
Technology Mapping by Binate Covering

Michal Z. SERV1T ~ and Kang YI 2

1 Dept. of Computer Science and Engineering, Czech Technical University, Karlovo nfim. 13,
Prague, CZ 121 35 Czech Republic, e-mail: servit@cs.felk.cvut.cz

2 Dept, of Computer Engineering, Seoul National University, Shillim-dong Kwanak-Gu, Seoul,
151-742 Korea, e-mail: yk@riact.snu.ac.kr

Abstract. Technology mapping can be viewed as the optimization problem of
finding a minimum cost cover of the given Boolean network by choosing from
given library of logic cells. The core of this problem in turn can be formulated as
the binate covering problem that is NP-hard. A number of heuristics solving the
binate covering problem has been proposed. However, no experimental comparison
of efficiency of such techniques with respect to this specific domain has been
published according to our knowledge. The aim of this paper is to analyze specific
features of the binate covering formulation of the technology mapping, to propose
and test a collection of heuristics using MCNC benchmarks and to select the most
efficient heuristic algorithm.

1 Introduct ion

Logic synthesis takes the circuit specification at the functionality level and generates
an implementation in terms of interconnection of logic cells from a given library.
Since synthesis is a difficult task, it is often separated into two phases [3], [4]:
technology-independent optimization phase (logic optimization), followed by a
technology mapping phase. The optimization phase attempts to generate an optimum
abstract representation of the circuit. The technology mapping phase inputs an
interconnection of abstract operators - the subject Boolean network - and generates an
interconnection of logic cells selected from a given library. Further we will assume
that any abstract operator can be implemented by a single logic cell (i.e. we assume
that the given network is feasible), and that no modifications of the given subject
network are allowed while it may improve mapping results [1].

Under the above assumption we can easily decompose the technology mapping
into two subsequent phases without loss of generality:
i. Construction of all (feasible) clusters: a cluster (also called match [4] or supernode

[3]) is a subnetwork of the given subject network implementable by a single logic
cell from the given library.

ii. The selection of clusters for a functionally correct implementation of the subject
network while optimizing area, delay, or power.

The enumeration of all clusters is relatively simple problem; the hard part is
selecting the optimum subset that satisfies all constraints. This is why we will focus
our attention to the second phase. It is well known [3], [4] that it can be formulated as
the binate covering problem where all constraints related to functional correctness are

204

expressed as a product-of-sums (POS) Boolean formula while the optimization criteria
are expressed as a cost function.

Because the binate covering problem is NP-hard (for formal proof see e.g. [8])
we resort to heuristic methods. A number of such methods has been proposed recently
[2], [6], [13] (for review see [5]) with the aim of general applicability. On the other
hand, domain specific xocedures are used in many technology mappers [1], [4], [10]

A Z
Sl

, . .

e7 c.4
..'" .."" s3 '":?"

/" .-'"~I'" ,, ,.')

iX

- - °

'C, 3":.

Fig. 1 Feasible subject network

(for review see [3]) to solve
essentially the same task. Upon to
our knowledge, no exhaustive
comparison of methods of both
types using a technology mapping
experimental data has been
published so far while such an
experiment has been reported in
[13] for state minimization of
incomplete FSMs. This is why we
decided to propose a collection of
heuristics and compare their
efficiency using MCNC
benchmarks.

The rest of the paper is
organized as follows: Section 2
gives the problem formulation,
Section 3 describes the proposed
collection of heuristics. Section 4
shows some experimental results.
In Section 5 we finally draw
conclusions.

2 Binate Covering Problem Formulation

Let a feasible subject network and a set of corresponding clusters be given. The
subject network consists of primary input nodes, primary output nodes and internal
nodes representing abstract operators (abstract gates/blocks) interconnected via
(generally multiterminal) nets (Fig. 1). Clus ters are subnetworks of the given network
that can be mapped into a single-output library cell. We will say that a node or cluster
p r o d u c e s a signal: for example node v 4 produces the signal s 4 and cluster C 3
produces the signal s 2 . By C (s) we will denote the set of all clusters producing the
signal s : for example C(s2)= { C 3 , C 4 , C 5 } . Similarly we will say that a node or
cluster c o n s u m e s a signal: for example node v 2 consumes signals $ 3 , s 4 , s c and
cluster C 5 consumes signals s 3 , s c , s a , s~.

