
Taylor Expansion Diagrams:
A Canonical Representation for

Verification of Data Flow Designs
Maciej Ciesielski, Senior Member, IEEE, Priyank Kalla, Member, IEEE, and

Serkan Askar, Student Member, IEEE

Abstract—A Taylor Expansion Diagram (TED) is a compact, word-level, canonical representation for data flow computations that

can be expressed as multivariate polynomials. TEDs are based on a decomposition scheme using Taylor series expansion that allows

one to model word-level signals as algebraic symbols. This power of abstraction, combined with the canonicity and compactness of

TED, makes it applicable to equivalence verification of dataflow designs. The paper describes the theory of TEDs and proves their

canonicity. It shows how to construct a TED from an HDL design specification and discusses the application of TEDs in proving the

equivalence of such designs. Experiments were performed with a variety of designs to observe the potential and limitations of TEDs for

dataflow design verification. Application of TEDs to algorithmic and behavioral verification is demonstrated.

Index Terms—Register transfer level—design aids, verification; arithmetic and logic structures—verification; symbolic and algebraic

manipulation.

Ç

1 INTRODUCTION

DESIGN verification is the process of ensuring the
correctness of designs described at different levels of

abstraction during various stages of the design process.
Continuous increase in the size and complexity of digital
systems has made it essential to address verification issues
at early stages of the design cycle. Identification of errors
early in the design process can significantly expedite time-
to-market and make the design and verification process
more efficient. To address this problem, robust, automated
verification tools that can handle designs at higher levels of
abstraction, such as at the behavioral and algorithmic levels,
need to be developed.

Having matured over the years, formal design verifica-
tion methods, such as theorem proving, property and
model checking, equivalence checking, etc., have found
increasing application in industry. Canonic graph-based
representations, such as Binary Decision Diagrams (BDDs)
[1], Binary Moment Diagrams (BMDs) [2], and their variants
(PHDDs [3], K*BMDs [4], etc.) play an important role in the
development of computer-aided verification tools. In
particular, these representations have been used to model
RTL designs and prove their equivalence at the bit level.
However, these representations are limited in their ability to
represent algebraic computations in abstract, higher-level,
symbolic forms.

This motivated us to derive a new representation for
high-level design descriptions, termed Taylor Expansion
Diagrams (TEDs). This representation is particularly suited
for modeling and supporting equivalence verification of
designs specified at the behavioral level [5], [6]. Similar to
BDDs and BMDs, TED is a canonical, graph-based represen-
tation. In contrast to BDDs and BMDs, TED is based on a
nonbinary decomposition principle, modeled along the
Taylor’s series expansion [7], [8]. With this new data
structure, word-level signals are represented as algebraic
symbols, raising the level of abstraction of the design to
higher levels. The power of abstraction of TEDs allows one to
represent behavioral dataflow designs efficiently, with
memory requirements several orders of magnitude smaller
than those of other known representations.

TEDs are applicable to modeling, symbolic simulation,
and equivalence verification of dataflow and algorithm-
dominant designs, such as digital signal processing for audio,
video, and multimedia applications and embedded systems.
Computations performed by those designs can often be
modeled as polynomials and can be readily represented with
TEDs. The test for functional equivalence is then performed
by checking the isomorphism of the resulting graphs. While
the application of TEDs is limited to those designs whose
computations can be expressed as multivariate polynomials,
their use for algorithmic verification is particularly appeal-
ing. Experimental results confirm the potential of TEDs for
equivalence verification of dataflow oriented designs at the
behavioral and algorithmic levels.

The paper is organized as follows: Section 2 reviews
contemporary canonic representations and discusses their
limitations. A complete theory of TED is described in Section
3. The composition operations and analysis of their complex-
ity are presented in Section 4, while Section 5 describes the
construction of TEDs for RTL designs and discusses their
limitations. Section 6 describes the implementation of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006 1

. M. Ciesielski and S. Askar are with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amhers, MA 01003.
E-mail: {ciesiel, saskarl}@ecs.umass.edu.

. P. Kalla is with the Electrical and Computer Engineering Department,
University of Utah, 50 S. Central Campus Dr., MEB 4512, Salt Lake City,
UT 84112. E-mail: kalla@ece.utah.edu.

Manuscript received 9 Apr. 2004; revised 26 Mar. 2006; accepted 19 Apr.
2006; published online 20 July 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0118-0404.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

TED package along with some experimental results.
Finally, Section 7 concludes the paper with comments
and directions for future work.

2 REVIEW OF PREVIOUS WORK

In the realm of high-level design verification, the issue of
the abstraction of symbolic, word-level computations has
received a lot of attention. This is visible in theorem-proving
techniques, automated decision procedures for Presburger
arithmetic [9], [10], techniques using algebraic manipulation
[11], symbolic simulation [12], or in decision procedures
that use “a combination of theories” [13], [14], etc. Term
rewriting systems, particularly those used for hardware
verification [15], [16], [17], etc., also represent computations
in high-level symbolic forms. The above representations
and verification techniques, however, do not rely on
canonical forms. For example, verification techniques using
term rewriting are based on rewrite rules that lead to
normal forms. Such forms may produce false negatives,
which may be difficult to analyze and resolve. In contrast,
the TED representation proposed in this paper not only
abstracts bit-vector arithmetic computations as polyno-
mials, but also represents them canonically.

Various forms of high-level logics have been used to
represent and verify high-level design specifications. Such
representations are mostly based on quantifier-free frag-
ments of first order logic. The works that deserve particular
mention include: the logic of equality with uninterpreted
functions (EUF) [18] and with memories (PEUFM) [19], [20],
and the logic of counter arithmetic with lambda expressions
and uninterpreted functions (CLU) [21]. To avoid exponen-
tial explosion of BDDs, equivalence verification is generally
performed by transforming high-level logic description of
the design into propositional logic formulas [21], [14], [19]
and employing satisfiability tools [22], [23] for testing the
validity of the formulas. While these techniques have been
successful in the verification of control logic and pipelined
microprocessors, they have found limited application in the
verification of large data-path designs.

Word-Level ATPG techniques [24], [25], [26], [27], [28]
have also been used for RTL and behavioral verification.
However, their applications are generally geared toward
simulation, functional vector generation, or assertion prop-
erty checking, but not so much toward high-level equiva-
lence verification of arithmetic datapaths.

2.1 Decision Diagram-Based Representations

Reduced Ordered Binary Decision Diagrams (ROBDDs, or
BDDs, for short) [1], along with their efficient implementa-
tion as software packages [29], are credited with signifi-
cantly increasing the efficiency of equivalence checking for
logic designs. BDD represents a set of binary valued
decisions in a rooted directed acyclic graph (DAG), based
on a recursive Shannon decomposition. This decomposi-
tion, combined with a set of reduction rules, makes the
resulting diagram minimal and canonical for a given
ordering of variables [1].

BDDs have found wide application in a number of
verification problems, including combinational equivalence
checking [30], implicit state enumeration [31], symbolic
model checking [32], [33], etc. However, as the designs have
grown in size and complexity, the size-explosion problems of

BDDs have limited their scope. Most BDD-based verification
systems, such as SMV [33] and VIS [34], have been successful
in verifying control-dominated applications. However, for
designs containing large arithmetic datapath units, BDDs
have not been very successful due to prohibitive memory
requirements, especially for large multipliers.

Numerous attempts have been made to extend the
capabilities of verification engines to target arithmetic units.
The majority of these methods are based on generic Word
Level Decision Diagrams (WLDDs), graph-based representa-
tions for functions with a Boolean domain and an integer
range. Most of the WLDD representations are based on a
point-wise, or binary, decomposition principle. Different
flavors of Boolean decomposition (Shannon, Davio, Reed-
Muller, etc.) are used to decompose functions with respect
to their bit-level variables, leading to different Decision
Diagrams. In addition to BDDs [1] and Partitioned BDDs [35],
they include edge-valued BDDs (EVBDDs) [36] and func-
tional decision diagrams (FDDs, KFDDs) [37], [38]. By
extending BDDs to allow numeric leaf values, point-wise
decomposition leads to different Multiterminal BDDs, or
MTBDDs [39], and Algebraic Decision Diagrams (ADDs)
[40]. However, the decomposition at each variable is still
binary. As a result, a linear increase in the size of input
variables results, in the worst case, in an exponential
increase in the size of decision diagrams. A thorough
review of WLDDs can be found in [41].

