfy the expected arithmetic function. This is explained
by the following theorem regarding the necessary condition for a
circuit to be a multipliers.

Theorem: The circuit is a multiplier only if its spectrum S is a
single 2-variable spectrum S2 that satisfies Eq.(3).

Proof: Assume that S contain other spectra Si than S2, i.e., i = 1,
or i > 2. Then, according to Definition 1, the functional specifi-
cation F of the circuit must include at least one monomial with a

single variable or with more than two variables, which contradicts
the definition of multiplication (Eq.2). Similarly, if S = S2, but S2
does not match Eq.(3) of the multiplier’s spectrum, then some of
the coefficients do not match the definition of the multiplication
operation (Eq.2), and hence it cannot be a correct multiplier.

4.2 Extracting Arithmetic Function from the
Spectrum

In order to get the full information and extract the true arithmetic
function of the circuit, a canonical polynomial expression in terms
of PI needs to be derived. This can be readily accomplished by
combining the computation of the spectrum with local rewriting of
the associated polynomial, as explained by the following.

Definition 2: Let S={ (N1,C1), . . . , (Nm ,Cm ) } be an algebraic
spectrumwith coefficientsC = {C1, ...,Cm }. By definition, each ele-
ment (Ni ,Ci ) of S is associated with Ni monomials, {p1i ,p

2
i , ...,p

Ni
i },

each with a coefficient Ci . The polynomial corresponding to spec-
trum S , with variables representing the monomials pi , is called a
Spectral Polynomial, SP(S), and has the following form: SP(S) =∑m
i=1(

∑Ni
j=1Cip

j
i ).

By construction, it is a linear polynomial reconstructed from
the spectrum that represents a polynomial expression of a cut at a
set of variables {pi }. To obtain the input signature, Siдin we just
need to express each variable pi in terms of the primary inputs
PI, which can be done by backward rewriting. In the case of an
adder, each pi is already a primary input, PI, so the SP(S) is the
input signature, Siдin . For a standard, non-Booth multiplier, with
simple partial products, each variable pi is a product of some input
variables ajbk . And in the case of a Booth multiplier, each pi can
be expressed as a non-linear polynomial in terms of PI, typically a
sum of products of the input variable (see Example 5).

Example 4: Consider again the 2-bit multiplier and its spectrum
in Figure 7. The spectrum derived by the adder-tree extraction corre-
sponds to the cut f0 and has the following form: {(1, 1), (2, 2), (1, 4)}.
The corresponding spectral polynomial is SP = p1 + 2p2 + 2p3 + 4p4,
where the individual variables pi correspond to outputs of gates
9, 10, 11, 15, respectively. They can be traced by backward rewriting
to PI as follows: p1 = a0b0;p2 = a0b1;p3 = a1b0;p4 = a1b1. This
results in the input polynomial Siдin = a0b0+2a0b1+2a1b0+4a1b1,
a canonical representation of the 2-bit multiplier circuit.

In summary, the idea is to first generate the spectrum of the linear
portion of the circuit and then use it to derive the input signature
by polynomial rewriting based on Definition 2. In contrast to the
original rewriting approach, the polynomial rewriting is done here
only on a local non-linear portion of the circuit. By combining
spectral analysis and local backward rewriting we can generate a
canonical arithmetic function representation, Siдin , and use it to
solve the verification and abstraction problems.

4.3 Handling Booth Multipliers
We conclude this section by analyzing the application of our ap-
proach to Booth multipliers. The logic of partial product generators
depends on the multiplication algorithm used in constructing the
multiplier. For example, CSA-multiplier uses an AND array, while
Booth-multiplier uses recoded partial products. Nonetheless, once
the adder-tree is detected, the algebraic spectrum is extracted in
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the same fashion, regardless of the type of the multiplier. Booth-
encoded multiplier has more complex partial product logic with
fewer product terms in order to minimize area and the delay of
the multiplier. The following example illustrates our approach of
spectrum construction and polynomial generation by fast local
rewriting using a 3-bit Booth-multiplier.