Our task is to select an optimum subset S fi'om the set of all clusters C that
satisfies the following constraints [3, p. 114]:
• all signals consumed by primary output nodes have to be produced by clusters from

S (o u tp u t cons t ra in t s) , and

205

• if a cluster Cl is in S, each signal consumed by C, should be produced either by a
primary input node or by some cluster(s) in S (implication constraints).

Output constraints ensure that each primary output is realized by a selected cluster.
Impl icat ion constraints ensure that the network obtained in terms of the chosen
clusters is a physical ly realizable circuit, i.e. no cluster selected has a dangl ing input.

It is well known that the above constraints can be expressed in terms of a
product-of-sums (POS) Boolean formula. For each cluster C}, a Boolean variable x i

is introduced: x i = T R U E ¢:~ C i c S , x i = F A L S E ¢::> C i ~ S . The constraints
produce clauses (sum terms) as follows:

• Given a primary output node v consuming a signal s, let C(s) = {C,. 1 , C,.2--. C,k } be
the set of clusters generat ing the signal s. Than at least one of them has to be
selected, i.e. the output constraint for v can be written as follows:

(Xsl + xs2 +.. .+xsl ~)

• Given a signal s consumed by a selected cluster C o , let C(s) = {C,.1, C,. 2 ... C~.k } be
the set of clusters producing the signal s. Than at least one of then has to be selected,
i.e. the implicat ion constraint with respect to s and C o can be written as follows:

x0 ~ (x, l + x~2 + . . . + x , ,) ** (2 0 + x , 1 + x,2 +...+x~k)
Take the product o f all the sum clauses generated above to form a product-of-sums
Boolean expression T. Any satisfying ass ignment to T is a solution to the binate
covering problem, and, consequential ly, to the original technology mapp ing problem.

For our example (Fig. 1), we get T = 7] • T 2.....T 8 where:

T l = (x 6 + x 7) --- output constraint fo r f l (1)
T 2 = (x 3 + x 4 + x 5) --- output constraint for f 2
T~ = (23 + xl) "'" implicat ion constraint for C 3, s 3
T 4 = (23 + x 2) ... implicat ion constraint for C 3, s 4
Ts = (24 + x :) ..- implicat ion constraint for C 4, s 4
T 6 = (25 + x 1) --. implicat ion constraint for C5, s3
T 7 = (26 + x 3 + x 4 + x 5) ... implicat ion constraint for C 6, s 2
Ts = (Zv + x2) --- implicat ion constraint for C 7, s 4

The set S = {C 6, C5, C 1 } is a solution to our technology mapping problem because the
ass ignment x6,xs,x j = TRUE and x7,x4.x3,x 2 = FALSE satisfies T.

Let a posit ive cost be associated with each cluster expressing area needed for the
implementa t ion of the cluster. F ind ing a satisfying ass ignment with the least sum of
costs of all selected clusters - the least total cost - is the same as f inding an op t imum
solution to the original technology mapping problem when the total area of cells is to
be minimized. To simplify the argumentat ion we will assume further that all l ibrary
cells have the same cost, i.e. just the number of selected clusters is to be minimized.
Let us note that general izat ions of this cost measure are quite straightforward [2], [5].

For our example, the solution set S = {C 6, C 5 , C 1 } has the total cost equal to 3
while the solution set S l = { C 6 , C 5 , C 1 ,C4} has the total cost equal to 4. Notice that
S l is a redundant solution because there exists a proper subset of S 1 that is a
solution. On the other hand, S is an irredundant solution because no cluster can be
deleted from S. It is convenient to dist inguish between two types of redundancy:
either S contains one or more clusters producing a signal that is not consumed by any

other cluster in S (A L P H A redundancy) or S contains two or more clusters producing

206

the same signal (BETA redundancy). Notice that 6~ is BETA redundant with respect
to S l .