2.2 Moment Diagram-Based Representations

Binary Moment Diagrams, BMDs, *BMDs [2], and their
derivatives (PHDDs [42], K*BMD [4], etc.) depart from a
point-wise decomposition and perform a decomposition of
a linear function based on its first two moments. BMD uses
a modified Shannon’s expansion, in which a binary variable
is treated as a (0, 1) integer:

fðxÞ ¼ x � fx þ x0 � fx0 ¼ x � fx þ ð1� xÞ � fx
¼ fx þ x � ðfx � fxÞ;

where “�”, “+”, and “�” denote algebraic multiplication,
addition, and subtraction, respectively. The above decom-
position is termed moment decomposition, where ðfx � fxÞ
is the linear moment and fx the constant moment. In this form,
f can be viewed as a linear function in its variables x, and
ðfx � fxÞ as the partial derivative of f with respect to x.

Binary moment diagrams provide a concise representa-
tion of integer-valued functions defined over bit vectors
(words), X ¼

P
i 2ixi, where each xi is a binary variable.

The binary moment decomposition is recursively applied to
each variable xi. In such a defined BMD, multiplicative
constants reside in the terminal nodes. The constants can
also be represented as multiplicative terms and assigned to
the edges of the graph, giving a rise to Multiplicative Binary

Moment Diagram, or *BMD [2]. An example of such a
diagram is depicted in the left part of Fig. 1. Several rules
for manipulating edge weights are imposed on the graph to
allow the graph to be canonical. For linear and multilinear
expressions, *BMD representation is linear in the number of
variables. However, the size of *BMD for Xk, where X is an
n-bit vector, is OðnkÞ. Thus, for high-degree polynomials
defined over words with large bit-width, as commonly

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

encountered in many DSP applications, *BMD remains an
expensive representation.

K*BMD [4] attempts to make the BMD decomposition
more efficient in terms of the graph size. This is done by
admitting multiple decomposition types, such as Davio,
Shannon, etc., to be used in a single graph and allowing
both the multiplicative and additive weights assigned to the
graph edges. However, a set of restrictions imposed on the
edge weights to make it canonical makes such a graph
difficult to construct.

2.3 Symbolic Algebra Methods

Many computations encountered in behavioral design
specifications can be represented in terms of polynomials.
This includes digital signal and image processing designs,
digital filter designs, and many designs that employ
complex transformations, such as DCT, DFT, FFT, etc.
Polynomial representations of discrete functions have been
explored in literature long before the advent of contempor-
ary canonical graph-based representations. Particularly,
Taylor’s expansion of Boolean functions has been studied
in [43], [44]. However, these works mostly targeted classical
switching theory problems: logic minimization, functional
decomposition, fault detection, etc. The issue of abstraction
of bit-vectors and symbolic representation of computations
for high-level synthesis and formal verification was not
their focus.

Polynomial models of high-level design specifications
have been used recently in the context of behavioral
synthesis for the purpose of component mapping [45],
[46], [47]. A polynomial representation is created for each
component (operator) from the library and the polynomials
are matched by comparing their coefficients. However,
storing and comparing large matrices of such coefficients is
inefficient for large multivariate polynomials. The TED
representation described in this paper can provide a more
robust data structure for performing these tasks efficiently
due to its compact and canonical structure.

Several commercial symbolic algebra tools, such as
Maple [48], Mathematica [49], and MatLab [50], use
advanced symbolic algebra methods to perform efficient
manipulation of mathematical expressions. These tools
have also been used for the purpose of polynomial
mapping, namely, to perform simplification modulo poly-
nomial [47]. However, despite the unquestionable effective-
ness and robustness of these methods for classical
mathematical applications, they are less effective in the
modeling of large scale digital circuits and systems. We
believe that these methods can benefit from canonical

representations such as TED, in particular for component
matching and equivalence checking.

It is interesting to note that symbolic algebra tools
offered by Mathematica and the like cannot unequivocally
determine the equivalence of two polynomials. The equiva-
lence is checked by subjecting each polynomial to a series of
expand operations and comparing the coefficients of the two
polynomials ordered lexicographically. As stated in the
manual of Mathematica 5, Section 2.3.1, “there is no general
way to find out whether an arbitrary pair of mathematical
expressions are equal” [49]. Furthermore, Mathematica “can-
not guarantee that any finite sequence of transformations will take
any two arbitrarily chosen expressions to a standard form”
(Mathematica 5, Section 2.62). In contrast, the TED data
structure described in the sequel provides an important
support for equivalence verification by offering a canonical
representation for multivariate polynomials.

3 TAYLOR EXPANSION DIAGRAMS

A known limitation of all decision and moment diagram
representations is that word-level computations, such as
AþB, require the decomposition of the function with
respect to bit-level variables A½k�; B½k�. Such an expansion
creates a large number of variables in the respective
diagram framework and requires excessive memory and
time to operate upon them. In order to efficiently represent
and process the HDL description of a large design, it is
desirable to treat the word-level variables as algebraic
symbols, expanding them into their bit-level components
only when necessary.

Consider the *BMD for A � B, shown in Fig. 1, which
depicts the decomposition with respect to the bits of A and
B. It would be desirable to group the nodes corresponding
to the individual bits of these variables to abstract the
integer variables they represent and use the abstracted
variables directly in the design. Fig. 1 depicts the idea of
such a symbolic abstraction of variables from their bit-level
components.

In order to achieve the type of abstracted representation
depicted above, one can rewrite the moment decomposition
f ¼ fx þ x � ðfx � fxÞ as f ¼ fðx ¼ 0Þ þ x � @ðfÞ@x . This equation
resembles a truncated Taylor series expansion of the linear
function f with respect to x. By allowing x to take integer
values, the binary moment decomposition can be generalized
to a Taylor’s series expansion. This way one can represent
integer variables without expanding them into bits.

3.1 The Taylor Series Expansion

Let fðxÞ be a continuous, differentiable function defined
over the domain R of real variables. The Taylor series
expansion of f with respect to variable x at an initial point,
x0 ¼ 0, is represented as follows [8]:

fðxÞ ¼
X1

k¼0

1

k!
ðx� x0Þkfkðx0Þ

¼ fð0Þ þ xf 0ð0Þ þ 1

2
x2f 00ð0Þ þ . . . ;

ð1Þ

where f 0ðx0Þ, f 00ðx0Þ, etc., are first, second, and higher order
derivatives of f with respect to x, evaluated at x0 ¼ 0. The
Taylor series expansion can be suitably adapted to
represent computations over integer and Boolean variables,

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 3

Fig. 1. Abstraction of bit-level variables into algebraic symbols for

F ¼ A � B.

as commonly encountered in HDL descriptions. Arithmetic
functions and dataflow portions of those designs, can be
expressed as multivariate polynomials of finite degree for
which a Taylor series is finite.

Let fðx; y; . . .Þ be a real differentiable function in
variables fx; y; . . .g. Assume an algebra (R; �;þ) over real
numbers R. Using the Taylor series expansion with respect
to a variable x, function f can be represented as:

fðx; y; . . .Þ ¼ fðx ¼ 0; y; � � �Þ þ xf 0ðx ¼ 0; y; � � �Þ

þ 1

2
x2f 00ðx ¼ 0; y; � � �Þ þ . . . :

The derivatives of f evaluated at x ¼ 0 are independent of
variable x and can be further decomposed with respect to
the remaining variables, one variable at a time. The
resulting recursive decomposition can be represented by a
decomposition diagram, called the Taylor Expansion Dia-
gram, or TED.

Definition 1. The Taylor Expansion Diagram, or TED, is a
directed acyclic graph ð�; V ; E; T Þ, representing a multi-
variate polynomial expression �. V is the set of nodes, E is the
set of directed edges, and T is the set of terminal nodes in the
graph. Every node v 2 V has an index varðvÞ which identifies
the decomposing variable. The function at node v is determined
by the Taylor series expansion at x ¼ varðvÞ ¼ 0, according to
(1). The number of edges emanating from node v is equal to the
number of nonempty derivatives of f (including fð0Þ) with
respect to variable varðvÞ. Each edge points to a subgraph
whose function evaluates to the respective derivative of the
function with respect to varðvÞ. Each subgraph is recursively
defined as TED with respect to the remaining variables.
Terminal nodes evaluate to constants.

Starting from the root, the decomposition is applied
recursively to the subsequent children nodes. The internal
nodes are in one-to-one correspondence with the successive
derivatives of function f with respect to variable x
evaluated at x ¼ 0. Fig. 2 depicts one-level decomposition
of function f at variable x. The kth derivative of a function
rooted at node v with varðvÞ ¼ x is referred to as a k-child of

v; fðx ¼ 0Þ is a 0-child, f 0ðx ¼ 0Þ is a 1-child, 1
2! f
00ðx ¼ 0Þ is a

2-child, etc. We shall also refer to the corresponding arcs as

0-edge (dotted), 1-edge (solid), 2-edge (double), etc.