Example 5 (3-bit radix-4 Booth-multiplier): Polynomial ex-
pressions of all the partial products of this Booth multiplier are
shown in Eq.(4). Arithmetic function of the circuit is the weighted
sum of these partial products, with the weights shown on the left.
Note that some of the partial products contain three variables. How-
ever, it can be shown that those products are redundant, because
they cancel each other in the weighted sum. In Eq.(4 the under-
lined 3-variable terms will be cancelled. For example, a2b1b2, which
appears in pp31 and pp21, will get cancelled in the partial sum
25pp31 + 24pp21, so that 24a2b1b2+23(−2a2b1b2)=0. The same is
true for other 3-variable terms, resulting in a 2-variable spectrum
only. The remaining 2-variable terms form the final polynomial:
aob0+2a0b1+2a1b0+4a1b1+4a2b0+4a0b2+8a2b1+8a1b2+16a2b2,
representing a 3-bit multiplication. This polynomial will be derived
from the spectrum polynomial, as discussed in Example 4,

22 · 23 : pp31 = a2b1b2

22 · 22 : pp21 = −2a2b1b2 + a1b1b2 + a2b1 + a2b2

22 · 21 : pp11 = −2a1b1b2 + a0b1b2 + a1b1 + a1b2

22 · 20 : pp01 = −2a0b1b2 + a0b1 + a0b2

23 : pp30 = a2b0b1 − a2b1

22 : pp20 = −2a2b0b1 + a1b0b1 − a1b1 + a2b0

21 : pp10 = −2a1b0b1 + a0b0b1 − a0b1 + a1b0

20 : pp00 = −2a0b0b1 + a0b0

(4)

5 RESULTS

Table 1: CPU runtime (seconds) of verifying pre- and post-synthesized
gate-level CSA multipliers compared to techniques in [25][21][19][20];
source: gate-level netlist from [25]. MO = Memory out of 16 GB. TO = Time
Out (3 hrs). ES = Error state reported.

Size Pre-synthesized Post-synthesized
[25] [21] [19] [20] Ours [25] [19] [20] Ours

64 1.9 TO 801 4.0 0.1 5.5 1073 418 0.1
128 8.1 - ES ES 0.8 40 ES ES 0.9
256 33 - - - 7.8 285 - - 8.4
512 130 - - - 30 MO - - 42
1024 MO - - - 9638 MO - - 9817

The technique described in this paper has been implemented
in C++ and integrated with the ABC tool [14]. The program takes
as input the gate-level netlist in Verilog, BLIF or AIG format, and
produces algebraic spectrum and the final polynomial, Siдin , of
the circuit. The experiments involved computing the spectrum for
various multipliers and arithmetic combinational datapath circuits
in the original (non-optimized) and synthesized versions, with syn-
thesis performed by ABC. The benchmarks involve the CSA and
radix-4 Boothmultipliers, taken from [25][10][19]. The experiments
were conducted on a PC with Intel(R) Xeon CPU E5-2420 v2 2.20
GHz x12 with 32 GB memory.

Two types of experiments were performed: 1) verification, in
which the computed polynomial Siдin is compared with the given

specification polynomial; and 2) function abstraction, where the
computed spectrum is analyzed to determine the type of arith-
metic function implemented by the circuit. The verification results
are compared with the state-of-the-art approaches presented in
[25][19][20]. For word-level abstraction, our approach is compared
with the simulation graph-based technique [22] and computer alge-
bra method of [27]. The comparison with the contemporary formal
methods such as SAT, SMT and commercial tools are not provided
in this paper; computer algebraic approach has already been shown
to be orders of magnitude faster than those techniques [25].

Table 2: Runtime (seconds) of verifying multipliers implemented using
different architectures; source: AIG from [25][21][19][20]. MO = Memory
out of 16 GB. TO = Time Out (3 hrs).UAT = Unstructured adder-tree detected.
ES = Error state reported.

n-bit MULT benchmarks [25] [21] [19] [20] Ours

128

btor; btor-resyn3;
abc; abc-resyn3;
CSA; CSA-resyn3;

MO TO ES ES 1.5

abc-booth;
abc-booth-resyn3 MO TO ES ES 0.5

sp-ar-rc [AOKI] - TO ES ES 1.5
bp-ar-rc-dc2(resyn3) [AOKI];
sp-ar-rc-dc2(resyn3) [AOKI] - - - - UAT

256
abc; abc-resyn3 MO TO - - 14
abc-booth; abc-booth-resyn3 MO TO - - 3.5
abc-buggy; abc-booth-buggy - - - - UAT