A set of all output and implication constraints will be called the basic set o f

constraints because it expresses all conditions that any solution must obey. However,
as Murgai et.al. [3, p.l15] pointed out, a basic set can be enhanced by adding
covering constraints in order to help heuristic procedures in obtaining somewhat better
approximate solutions. Of course, their presence does not affect the optimum solution.

Covering constraints [1], [3] are constructed as follows. If an internal node v is
covered by clusters Cvl, Cv2... Cvk, write a clause (xvl + x~2 +...+xuk) indicating that
at least one of the clusters Cul, C~2... C~k must be selected. Repeat it for each internal
node of the network. Four covering constraints are added in our example:

(X 6 "t-x7),(X 3 "t-X 4 -I-X 5"[-X7),(X 1 "I-X 4 +X7) , (X 2 +X5).
Binate covering problems that originate in technology mapping have some domain

specific features that can easily be identified (for formal proofs see [12]):

• Let PLj denote a set of posit ive literals from Tj where Tj is from the basic set of

constraints, i.e. PLy represents a set of clusters producing the same signal. It

holds: if PL i f-I PLt ¢ op then PLi = PL k . See for example PL 2 = PL 7 = {x3,x4,xs} .

Notice that clusters C 3 , C 4 and C 5 produce s 2 .

• Let x i = T R U E , x i ~ PLj and the formula T is satisfied, then all variables from

PLy \ {x i } can be set F A L S E and T remains satisfied. Notice that it is sufficient to
select just one of the clusters producing the same signal. The application of this

rule allows to avoid generation of BETA redundant solutions (see Section 3.3).
• An irredundant solution can always be found by traversing a subject network from

primary outputs to primary inputs provided that the network is acyclic. The
application of this rule allows to avoid generation of redundant solutions (see
Section 3.1).

To conclude this section: we will investigate both basic and enhanced set of
constraints while minimizing the number of clusters selected.

3 Heuristic Algorithm Proposal

According to our experience [3], [51, [61, [71, a greedy algorithm combined with
backtracking is appropriate to solve the binate covering problem. In this section, we
will propose the core of such a procedure with several options that seems to be
reasonable to investigate experimentally bearing in mind domain-specific knowledge.

The basic operation of our algorithm is reduction. The reduction consists of two

steps: the value TRUE or F A L S E is assigned to a variablex i , and the formula T is

simplified accordingly. For our example, we get by assignment x 7 = FALSE :

T = (x 6) . T 2 . r 3 . T 4 . r 5 `T 6 . T 7 (2)

Notice that the above formula (2) can be satisfied only i fx 6 = TRUE because it

contains the clause (x6). This is why we denote the reduction that is based on

existence of a clause in T that contains only one literal as exact. A reduction that is

not an exact one is denoted as a heuristic reduction. For example:

207

x 6 = T R U E , T =T2.T3.T4.T5.T6.(x3+x4+x5) is an exact reduction with

respect to (2) and x 7 = F A L S E , T = (x 6) . i r ~ . ~ . T 4 . ~ . T 6 . T 7 is a heuristic

reduction with respect to (1).
Using the notion of exact and heuristic reduction, we can formulate the core of

the proposed algorithm as follows:
Step l : Perform all possible exact reductions.
Step2: If a solution was found - remove redundant clusters and STOP. If the

reduced formula cannot be satisfied - backtrack to the last heuristic decision
and assign the opposite value to the variable involved.

Step3: Perform a heuristic reduction and repeat Step 1.

The crucial part of this algorithm is Step 3: select a variable x i from T (select a
cluster C/) and assign it a value (accept or reject cluster C,). There are several
possibilities: how to define a candidate set for variable selection, how to select a

variable from the candidate set, and how to assign a value to the variable selected.