Example. Fig. 3 shows the construction of a TED for the

algebraic expression

F ¼ ðAþBÞðAþ 2CÞ ¼ A2 þA � ðBþ 2 � C þ 2 �B � CÞ:

Let the ordering of variables be A;B;C. The

decomposition is performed first with respect to

variable A. The constant term of the Taylor expan-

sion F ðA ¼ 0Þ ¼ 2 �B � C. The linear term of the expan-

sion gives F 0ðA ¼ 0Þ ¼ Bþ 2 � C; the quadratic term is
1
2 � F 00ðA ¼ 0Þ ¼ 1

2 � 2 ¼ 1. This decomposition is depicted

in Fig. 3a. Now, the Taylor series expansion is applied

recursively to the resulting terms with respect to

variable B, as shown in Fig. 3b, and subsequently with

respect to variable C. The resulting diagram is depicted

in Fig. 3c and its final reduced and normalized version

(to be explained in Section 3.2) is shown in Fig. 3d. The

function encoded by the TED can be evaluated by adding

all the paths from nonzero terminal nodes to the root,

each path being a product of the variables in their

respective powers and the edge weights, resulting in

F ¼ A2 þABþ 2AC þ 2BC.

Using the terminology of computer algebra [51], TED

employs a sparse recursive representation, where a multi-

variate polynomial pðx1; � � � ; xnÞ is represented as:

pðx1; � � � ; xnÞ ¼
Xm

i¼0

piðx1; � � � ; xn�1Þxin: ð2Þ

The individual polynomials piðx1; � � � ; xn�1Þ can be viewed

as the “coefficients” of the leading variable xn at the

decomposition level corresponding to xn. By construction,

the sparse form stores only nonzero polynomials as the

nodes of the TED.

3.2 Reduction and Normalization

It is possible to further reduce the size of an ordered TED by
a process of TED reduction and normalization. Analogous to
BDDs and *BMDs, Taylor Expansion Diagrams can be
reduced by removing redundant nodes and merging
isomorphic subgraphs. In general, a node is redundant if
it can be removed from the graph and its incoming edges
can be redirected to the nodes pointed to by the outgoing
edges of the node, without changing the function repre-
sented by the diagram.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Fig. 2. A decomposition node in a TED.

Fig. 3. Construction of a TED for F ¼ ðAþBÞðAþ 2CÞ: (a)-(c) decomposition w.r.t. individual variables; (d) normalized TED.

Definition 2. A TED node is redundant if all of its non-0 edges
are connected to terminal 0.

If node v contains only a constant term (0-edge), the
function computed at that node does not depend on the
variable varðvÞ, associated with the node. Moreover, if all
the edges at node v point to the terminal node 0, the
function computed at the node evaluates to zero. In both
cases, the parent of node v is reconnected to the 0-child of v,
as depicted in Fig. 4.

Identification and merging of isomorphic subgraphs in a
TED are analogous to that of BDDs and *BMDs. Two TEDs
are considered isomorphic if they match in both their
structure and their attributes, i.e., if there is a one-to-one
mapping between the vertex sets and the edge sets of the
two graphs that preserve vertex adjacency, edge labels, and
terminal leaf values. By construction, two isomorphic TEDs
represent the same function.

In order to make the TED canonical, any redundancy in
the graph must be eliminated and the graph must be
reduced. The reduction process entails merging the iso-
morphic subgraphs and removing redundant nodes.

Definition 3. A Taylor expansion diagram is reduced if it
contains no redundant nodes and has no distinct vertices v and
v0 such that the subgraphs rooted at v and v0 are isomorphic. In
other words, each node of the reduced TED must be unique.

It is possible to further reduce the graph by performing a
procedure called normalization, similar to the one described
for *BMDs [2]. The normalization procedure starts by
moving the numeric values from the nonzero terminal
nodes to the terminal edges, where they are assigned as
edge weights. This is shown in Fig. 3d and Fig. 5b. By doing
this, the terminal node holds constant 1. This operation
applies to all terminal edges with terminal nodes holding
values different than 1 or 0. As a result, only terminal
nodes 1 and 0 are needed in the graph. The weights at the
terminal edges may be further propagated to the upper
edges of the graph, depending on their relative values. The

TED normalization process that accomplishes this is
defined as follows.

Definition 4. A reduced, ordered TED representation is
normalized when:

. The weights assigned to the edges spanning out of a
given node are relatively prime.

. Numeric value 0 appears only in the terminal nodes.

. The graph contains no more than two terminal nodes,
one each for 0 and 1.

By ensuring that the weights assigned to the edges
spanning out of a node are relatively prime, the extraction
of common subgraphs is enabled. Enforcing the rule that
none of the edges be allowed zero weight is required for the
canonization of the diagram. When all the edge weights
have been propagated up to the edges, only the values 0
and 1 can reside in the terminal nodes.

The normalization of the TED representation is illu-
strated by an example in Fig. 5. First, as shown in Fig. 5b,
the constants (6, 5) are moved from terminal nodes to
terminal edges. These weights are then propagated up
along the linear edges to the edges rooted at nodes
associated with variable B, see Fig. 5c. At this point, the
isomorphic subgraphs (Bþ C) are identified at the nodes of
B and the graph is subsequently reduced by merging the
isomorphic subgraphs, as shown in Fig. 5d.

It can be shown that normalization operation can reduce
the size of a TED exponentially. Conversely, transforming a
normalized TED to a nonnormalized TED can, in the worst
case, result in an exponential increase in the graph size. This
result follows directly from the concepts of normalization of
BMDs to *BMDs [2].

3.3 Canonicity of Taylor Expansion Diagrams

It now remains to be shown that an ordered, reduced, and
normalized Taylor Expansion Diagram is canonical, i.e., for
a fixed ordering of variables, any algebraic expression is
represented by a unique reduced, ordered, and normalized
TED. First, we recall the following Taylor’s Theorem,
proven in [8].

Theorem 1 (Taylor’s Theorem [8]). Let fðxÞ be a polynomial
function in the domain R and let x ¼ x0 be any point in R.
There exists one and only one unique Taylor’s series with
center x0 that represents fðxÞ according to (1).

The above theorem states the uniqueness of the Taylor’s
series representation of a function, evaluated at a particular
point (in our case, at x ¼ 0). This is a direct consequence of

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 5

Fig. 4. Removal of redundant node with only a constant term edge.

Fig. 5. Normalization of the TED for F ¼ ðA2 þ 5Aþ 6ÞðBþ CÞ.

the fact that the successive derivatives of a function
evaluated at a point are unique. Using the Taylor’s theorem
and the properties of reduced and normalized TEDs, it can
be shown that an ordered, reduced, and normalized TED is
canonical.

Theorem 2. For any multivariate polynomial f with integer

coefficients, there is a unique (up to isomorphism) ordered,

reduced, and normalized Taylor Expansion Diagram denoting

f , and any other Taylor Expansion Diagram for f contains

more vertices. In other words, an ordered, reduced, and

normalized TED is minimal and canonical.

Proof. The proof of this theorem follows directly the

arguments used to prove the canonicity and minimality

of BDDs [1] and *BMDs [2].
Uniqueness. First, a reduced TED has no trivial

redundancies; the redundant nodes are eliminated by
the reduce operation. Similarly, a reduced TED does not
contain any isomorphic subgraphs. Moreover, after the
normalization step, all common subexpressions are
shared by further application of the reduce operation.
By virtue of the Taylor’s Theorem, all the nodes in an
ordered, reduced, and normalized TED are unique and
distinguished.

Canonicity. We now show that the individual Taylor
expansion terms, evaluated recursively, are uniquely
represented by the internal nodes of the TED. First, for
polynomial functions, the Taylor series expansion at a
given point is finite and, according to the Taylor’s
Theorem, the series is unique. Moreover, each term in the
Taylor’s series corresponds to the successive derivatives
of the function evaluated at that point. By definition, the
derivative of a differentiable function evaluated at a
particular point is also unique. Since the nodes in the
TED correspond to the recursively computed deriva-
tives, every node in the diagram uniquely represents the
function computed at that node. Since every node in an
ordered, reduced, and normalized TED is distinguished
and uniquely represents a function, the Taylor Expan-
sion Diagram is canonical.

Minimality. We now show that a reduced, ordered,
and normalized TED is also minimal. This can be proven
by contradiction. Let G be a graph corresponding to a
reduced, normalized, and, hence, canonical TED repre-
sentation of a function f . Assume there exists another
graph G0, with the same variable order as in G,
representing f that is smaller in size than G. This would
imply that graph G could be reduced to G0 by the
application of reduce and normalize operations. How-
ever, this is not possible as G is a reduced and
normalized representation and contains no redundan-
cies. The sharing of identical terms across different
decomposition levels in the graph G has been captured
by the reduction operation. Thus, G0 cannot have a
representation for f with fewer nodes than G. Hence, G
is a minimal and canonical representation for f . tu

3.4 Complexity of Taylor Expansion Diagrams

Let us now analyze the worst-case size complexity of an

ordered and reduced Taylor Expansion Diagram. For a

polynomial function of degree k, decomposition with

respect to a variable can produce kþ 1 distinct Taylor
expansion terms in the worst case.