1024 abc; abc-resyn3 - - - - 9482
abc-booth; abc-booth-resyn3 - - - 139

Verification results for the original and synthesized multipli-
ers are shown in Tables 1 and 2. The CPU times are compared
to [25][21][19][20]. Multipliers btor are generated from Boolec-
tor [16]; CSA-multipliers are taken from [25]. The multipliers in
the third and fourth rows of Table 2 are AOKI multipliers [10],
used in works of [21][19][20]. The naming of AOKI multipliers
is explained in [21]. Multipliers abc and abc-booth are generated
by ABC, using command [gen -N -m] and [%blast -b]. The results
show that the verification based on spectral method is significantly
faster than the other methods. Furthermore, while it has been pre-
viously shown that synthesis can adversely affect the verification
efficiency [25][19], the spectral method is equally efficient for both
synthesized and non-synthesized multipliers. However, three fail-
ure cases were observed while applying spectral method to AOKI
multiplier circuits. They include circuits bp-wt-cl (Booth multiplier
with Wallace-tree and Carry-look-ahead adder), sp-ar-rc-dc2; and
bp-ar-rc-dc2 (optimized Booth and standard multipliers with Ripple
Carry Adder). For these circuits, the process of constructing spectra
did not work due to the presence of unstructured adder tree (UAT)
component that could not be handled by the ABC adder extraction
feature. Note that verifying large Booth-multiplier is much faster
than verifying the CSA and ABC-generated multipliers. This is
because Booth multiplier has much smaller adder-tree and signifi-
cantly fewer gates. Specifically, the tested 1024-bit CSA-multiplier
has over 12 million gates, and 1024-bit Booth-multiplier has only
3million gates.

We also tested the application of our spectral method on buggy
multipliers. The last row of Table 2 includes two 256-bit buggy mul-
tipliers, abc-buggy and abc-booth-buggy. The bugs are introduced
randomly inside the adders of these two multipliers. As a result,
the clean adder-tree could not be detected, because it does not exist.
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One interesting observation is that in the AIG of a buggy circuit,
the place where the adder-tree breaks is close to the bug location.
This can be used in the future to identify and find bug location.

Abstraction results: extracting word-level specifications from
gate-level complex arithmetic circuits are shown in Table 3. We
use three types of circuits that are constructed with multiplication
and addition, and a three-operand multiplier. The multiplications in
these datapaths are implemented using ABC-generated multipliers.
It shows that our approach can efficiently identify the word-level
operations in the gate-level datapaths. In contrast, the approach of
[22] cannot tell whether there exists multiplication or addition in
these circuits; and our approach is much faster than [27].
Table 3: Results of extracting word-level specification from complex arith-
metic circuits. TO = TIME OUT (3600 s); error = Wrongly reported that no
multiplication nor addition component exist; TO*: finished in 23,760 s.

256-bit [22] [27] Ours
F=A×B+C error TO* 1×mult;1×add 44.7 s
F=A×(B+C) error TO 2×mult 45.1 s
F=A×B×C error TO 1×mult3 68.5 s

6 CONCLUSIONS
The paper presents a novel spectral analysis method for arithmetic
circuit verification. Our approach extracts and analyzes an arith-
metic function implemented by the circuit by efficient computation
of the input signature polynomial; explicit algebraic rewriting is
largely avoided by propagating signal weights through an adder
tree using AIG adder-tree extraction. The method described here
can be used for word-level function extraction of an arithmetic
circuit and for functional checking of the gate-level circuit against
its polynomial specification. The experimental results show that it
outperforms the currently known approaches in verification and
abstraction for gate-level arithmetic circuits.

This work is naturally limited to integer combinational arith-
metic circuits whose function can be expressed by polynomials;
it is not directly applicable to dividers, transcendental, and other
functions that do not have a closed-form polynomial representation.
The benefit of fast spectrum computation and adder-tree extrac-
tion strongly depends on the structure of the circuit; the more
unstructured the adder-tree portion is, the more burden will fall
on algebraic rewriting instead of the spectrum computation. For
architectures with highly unstructured (or absent) adder trees the
adder-tree extraction may even fail, and the size of intermediate
polynomials that need to be computed instead may become prohib-
itively large.

Applying spectral method to debugging and analysis of faulty
circuits requires more insight. In principle, a bug in a circuit will
manifest itself by the fact that the final input polynomial does not
match the expected spectral specification. However, those circuits
are even more prone to failing the adder-tree extraction and can
cause exponential blowup in the polynomial size during rewriting.
In any case, the method can be used to quickly disprove that whether
the circuit implements the expected type of the function, such as
multiplication.
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