3.1 Candidate set

Two options are to be investigated: either to use the whole set of variables from T as
the candidate set, or to consider only such variables that appear in positively unate
clauses (i.e. clauses that do not contain an inverted literal) in the basic set of
constraints (i.e. covering clauses are not taken into account!). We will call these
variants as complete and restricted candidate set respectively. In our example (1), the
complete candidate set is { x l , x 2 x7}, and the restricted candidate set is
{ x 3 , x 4 xT}.

Notice that the restriction of the candidate set has the same effect as selecting
candidate clusters by a traversal from primary outputs to primary inputs. The traversal
has been used in [1] successfully. This motivated us to explore this option in our
experiments.

When the restricted candidate set is used, the solution found is always
irredundant provided that the subject network is acyclic [12]. Moreover, it ensures that
a solution will be found without backtracking [12].

3.2 Variable select ion

For variable selection, we propose to use slight modifications of score functions as
defined in [2]. The score functions used are based on the following simple
observation: the probability that a cluster C i will be included in at least one minimal
solution is directly proportional to the number of terms containing literal x i , while the
contribution from clause Tj containing literal x i is inversely proportional to the
number of literals contained in it. We define weight w i of Tj as inversely
proportional to the number of literals in Tj. It holds for our example (1):
% = 1 / 2 , w 2 = l / 3 , w 3 = l / 2 . . . e t c .

Direct score DS i approximates the probability that a cluster C i is a part of at
least one minimal solution:

208

m

D S i = ~ , d w j
j=l

where a w j = w j if 7) contains literal x i , otherwise dw) = 0 , and m is the number of
variables in 7". It holds for our example: D S l = w 3 + w 6 = 1 ! 2 + 1 1 2 ,

D S 2 = w 4 + w S + w 8 = 1 / 2 + 1 / 2 + t / 2 , D S 3 = w 2 + w 7 = 1 / 3 + 1 / 4 , . . . etc.
Similar statement as above can be drawn for the probability that a cluster C i

will not be included in at least one minimal solution. I nd i r ec t s core IS i approximates

this probability:
m

I S i = Y ~ i w]
j=l

wheretwj = wj if Tj contains literal Y i , otherwise iwj = 0. It holds for our example:

IS 1 = 0 , IS 2 = 0 , IS 3 = w 3 + w 4 = 1 / 2 + 1 / 2 = 1 , 1 3 4 --- w 5 --- 112 etc.
Obviously, a variable x i with the highest value of D S i o r I S i is a candidate for

the value assignment. The difference D I F i = D S i - I S i can be used for the same
purpose as well.

3.3 Value assignment

Three strategies of value assignment are to be investigated: Accept [2], Reject [2] and
Accept-or-Reject.

A c c e p t strategy assigns x i = T R U E to the variable x i having the highest value
of D S i . Ties are resolved with respect t o l S i . For our example (1), the first
assignment made is: x 2 = T R U E .

R e j e c t strategy assigns x i = F A L S E to the variable x i having the highest value
of IS i . Ties are resolved with respect t o D S i . For our example (1), the first
assignment made is: x 3 = F A L S E .

A c c e p t - o r - R e j e c t strategy assigns a value to the variable having the highest value
of [D1FiI : x i = T R U E if DIF,. > O, otherwise x i = F A L S E . For our example (1), the
first assignment made is: x 2 = T R U E .

Notice that the reject strategy provides irredundant solutions only, while the
remaining ones may produce a redundant solution [2]. However, the notion of
(heuristic) reduction can be e n h a n c e d by using the domain-specific features of
technology mapping. I f x i e PL i is set T R U E (i.e. C i is accepted), then all the
remaining variables from PLj are set F A L S E and the constraint formula is simplified
accordingly. For our example (1), we get by assignment x 3 = T R U E :

x 4 = F A L S E and x 5 = F A L S E ~ T = T I • T 3 • T 4 " (x 2) " (x 1) ' T 7 ' T 8

This allows us to avoid generation of BETA redundant solutions and to speed-up the
whole process.