Theorem 3. Let f be a polynomial in n variables and maximum
degree k. In the worst case, the ordered, reduced, normalized
Taylor Expansion Diagram for f requires Oðkn�1Þ nodes and
OðknÞ edges.

Proof. The top-level contains only one node, corresponding

to the first variable. Since its maximum degree is k, the

number of distinct children nodes at the second level is

bounded by kþ 1. Similarly, each of the nodes at this

level produces up to kþ 1 children nodes at the next

level, giving rise to ðkþ 1Þ2 nodes, and so on. In the

worst case, the number of children increases in geometric

progression, with the level i containing up to ðkþ 1Þi�1

nodes. For an n-variable function, there will be n� 1 such

levels, with the nth level containing just two terminal

nodes, 1 and 0. Hence, the total number of internal nodes

in the graph is N ¼
Pn�1

i¼0 ðkþ 1Þi ¼ ðkþ1Þn�1
k . The number

of edges E can be similarly computed as E ¼
Pn

i¼1ðkþ
1Þi ¼ ðkþ1Þnþ1�1

k � 1 since there may be up to ðkþ 1Þn

terminal edges leading to the 0 and 1 nodes. Thus, in the

worst case, the total number of internal nodes required to

represent an n-variable polynomial with degree k is

Oðkn�1Þ and the number of edges is OðknÞ. tu
One should keep in mind, however, that the TED

variables represent symbolic, word-level signals and the
number of such signals in the design is significantly smaller
than the number of bits in the bit-level representation.
Subsequently, even an exponential size of the polynomial
with a relatively small number of such variables may be
acceptable. Moreover, for many practical designs, the
complexity is not exponential.

Finally, let us consider the TED representation for
functions with variables encoded as n-bit vectors,
X ¼

Pn�1
i¼0 2ixi. For linear expressions, the space complexity

of TED is linear in the number of bits n, the same as *BMD.
For polynomials of degree k � 2, such as X2, etc., the size of
*BMD representation grows polynomially with the number
of bits, as OðnkÞ. For K*BMD, the representation also
becomes nonlinear, with complexity Oðnk�1Þ, for polyno-
mials of degree k � 3. However, for ordered, reduced, and
normalized TEDs, the graph remains linear in the number
of bits, namely, Oðn � kÞ, for any degree k, as stated in the
following theorem:

Theorem 4. Consider variable X encoded as an n-bit vector,
X ¼

Pn�1
i¼0 2ixi. The number of internal TED nodes required

to represent Xk in terms of bits xi, is kðn� 1Þ þ 1.

Proof. We shall first illustrate it for the quadratic case k ¼ 2,
shown in Fig. 6. Let Wn be an n-bit representation of X:
X ¼Wn ¼

Pn�1
i¼0 2ixi ¼ 2ðn�1Þxn�1 þWn�1 where Wn�1 ¼Pn�2

i¼0 2ixi is the part of X containing the lower (n� 1)
bits. With that,

W 2
n ¼ ð2n�1xn�1 þWn�1Þ2

¼ 22ðn�1Þx2
n�1 þ 2nxn�1Wn�1 þW 2

n�1:

Furthermore, let Wn�1 ¼ ð2n�2xn�2 þWn�2Þ and
W 2

n�1 ¼ ð22ðn�2Þx2
n�2 þ 2n�1xn�2Wn�2 þW 2

n�2Þ.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Notice that the constant term (0-edge) of Wn�1 with
respect to variable xn�2 contains the term Wn�2, while the
linear term (1-edge) of W 2

n�1 contains 2n�1Wn�2. This
means that the term Wn�2 can be shared at this
decomposition level by two different parents. As a
result, there are exactly two nonconstant terms, Wn�2

and W 2
n�2 at this level as shown in Fig. 6.

In general, at any level l, associated with variable xn�l,
the expansion of terms W 2

n�l and Wn�l will create exactly
two different nonconstant terms, one representing W 2

n�l�1

and the other Wn�l�1; plus a constant term 2n�l. The term
Wn�l�l will be shared, with different multiplicative
constants, by W 2

n�l and Wn�l.
This reasoning can be readily generalized to an

arbitrary integer degree k; at each level, there will
always be exactly k different nonconstant terms. Since,
on the top variable (xn�1) level, there is only one node
(the root) and there are exactly k nonconstant nodes at
each of the remaining ðn� 1Þ levels, the total number of
nodes is equal to kðn� 1Þ þ 1. tu

3.5 Limitations of Taylor Expansion Diagram
Representation

It should be obvious from the definition of TED that it can
only represent those functions that have finite Taylor
expansion and, in particular, multivariate polynomials with
finite integer degrees. For polynomials of finite integer
degree k � 1, successive differentiation of the function
ultimately leads to zero, resulting in a finite number of
terms. However, those functions that have infinite Taylor
series (such as ax, where a is a constant) cannot be
represented with a finite TED graph.

Another natural limitation of TEDs is that they cannot
represent relational operators (such as comparators, A � B,
A ¼¼ B, etc.) in symbolic form. This is because Taylor
series expansion is defined for functions and not for
relations. Relations are characterized by discontinuities
over their domain and are not differentiable. In order to
use TEDs to represent relational operators, often encoun-
tered in RTL descriptions, the expansion of word-level
variables and bit vectors into their bit-level components is
required. Finally, TEDs cannot represent modular arith-
metic. This issue will be discussed in Section 5.3 in the
context of RTL verification.

4 COMPOSITION OPERATIONS FOR TAYLOR

EXPANSION DIAGRAMS

Taylor Expansion Diagrams can be composed to compute
complex expressions from simpler ones. This section
describes general composition rules to compute a new

TED as an algebraic sum (+) or product (�) of two TEDs. The
general composition process for TEDs is similar to that of
the APPLY operator for BDDs [1] in the sense that the
operations are recursively applied on respective graphs.
However, the composition rules for TEDs are specific to the
rules of the algebra (R; �;þ).

Starting from the roots of the two TEDs, the TED of the
result is constructed by recursively constructing all the
nonzero terms from the two functions and combining them,
according to a given operation, to form the diagram for the
new function. To ensure that the newly generated nodes are
unique and minimal, the REDUCE operator is applied to
remove any redundancies in the graph.

Let u and v be two nodes to be composed, resulting in a
new node q. Let varðuÞ ¼ x and varðvÞ ¼ y denote the
decomposing variables associated with the two nodes. The
top node q of the resulting TED is associated with the
variable with the higher order, i.e., varðqÞ ¼ x, if x � y, and
varðqÞ ¼ y otherwise. Let f; g be two functions rooted at
nodes u; v, respectively, and h be a function rooted at the
new node q.

For the purpose of illustration, we describe the opera-
tions on linear expressions, but the analysis is equally
applicable to polynomials of arbitrary degree. In construct-
ing these basic operators, we must consider several cases:

1. Both nodes u; v are terminal nodes. In this case, a
new terminal node q is created as valðqÞ ¼ valðuÞ þ
valðvÞ for the ADD operation and as valðqÞ ¼
valðuÞ � valðvÞ for the MULT operation.

2. At least one of the nodes is nonterminal. In this case,
the TED construction proceeds according to the
variable order. Two cases need to be considered
here: a) when the top nodes u; v have the same index
and b) when they have different indices. The
detailed analysis of both cases is given in [6]. Here,
we show the multiplication of two diagrams rooted
at variables u and v with the same index, see Fig. 7.

hðxÞ ¼ fðxÞ � gðxÞ ¼ ðfð0Þ þ xf 0ð0ÞÞ � ðgð0Þ þ xg0ð0ÞÞ
¼ ½fð0Þgð0Þ� þ x½fð0Þg0ð0Þ þ f 0ð0Þgð0Þ� þ x2½f 0ð0Þg0ð0Þ�:

ð3Þ

In this case, the 0-child of q is obtained by pairing the
0-children of u; v. Its 1-child is created as a sum of
two cross products of 0 and 1-children, thus
requiring an additional ADD operation. Also, an
additional 2-child (representing the quadratic term)
is created by pairing the 1-children of u; v.

Fig. 8 illustrates the application of the ADD and MULT

procedures to two TEDs. As shown in the figure, the root
nodes of the two TEDs have the same variable index. The
MULT operation requires the following steps: 1) performing

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 7

Fig. 6. Construction of TED for X2 with n bits.

Fig. 7. Multiplicative composition for nodes with same variables.

the multiplication of their respective constant (0) and linear
(1) children nodes and 2) generating the sum of the cross-
products of their 0 and 1-children. On the other hand, the
two TEDs corresponding to the resulting cross-product, as
highlighted in the figure, have different variable indices for
their root nodes. In this case, the node with the lower index
corresponding to variable C is added to the 0-child of the
node corresponding to variable B.

It should be noted that the ADD and MULT procedures
described above will initially produce nonnormalized
TEDs, with numeric values residing only in the terminal
nodes, requiring further normalization. When these opera-
tions are performed on normalized TEDs, with weights
assigned to the edges, then the following modification is
required: When the variable indices of the root nodes of f
and g are different, the edge weights have to be propagated
down to the children nodes recursively. Downward
propagation of edge weights results in the dynamic update
of the edge weights of the children nodes. In each recursion
step, this propagation of edge weights down to the children
proceeds until the weights reach the terminal nodes. The
numeric values are updated only in the terminal nodes.
Every time a new node is created, the REDUCE and
NORMALIZE operations are required to be performed in
order to remove any redundancies from the graph and
generate a minimal and canonical representation.

We now analyze the computational complexity of the
basic TED operations described above. Let jfj and jgj be the
size, expressed in the number of nodes, of the two TEDs, f
and g, respectively. The number of recursive calls made to
ADD is bounded by � ðjfj � jgj). The MULT operation has
higher complexity than ADD. The worst case for the
multiply operation would occur when each node in f is
multiplied by each node in g, resulting in ðjf j � jgjÞ recursive
MULT calls. However, each multiply operation further relies
on ðjfj � jgjÞ recursive calls to the ADD operation in the worst
case (see Fig. 8).

In order to derive an absolute worst-case upper bound
for the composition operations, we have to consider the case
where edge-weights have to be propagated all the way
down to terminal nodes. In such cases, nonnormalized
TEDs are dynamically created from their normalized
counterparts. As discussed in Section 3.2, nonnormalized

TEDs can be exponentially more complex than normalized
TEDs. This may result in an exponential worst-case
complexity of the composition operations. However, it
should be noted that the number of calls to the MULT

operation can be efficiently reduced by using a computed
table to store the results, as is done in the recent
implementation. A detailed analysis of the complexity of
basic TED operations is presented in [52]. It should be noted
that the multiplication of two multivariate polynomials has
been shown to be exponential. For instance, the time
complexity of the Karatsuba algorithm for multiplying
two n-variate polynomials with maximum degree d is
Oððdþ 1Þnlog23Þ [51].

At first glance, the time complexity for TED construction
appears to be prohibitive. However, we observed that, for
dataflow computations specified at sufficiently high level
(see Section 6), the composition operations do not exhibit
exponential complexity. The number of symbolic variables is
orders of magnitude smaller than that of Boolean variables
present in the *BMD and BDD representations. Exponential
complexity can be observed in cases when the Boolean
variables start dominating in the design, in which case, the
behavior of TED starts approaching that of a *BMD.

5 DESIGN MODELING AND VERIFICATION WITH

TEDS

Using the operations described in the previous section,
Taylor Expansion Diagrams can be constructed to represent
various computations over symbolic variables in a compact,
canonical form. The compositional operators ADD and
MULT can be used to compute any combination of
arithmetic functions by operating directly on their TEDs.
However, the representation of Boolean logic, often present
in the RTL designs, requires special attention since the
output of a logic block must evaluate to Boolean rather than
to an integer value.

5.1 Representing Boolean Logic

We now define TED operators for Boolean logic, OR, AND,
and XOR, where both the range and domain are Boolean.
Fig. 9 shows TED representations for these basic Boolean
operators. In the diagrams, x and y are Boolean variables
represented by binary variables and þ and � represent
algebraic operators of ADD and MULT, respectively. The
resulting functions are 0, 1 integer functions. These
diagrams are structurally identical to their *BMD counter-
parts [53], [2].

Similarly, one can derive other operators which rely on
Boolean variables as one of their inputs, with other inputs
being word-level. One such example is the multiplexer,
MUXðc;X; Y Þ ¼ c �X þ ð1� cÞ � Y , where c is a binary
control signal and X and Y are word-level inputs.

In general, TED, which represents an integer-valued
function, will also correctly model designs with arithmetic
and Boolean functions. Note that the ADD (+) function will
always create correct integer result over Boolean and
integer domains because Boolean variables are treated as
binary (0, 1), a special case of integer. However the MULT (�)
function may create powers of Boolean variables, xk, which
should be reduced to x. A minor modification of TED is

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Fig. 8. Example of MULT composition: (A+B)(A+2C).

done to account for this effect so that the Boolean nature of

variable x can be maintained in the representation. Such

modified Taylor Expansion Diagrams are also canonical.

5.2 Verification of RTL and Behavioral Designs

TED construction for an RTL design starts with building

trivial TEDs for primary inputs. Partial expansion of the

word-level input signals is often necessary when one or

more bits from any of the input signals fan out to other parts

of the design. This is the case in the designs shown in Fig. 10a

and Fig. 10b, where bits ak ¼ A½k� and bk ¼ B½k� are derived

from word-level variables A and B. In this case, the word-

level variables must be decomposed into several word-level
variables with shorter bit-widths. In our case, A ¼
2ðkþ1ÞAhi þ 2kak þAlo and B ¼ 2ðkþ1ÞBhi þ 2kbk þBlo, where

Ahi ¼ A½n� 1 : kþ 1�, ak ¼ A½k�, and Alo ¼ A½k� 1 : 0�, and

similarly for variable B. Variables Ahi, ak, Alo, Bhi, bk, Blo

form the abstracted primary inputs of the system. The basic

TEDs are readily generated for these abstracted inputs from

their respective bases (Ahi; ak; Alo), and (Bhi; bk; Blo).
Once all the abstracted primary inputs are represented

by their TEDs, Taylor Expansion Diagrams can be con-

structed for all the components of the design. TEDs for the

primary outputs are then generated by systematically

composing the constituent TEDs in the topological order

from the primary inputs to the primary outputs. For

example, to compute AþB in Fig. 10a and Fig. 10b, the
ADD operator is applied to functions A and B (each
represented in terms of their abstracted components). The
subtract operation,A�B, is computed by first multiplyingB
with a constant�1 and adding the result to the TED ofA. The
multipliers are constructed from their respective inputs using
the MULT operator and so on. To generate a TED for the
output of the multiplexers, the Boolean functions s1 and s2

first need to be constructed as TEDs. Function s1 is computed
by transforming the single-bit comparator ak > bk into a
Boolean function and expressed as an algebraic equation,
s1 ¼ ak ^ bk ¼ ak � ð1� bkÞ, as described in Section 5.1. Simi-
larly, s2 ¼ ak _ bk is computed as s2 ¼ 1� ak � ð1� bkÞ and
represented as a TED. Finally, the TEDs for the primary
outputs are generated using the MUX operator with the
respective inputs. As a result of such a series of composition
operations, the outputs of the TED represent multivariate
polynomials of the primary inputs of the design.

After having constructed the respective ordered, re-
duced, and normalized Taylor Expansion Diagram for each
design, the test for functional equivalence is performed by
checking for isomorphism of the resulting graphs. If the
corresponding diagrams are isomorphic, they represent
equivalent functions. Fig. 10c shows the isomorphic TED for
the two designs, demonstrating that they are indeed
equivalent. In fact, the generation of the TEDs for the two
designs under verification takes place in the same TED
manager; when the two functions are equivalent, both top
functions point to the same root of the common TED.

5.3 Limitations of TEDs in RTL Verification

The proposed TED representation naturally applies to
functions that can be modeled as finite polynomials.
However, the efficiency of TED relies on its ability to
encode the design in terms of its word-level symbolic
inputs, rather than bit-level signals. This is the case with
the simple RTL designs shown in Fig. 10, where all input
variables and internal signals have simple, low-degree

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 9

Fig. 9. TED representation for Boolean operators: (a) NOT: x0 ¼ ð1� xÞ;
(b) AND: x ^ y ¼ x � y; (c) OR: x _ y ¼ xþ y� xy; and (d) XOR:

x� y ¼ xþ y� 2xy.

Fig. 10. RTL verification using canonical TED representation: (a), (b) Functionally equivalent RTL modules. (c) The isomorphic TED for the two

designs.

polynomial representation. The abstracted word-level
inputs of these designs are created by partial bit selection
(ak; bk) at the primary inputs and a polynomial function can
be constructed for its outputs. However, if any of the
internal or output signals is partitioned into subvectors,
such subvectors cannot be represented as polynomials in
terms of the symbolic, word-level input variables, but
depend on the individual bits of the inputs. The presence of
such signal splits creates a fundamental problem for the
polynomial representations and TEDs cannot be used
efficiently in those cases. For similar reasons, TED cannot
represent modular arithmetic. An attempt to fix this
problem was proposed in [54] by modeling the discrete
functions as finite, word-level polynomials in Galois Field
(GF). The resulting polynomials, however, tend to be of
much higher degree than the original function, with the
degree depending on the signal bit-width, making the
representation less efficient for practical applications. This
is the case where TEDs can exhibit space explosion similar
to that encountered in BDDs and BMDs.