3.40rthogonal set of heuristics

It is possible to derive an orthogonal set of heuristics by combining three types of
options: bas i c or e n h a n c e d set of constraints, c o m p l e t e or re s t r i c t ed candidate set, and

209

accept or reject or accept-or-reject strategy. For obvious reasons, the enhanced
definition o f reduction is applied in all cases.

4 Experiments

M C N C benchmarks listed in Table 1 were used for exper imenta t ion. A feasible

acycl ic subject network was generated for each benchmark using the same technique

as in [1]: a modif ied misll provided an opt imized network that was d e c o m p o s e d by ite
in order to obtain a feasible network. The set o f clusters was der ived for A C T E L

ACT1 [9] library cell using the front-end of the mapper descr ibed in [1]. All

computa t ions were done on HP9000/735 (99 MHz, 41 M F L O P S , 80 Mby te memory) .

4.1 Problem size

Table 1 lists the number o f nodes and clusters (#clu) for each benchmark as well as

basic set ofconstr, enh. set ofconstr.

o J ' ~ s after exact red after exact red
name input output internal #clu #cons #clu #cons gcons #clu #cons

5xpl 7 10 4(60 119 69 43 159 43 85
alu2 10 6 171 208 429 118 117 60t3 117 198
alu4 14 8 88 92 156 5! 8 244 8 5

apex2 39 3 104 117 241 2~ 25 345 25 4C
apex6 135 99 31C 450 646 37") 317 956 317 512
apex7 49 37 95 113 191 42 ~ 286 40

b9 41 21 5 c ~ 117 61 47 176 47 83
bx~ 5 28 65 141 380 3~ 128 445 128 359

c1908 33 25 91 262 526 37~ 186i 700 186 472
c499 41 32 16~ 18(320 24 2~ 484 24 180

c5315 178 123 535 624 1247 235 175 1786 177 624
c880 60 26 173 235 441 325 17(614 176 443
clip 9 5 48 6~ 103 55 43! 151 43 813

counl 35 16 35 35 52 12 0 91 0 C
i l l l i l l ~ . i

des 256 245 1308 190[5275 238~ 1136 6583 1136 2919
duke2 22 29 164 256 535 268 184 669 184 358

e64 65 65 95 12." 184 31 61 279 61 125
f5h~ 8 8 4C 42 74 5 114 7 9

misexl 8 7 18 31 65 31 2~ 83 25 43
misex2 25 t8 38 4~ 70 13 1~ 108 17 21

rd73 7 3 28 3"~ 64 lzl 14i 92 14 19
rd84 8 4 48 52 118 29 25 166 25 49

rot 135 107 248 28c~ 516 97 87 764 87 289
sao2 10. 4 47 5(68 21 19i 115 19 37
vg2 25 i 8 33 34 47 8 8 80 8 15

z4ml 7! 4 12 14 24 6 51 36 5 14

Table 1 Sizes and complexity of benchmarks

210

numbers of constraints (#cons) for both basic and enhanced set of constraints.
Additionally, problem sizes after exact reduction (after the first application of the Step
1) are listed as well.

4.2 Efficiency of heuristics

set of constr.
cand set
kstrateev

SUM

~et of com'tr.
cand set
strategy

SUM

enhanced
restricted

accept
cost] time
39181 2.29

enhanced
restricted

acc-or-re[.
cost time
3921 2.12

enhanced
restricted

reject
cost l time
39531 4.29

enhanced enhanced
complete complete

accept ace-or-re[, i
cost ltime cost I time
392,9114.46 39271 2.60

enhanced
complete

re/ect
cost I time
39331 4.14

basic
restricted

accept
cost [time
3933J 1.83

basic basic basic basic
restricted restricted complete[complete

acc-or-re[, reject accept acc-or-re[.
cost [time cost I time cost time cost time

| s

3941j 1.94 3971[3.9t3 3930 2.69 3932 2.94

basic
complete

reject
cost [time
3955J 3.88

Table 2 Comparison of heuristics

Table 2 lists summarized costs of solutions (in the number of clusters used) and run
times (in seconds) for all cluster selection heuristics proposed in this paper. Results of
mis-pga(new) 1 (mis-pga) [3, p. 59], [10] and of the algorithm of Kang Yi and Chu-
Shik Jhon (ky) [1] are presented in Table 3 in order to enable comparison between our
algorithms and the best representatives of domain-specific mappers. Table 3 also
contains costs of minimal solutions (min cost) provided by the commercial ILP solver
CPLEX (for the formulation of our problem in terms of 0-1 LP see [11], [12]).