Despite these limitations, TEDs can be successfully used
for verifying the equivalence of high-level, behavioral, and
algorithmic descriptions. Such algorithmic descriptions
typically do not exhibit signal splits, hence resulting in
polynomial functions over word-level input signals.

6 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented a prototype version of TED software
for behavioral HDL designs using as a front end a popular
high-level synthesis system GAUT [55]. This system was
selected due to its commercial quality, robustness, and its
open architecture. The input to the system is behavioral
VHDL or C description of the design. The design is parsed
and the extracted data flow is automatically transformed
into canonical TED representation.

The core computational platform of the TED package
consists of a manager that performs the construction and
manipulation of the graph. It provides routines to uniquely
store and manipulate the nodes, edges, and terminal values
in order to keep the diagrams canonical. To support
canonicity, the nodes are stored in a hash table, implemen-
ted as a unique table, similar to that of the CUDD package
[29],[56]. The table contains a key for each vertex of the TED,
computed from the node index and the attributes of its
children and the edge weights. As a result, the equivalence
test between two TEDs reduces to a simple scalar test
between the identifiers of the corresponding vertices.

Variable ordering. As shown in this paper, TEDs are a
canonical representation subject to the imposition of a total
ordering on the variables. Therefore, it is desirable to search
for a variable order that would minimize the size of a TED.
We have recently developed a dynamic variable ordering
for TEDs based on local swapping of adjacent variables in
the diagram, similar to those employed in BDD ordering
[57], [58]. It has been shown that, similarly to BDDs, local
swapping of adjacent variables does not affect the structure
of the diagram outside of the swapping area. We are
currently experimenting with different static ordering
heuristics, including the ordering of variables that corre-
spond to constant coefficients. Due to the initial nature of

these heuristics, in our initial experiments, we have used
the default (topological) order in which the signals appear
in the design specification.

6.1 Experimental Setup

Several experiments were performed using our prototype
software on a number of dataflow designs described in
behavioral VHDL. The designs range from simple algebraic
(polynomial) computations to those encountered in signal
and image processing algorithms. Simple RTL designs with
a Boolean-algebraic interface were also tested. We wish to
emphasize that the goal of these experiments was to
demonstrate, as a proof of concept, the application of TED
to high-level dataflow design representation and verifica-
tion and, in particular, to functional equivalence checking of
behavioral HDL specifications, rather than to developing a
complete equivalence verification system.

Our experimental setup is as follows: The design
described in behavioral VHDL or C is parsed by a high-
level synthesis system GAUT [55]. The extracted data flow
is then automatically translated into a canonical TED
representation using our software. Statistics related to
graph size and composition time are reported. We have
compared TEDs against *BMDs to demonstrate the power
of abstraction of TED representation. For this purpose, each
design was synthesized into a structural netlist from which
*BMDs were constructed. In most cases, BDDs could not be
constructed due to their prohibitive size and they are not
reported. Experiments confirm that word-size abstraction
by TEDs results in much smaller graph size and computa-
tion times as compared to *BMDs.

6.2 Verification of High-Level Transformations

During the process of architectural synthesis, the initial
HDL description often proceeds through a series of high-
level transformations. For example, computation AC þBC
can be transformed into an equivalent one, ðAþBÞC, which
better utilizes the hardware resources. TEDs are ideally
suited to verify the correctness of such transformations by
proving equivalence of the two expressions, regardless of
the word size of the input/output signals. We performed
numerous experiments to verify the equivalence of such
algebraic expressions. Results indicate that both time and
memory usage required by TEDs is orders of magnitude
smaller as compared to *BMDs. For example, the expression
ðAþBÞðC þDÞ, where A;B;C;D are n-bit vectors, has a
TED representation containing just four internal nodes,
regardless of the word size. The size of *BMD for this
expression varies from 418 nodes for the 8-bit vectors to
2,808 nodes for 32-bit variables. BDD graphs could not be
constructed for more than 15 bits.

6.3 RTL Verification

As mentioned earlier, TEDs offer the flexibility of repre-
senting designs containing both arithmetic operators and
Boolean logic. We used the generic designs of Fig. 10 and
performed a set of experiments to observe the efficiency of
TED representation under varying size of Boolean logic.
The size of the algebraic signals A;B was kept constant at
32 bits, while the word size of the comparator (or the
equivalent Boolean logic) was varied from 1 to 20. As the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

size of Boolean logic present in the design increases, the
number of bits extracted from A;B also increases (the figure
shows it for single bits). Table 1 gives the results obtained
with TED and compares them to those of *BMDs. Note that,
as the size of Boolean logic increases, TED size converges to
that of *BMD. This is to be expected as *BMDs can be
considered as a special (Boolean) case of TEDs.

6.4 Array Processing

An experiment was also performed to analyze the capability
of TEDs to represent computations performed by an array
of processors. The design that was analyzed is an n� n
array of configurable Processing Elements (PE), which is a
part of a low power motion estimation architecture [59].
Each processing element can perform two types of
computations on a pair of 8-bit vectors, Ai;Bi, namely,
ðAi �BjÞ or ðA2

i �B2
j Þ, and the final result of all PEs is then

added together. The size of the array was varied from 4� 4
to 16� 16 and the TED for the final result was constructed
for each configuration.

When the PEs are configured to perform subtraction
(Ai �Bj), both TEDs and *BMDs can be constructed for the
design. However, when the PEs are configured to compute
A2
i �B2

j , the size of *BMDs grows quadratically. As a result,
we were unable to construct *BMDs for the 16� 16 array of
8-bit processors. In contrast, the TEDs were easily con-
structed for all the cases. The results are shown in Table 2.
Note that we were unable to construct the BDDs for any size
n of the array for the quadratic computation.

6.5 DSP Computations

One of the most suitable applications for TED representa-
tion is algorithmic descriptions of dataflow computations,
such as digital signal and image processing algorithms. For

this reason, we have experimented with the designs that
implement various DSP algorithms.

Table 3 presents some data related to the complexity of
the TEDs constructed for these designs. The first column in
Table 3 describes the computation implemented by the
design. These include: FIR and IIR filters, fast Fourier
transform (FFT), elliptical wave filter (Elliptic), least mean
square computation (LMS128), discrete cosine transform
(DCT), matrix product computation (ProdMat), Kalman
filter (Kalman), etc. Most of these designs perform algebraic
computations by operating on vectors of data, which can be
of arbitrary size. The next column gives the number of
inputs for each design. While each input is a 16-bit vector,
TED represents them as a word-level symbolic variable.
Similarly, the next column depicts the number of 16-bit
outputs. The remaining columns of the table show: BMD
size (number of nodes), CPU time required to construct the
BMD for the 16-bit output words, TED size (number of
nodes) required to represent the entire design; CPU times
required to generate TED diagrams does not account for the
parsing time of the GAUT front end.

Fig. 11 depicts a multiple-output TED for the elliptical
wave filter (design elliptic), where each root node corre-
sponds to an output of the design.

6.6 Algorithmic Verification

In this final set of experiments, we demonstrate the natural
capability of Taylor Expansion Diagrams to verify equiva-
lence of designs described at the algorithmic level. Consider
two dataflow designs computing the convolution of two real
vectors, AðiÞ; BðiÞ; i ¼ 0; . . .N � 1, shown in Fig. 12. The
design in Fig. 12a computes the FFT of each vector, computes
the product of the FFT results, and performs the inverse FFT
operation, producing output IFFT . The operation shown in
Fig. 12b computes the convolution directly from the two

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 11

TABLE 1
Size of TED versus Boolean Logic

TABLE 2
PE Computation: ðA2

i �B2
j Þ

TABLE 3
Signal Processing Applications

inputs, CðiÞ ¼
PN�1

k¼0 AðkÞ �Bði� kÞ. TED was used to repre-
sent these two computations forN ¼ 4 and to prove that they
are indeed equivalent. Fig. 13 depicts the TED for vector C of
the convolution operation, isomorphic with the vector IFFT .
All graphs are automatically generated by our TED-based
verification software.

As illustrated by the above example, TEDs can be
suitably augmented to represent computations in the
complex domain. In fact, it can be shown that TEDs can
represent polynomial functions over an arbitrary field. The
only modification required is that the weights on the graph
edges be elements of the field and that the composition
(MULT and ADD) be performed with the respective
operators of the field. Subsequently, TEDs can also be used
to represent computations in Galois field [54].

7 CONCLUSIONS AND FUTURE WORK

This paper has presented a compact, canonical, graph-based
representation, called Taylor Expansion Diagram (TED). It
has been shown that, for a fixed ordering of variables, TED
is a canonical representation that can be used to verify
equivalence of arithmetic computations in dataflow de-
signs. The power of abstraction of TEDs makes them
particularly applicable to dataflow designs specified at the
behavioral and algorithmic level. The theory of TEDs has
been presented and the various operations on TEDs
described that make the graph minimal and canonical.
The size complexity of the representation and time
complexity of its composition operations has also been

analyzed and compared to other contemporary representa-

tions. It has been shown how TEDs can be constructed for

behavioral and some RTL design descriptions.
An initial implementation of a TED package and

experimental results have been described. Experiments

were conducted over a number of designs to observe the

power and limitations of the TED representation. The

experiments demonstrate the applicability of TED repre-

sentation to verification of behavioral and algorithmic

designs. Of particular promise is the use of TEDs in

equivalence verification of behavioral and algorithmic

descriptions, where the use of symbolic, word-level oper-

ands, without the need to specify their bit-width, is

justified. For large systems, involving complex bit-select

operations, relational operators, and memories, TEDs can

be used to represent datapath portions of the design that

can be modeled as polynomials. Equivalence checking of

such complex designs typically involves finding structu-

rally similar points of the designs under verification. TED

data structure can be used here to raise the level of

abstraction of large portions of designs, aiding in the

identification of such similar points and in the overall

verification process. In this sense, TEDs complements

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Fig. 11. Elliptic wave filter: TED structure obtained automatically from VHDL description.

Fig. 12. Equivalent computations: (a) FFT-Product-Inv(FFT). (b) Con-

volution. Fig. 13. TED for convolution vector C, isomorphic with IFFT .

existing representations, such as BDDs and *BMDs, in
places where the level of abstraction can be raised.

A number of open problems remain to be researched to
make TEDs a reliable data structure for high-level design
representation and verification. While a simple VHDL and
C interface has been already provided based on the GAUT
high-level synthesis system, a front-end interface to the TED
data structure should be developed for designs described in
Verilog and System C. The recently developed dynamic
variable ordering needs to be tested and integrated with the
system. Also, a robust static variable ordering needs to be
investigated. Finally, we have recently demonstrated the
potential of TEDs in symbolic factorization and architectur-
al synthesis, especially for DSP designs. TEDs can be used
to perform top-level transformations of dataflow graphs
and for architectural space exploration [60]. It can also be
used for DSP transform optimization by means of common
subexpression elimination and factorization [61]. A proto-
type software for TED-based verification and behavioral
transformations, TEDify, is available on the Web [62].

In summary, TEDs can play a fundamental role in
providing an efficient data structure for those applications
that can be modeled in terms of polynomials and, in
particular, in high-level design representations and verifi-
cation. We also believe that TEDs can enhance the
effectiveness of symbolic methods offered by commercial
tools, such as Mathematica and Matlab, for the purpose of
formal verification and synthesis of digital systems design.

ACKNOWLEDGMENTS

The authors are indebted to Emmanuel Boutillon of
LESTER, Université de Bretagne Sud, Lorient, France, for
his invaluable input regarding the application of TEDs to
algorithmic verification. The authors also would like to
thank Pierre Bomel of LESTER for help with the GAUT
system and Namrata Shekhar of the University of Utah for
performing BMD experiments. This work has been sup-
ported by a grant from the US National Science Foundation,
CCR-0204146, and in part by the international NSF/CNRS/
DAAD supplement grant, INT-0233206.

REFERENCES

[1] R.E. Bryant, “Graph Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-691,
Aug. 1986.

[2] R.E. Bryant and Y.-A. Chen, “Verification of Arithmetic Functions
with Binary Moment Diagrams,” Proc. Design Automation Conf.,
pp. 535-541, 1995.

[3] Y.A. Chen and R.E. Bryant, “*PHDD: An Efficient Graph
Representation for Floating Point Verification,” Proc. Int’l Conf.
Computer-Aided Design (ICCAD), 1997.

[4] R. Drechsler, B. Becker, and S. Ruppertz, “The K*BMD: A
Verification Data Structure,” IEEE Design and Test, pp. 51-59, 1997.

[5] P. Kalla, “An Infrastructure for RTL Validation and Verification,”
PhD thesis, Dept. of Electrical and Computer Eng., Univ. of
Massachusetts Amherst, 2002.

[6] M. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyre, “Taylor
Expansion Diagrams: A Compact Canonical Representation with
Applications to Symbolic Verification,” Proc. Design Automation
and Test in Europe (DATE-02), pp. 285-289, 2002.

[7] B. Taylor, Methodus Incrementorum Directa et Inversa, 1715.
[8] E. Kryrszig, Advanced Engineering Mathematics. John Wiley & Sons,

1999.

[9] H. Enderton, A Mathematical Introduction to Logic. New York:
Academic Press, 1972.

[10] T. Bultan et al., “Verifying Systems with Integer Constraints and
Boolean Predicates: A Composite Approach,” Proc. Int’l Symp.
Software Testing and Analysis, 1998.

[11] S. Devadas, K. Keutzer, and A. Krishnakumar, “Design Verifica-
tion and Reachability Analysis Using Algebraic Manipulation,”
Proc. Int’l Conf. Computer Design, 1991.

[12] G. Ritter, “Formal Verification of Designs with Complex Control
by Symbolic Simulation,” Proc. Advanced Research Working Conf.
Correct Hardware Design and Verification Methods (CHARME), 1999.

[13] R.E. Shostak, “Deciding Combinations of Theories,” J. ACM,
vol. 31, no. 1, pp. 1-12, 1984.

[14] A. Stump, C.W. Barrett, and D.L. Dill, “CVC: A Cooperating
Validity Checker,” Proc. 14th Int’l Conf. Computer Aided Verification
(CAV), E. Brinksma and K. Guldstrand Larsen, eds., pp. 500-504,
2002.

[15] M. Chandrashekhar, J.P. Privitera, and J.W. Condradt, “Applica-
tion of Term Rewriting Techniques to Hardware Design Verifica-
tion,” Proc. Design Automation Conf., pp. 277-282, 1987.

[16] Z. Zhou and W. Burleson, “Equivalence Checking of Datapaths
Based on Canonical Arithmetic Expressions,” Proc. Design Auto-
mation Conf., 1995.

[17] S. Vasudevan, “Automatic Verification of Arithmetic Circuits in
RTL Using Term Rewriting Systems,” MS thesis, Univ. of Texas,
Austin, 2003.

[18] J. Burch and D. Dill, Automatic Verification of Pipelined Micro-
processor Control. Springer-Verlag, 1994.

[19] R. Bryant, S. German, and M. Velev, “Processor Verification Using
Efficient Reductions of the Logic of Uninterpreted Functions to
Propositional Logic,” ACM Trans. Computational Logic, vol. 2, no. 1,
pp. 1-41, 2001.

[20] M. Velev and R. Bryant, “Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors,” J. Symbolic Computation, vol. 35, no. 2, pp. 73-
106, 2003.

[21] R. Bryant, S. Lahiri, and S. Seshia, “Modeling and Verifying
Systems Using a Logic of Counter Arithmetic with Lambda
Expressions and Uninterpreted Functions,” Proc. Int’l Conf.
Computer Aided Verification (CAV), 2002.

[22] M. Moskewicz, C. Madigan, L. Zhang, Y. Zhao, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. 38th Design
Automation Conf., pp. 530-535, June 2001.

[23] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust Sat-
Solver,” Proc. Design Automation and Test in Europe (DATE-02),
pp. 142-149, 2002.

[24] C.-Y. Huang and K.-T. Cheng, “Using Word-Level ATPG and
Modular Arithmetic Constraint Solving Techniques for Assertion
Property Checking,” IEEE Trans. Computer Aided Design, vol. 20,
pp. 381-391, 2001.

[25] M. Iyer, “RACE: A Word-Level ATPG-Based Constraints Solver
System for Smart Random Simulation,” Proc. Int’l Test Conf. (ITC-
03), pp. 299-308, 2003.

[26] R. Brinkmann and R. Drechsler, “RTL-Datapath Verification
Using Integer Linear Programming,” Proc. Asia and South Pacific
Design Automation Conf. (ASP-DAC), 2002.

[27] Z. Zeng, P. Kalla, and M. Ciesielski, “LPSAT: A Unified Approach
to RTL Satisfiability,” Proc. Design Automation and Test in Europe
Conf. (DATE), pp. 398-402, Mar. 2001.

[28] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector
Generation for HDL Models Using Linear Programming and
3-Satisfiability,” Proc. Design Automation Conf., pp. 528-533, 1998.

[29] K.S. Brace, R. Rudell, and R.E. Bryant, “Efficient Implementation
of the BDD Package,” Proc. Design Automation Conf. (DAC), pp. 40-
45, 1990.

[30] O. Coudert and J.C. Madre, “A Unified Framework for the Formal
Verification of Sequential Circuits,” Proc. Int’l Conf. Computer
Aided Design (ICCAD), pp. 126-129, 1990.

[31] H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit State Enumeration of Finite State Machines
Using BDDs,” Proc. Int’l Conf. Computer Aided Design (ICCAD),
pp. 130-133, 1990.

[32] E.A. Emerson, “Temporal and Modal Logic,” Formal Models and
Semantics, J. van Leeuwen, ed., vol. B of Handbook of Theoretical
Computer Science, pp. 996-1072, Elsevier Science, 1990.

[33] K.L. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.

CIESIELSKI ET AL.: TAYLOR EXPANSION DIAGRAMS: A CANONICAL REPRESENTATION FOR VERIFICATION OF DATA FLOW DESIGNS 13

[34] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vencentelli, F. Some-
nzi, A. Aziz, S-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A.
Pardo, S. Qadeer, R. Ranjan, S. Sarwary, G. Shiple, S. Swamy, and
T. Villa, “VIS: A System for Verification and Synthesis,” Computer
Aided Verification, 1996.

[35] A. Narayan et al., “Partitioned ROBDDs: A Compact Canonical
and Efficient Representation for Boolean Functions,” Proc. Int’l
Conf. Computer Aided Design (ICCAD), 1996.

[36] Y-T. Lai, M. Pedram, and S.B. Vrudhula, “FGILP: An ILP Solver
Based on Function Graphs,” Proc. Int’l Conf. Computer Aided Design
(ICCAD), pp. 685-689, 1993.

[37] U. Kebschull, E. Schubert, and W. Rosentiel, “Multilevel Logic
Synthesis Based on Functional Decision Diagrams,” Proc. European
Design Automation Conf. (EDAC), pp. 43-47, 1992.

[38] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A.
Perkowski, “Efficient Representation and Manipulation of Switch-
ing Functions Based on Order Kronecker Function Decision
Diagrams,” Proc. Design Automation Conf. (DAC), pp. 415-419,
1994.

[39] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral Transforms for Large Boolean Functions with Applica-
tions to Technology Mapping,” Proc. Design Automation Conf.
(DAC), pp. 54-60, 1993.

[40] I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A.
Pardo, and F. Somenzi, “Algebraic Decision Diagrams and Their
Applications,” Proc. Int’l Conf. Computer Aided Design (ICCAD),
pp. 188-191, Nov. 1993.

[41] S. Horeth and R. Drechsler, “Formal Verification of Word-Level
Specifications,” Proc. Design Automation and Test in Europe (DATE),
pp. 52-58, 1999.

[42] Y.-A. Chen and R. Bryant, “PHDD: An Efficient Graph Repre-
sentation for Floating Point Circuit Verification,” Proc. IEEE Int’l
Conf. Computer-Aided Design, pp. 2-7, 1997.

[43] G. Bioul and M. Davio, “Taylor Expansion of Boolean Functions
and of Their Derivatives,” Philips Research Reports, vol. 27, no. 1,
pp. 1-6, 1972.

[44] A. Thayse and M. Davio, “Boolean Differential Calculus and Its
Application to Switching Theory,” IEEE Trans. Computers, vol. 22,
no. 4, pp. 409-420, Apr. 1973.

[45] J. Smith and G. DeMicheli, “Polynomial Methods for Compontent
Matching and Verification,” Proc. Int’l Conf. Computer-Aided Design
(ICCAD ’98), 1998.

[46] J. Smith and G. DeMicheli, “Polynomial Methods for Allocating
Complex Compontents,” Proc. Design Automation and Test in
Europe Conf. (DATE ’99), 1999.

[47] A. Peymandoust and G. DeMicheli, “Application of Symbolic
Computer Algebra in High-Level Data-Flow Synthesis,” IEEE
Trans. Computer-Aided Design, vol. 22, no. 9, pp. 1154-1165, Sept.
2003.

[48] Maple, http://www.maplesoft.com, 2006.
[49] Mathematica, http://www.wri.com, 2006.
[50] The MathWorks, “Matlab,” http://www.mathworks.com, 2006.
[51] F. Winkler, Polynomial Algorithms in Computer Algebra. Springer,

1996.
[52] G. Fey, R. Drechsler, and M. Ciesielski, “Algorithms for Taylor

Expansion Diagrams,” Proc. IEEE Int’l Symp. Multi-Valued Logic
(ISMVL ’04), 2004.

[53] F. Brown, Boolean Reasoning. Kluwer Academic, 1990.
[54] D. Pradhan, S. Askar, and M. Ciesielski, “Mathematical Frame-

work for Representing Discrete Functions as Word-Level Poly-
nomials,” Proc. IEEE Int’l High Level Design Validation and Test
Workshop (HLDVT-03), pp. 135-139, 2003.

[55] LESTER, Université de Bretagne Sud, “GAUT, Architectural
Synthesis Tool,”http://lester.univ-ubs.fr:8080, 2004.

[56] F. Somenzi, “Colorado Decision Diagram Package,” computer
program, 1997.

[57] R. Rudell, “Dynamic Variable Ordering for Binary Decision
Diagrams,” Proc. Int’l Conf. Computer-Aided Design, pp. 42-47,
Nov. 1993.

[58] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon,
“Variable Ordering for Taylor Expansion Diagrams,” Proc. IEEE
Int’l High Level Design Validation and Test Workshop (HLDVT-04),
pp. 55-59, 2004.

[59] P. Jain, “Parameterized Motion Estimation Architecture for
Dynamically Varying Power and Compression Requirements,”
MS thesis, Dept. of Electrical and Computer Eng., Univ. of
Massachusetts, 2002.

[60] M. Ciesielski, S. Askar, E. Boutillon, and J. Guillot, “Behavioral
Transformations for Hardware Synthesis and Code Optimization
Based on Taylor Expansion Diagrams,” Dec. 2005, Patents
pending, USSN 11/292,493 and PCT/US05/43860.

[61] J. Guillot, E. Boutillon, D. Gomez-Prado, S. Askar, Q. Ren, and M.
Ciesielski, “Efficient Factorization of DSP Transforms Using
Taylor Expansion Diagrams,” Proc. Design Automation and Test in
Europe Conf. (DATE-06), 2006.

[62] M. Ciesielski, S. Askar, D. Gomez-Prado, and Q. Ren, “TEDify—
Software for Construction and Optimization of TEDs, with
Application to Verification and Synthesis of Behavioral Designs,”
http://tango.ecs.umass.edu/TED/Doc/html, 2006.?

Maciej Ciesielski received the MS degree in
electrical engineering from Warsaw Technical
University in 1974 and the PhD degree in
electrical engineering from the University of
Rochester in 1983. From 1983 to 1986, he was
a senior member of the technical staff at GTE
Laboratories, Waltham, Massachusetts, where
he worked on silicon compilation and layout
synthesis projects. Currently, he is a professor in
the Department of Electrical and Computer

Engineering at the University of Massachusetts, Amherst, where he
performs research in the area of electronic design automation and CAD
for VLSI circuits and systems. His specific research interests include
formal verification and design validation, behavioral and logic synthesis
from high-level specifications, physical design automation, and algo-
rithms and mathematical optimization methods. He is a senior member
of the IEEE and a member of the IEEE Circuits and Systems Society.

Priyank Kalla received the BE degree in
electronics engineering from the Birla Vishva-
karma Mahavidyalaya, Saradar Patel University
in India in 1993 and the MS and PhD degrees
from the University of Massachusetts Amherst in
1998 and 2002, respectively. He has been an
assistant professor in the Electrical and Com-
puter Engineering Department at the University
of Utah, Salt Lake City, since 2002. His research
interests are in fundamental CAD techniques for

synthesis, optimization, and verification of digital VLSI circuits and
systems. He is a recipient of the US National Science Foundation
CAREER award in 2006. He is a member of the IEEE.

Serkan Askar received the BS degree in
electrical engineering from Bogazici University,
Turkey, in 1997. The same year, he joined the
VLSI CAD Laboratory in the Department of
Electrical and Computer Engineering at the
University of Massachusetts (UMass), Amherst,
where he worked as a research assistant. He
received the MS degree in computer systems
engineering from UMass in 2001. He also
received the MBA degree from the Isenberg

School of Management, UMass, in 2005, where he was a recipient of the
Flavin Fellowship for Entrepreneurship. He is currently a PhD candidate
in the Electrical and Computer Engineering Department at UMass and
will be graduating in July 2006. His research interests include physical
design automation, formal verification, and behavioral synthesis. He has
published several articles in archived journal and conference proceed-
ings in the CAD area. He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