Mis-pga(new) is based on a different philosophy than the other mappers under
comparison: it does not contain explicitly expressed phases of cluster enumeration and
selection and it allows to modify the given subject network. This is why it is not
possible to measure mis-pga cluster selection time. However, the comparison of run
times of the whole technology mapping procedure is possible (see Table 3, columns
full time). Additionally, results provided by mis-pga might be better than the minimum
results provided under our assumption that no modifications of the given subject
network are allowed. In reality, this happened for vg2 and duke2 only.

5 Conc lus ions and Future W o r k

Thorough analysis of the data collected can be summarized as follows:
• In average, the enhanced set of constraints provides better results than the basic

one.
• In average, the restricted candidate set provides better results than the complete

o n e .

Standard options: ite_map -cn 1 -F 50 -d 4 -f7 -rNU ' ite map -cn 1 -d 4 -f8 -r

211

• In average, the accept strategy provides slightly better results than the accept-or-
reject strategy that, in turn, provides better results than the reject one.

• ALPHA type of redundancy appeared only if the complete candidate set and
accept or accept-or-reject strategy is used.

• BETA type of redundancy was not observed.

• Backtracking was not employed.
The majority of above observations is in agreement with the results of

theoretical analysis [12]. However, two phenomena seems to be rather confusing: we
expected, based on results from [2], that the reject strategy will provide better quality
solutions than the remaining strategies, and that a backtracking will be needed when
the complete candidate set is employed. The explanation of both phenomena lies
probably in specific properties of technology mapping binate covering problems.

The main achievement of our work is that the best heuristic from the orthogonal
collection of heuristics under test was identified: Enhanced set of constraints /
Restricted candidate set / Accept strategy. This heuristic provides better results (by
4% in average) than those provided by mis-pga(new) [10] and practically the same
results as ky [1] in much shorter time. It should be noted that our approach is better

name
5xp 1
alu2
alu4

apex2
apex6
apex7

b9
bw

c1908
c499

c5315
c880

clip
count

des
duke2

e64
f51m

misexl
misex2

rd73
rd84!

rot
sao2
vg2

z4mt
SUM

enh. / res. / accept mis-pga ky nlin
cost time full time cos t full time cost] time full time cost

34 0.00 3.20 36 23.70 33 0.15 3.35 33
162 0.04 13.64 169 140.10 162 0.66 14.26 162

88 0.01 3.41 109 19.70 881 0.11 3.51 88
103 0.03 5.63 103 81.20 103 0.12 5.72 103
230 0.11 15.11 275 145.80 230 1.68 16.68 229

90 0.03 2.53 92 41.30 90 0.I0 2.60 90
56 0.01 1.21 62 36.20 55 0.06 1.26 55
56 0.04 45.34 55 12.60 55 0.56 45.86 54

154 0.05 19.25 160 141.30 154 2.47 21.67 151
164 0.02 8.62 164 60.90 164 1.94 10.54 164
520 0.19 49.09 558 448,40 521 4.54 53.44 519
154 0.05 8.45 161 94.50 153 0.29 8.69 153
42 0.02 4.32 43 46.00 41 0.04 4.34 41
39 0.02 0.42 39 8.6(39 0.01 0.41 39

1278 1.47 227.47 1285 1520.30 1280 38.76 264.76 1278
152 0.07 13.57 148 65.00 154 0.89 14.39 151
94 0.03, 0.63 94 1.20 94 0.31 0.91 94
39 0.011 3.11 40 31.30 39 0.05 3,15 39
16 0.01 1.tl 16 8.40 t6 0.04 1.14 16
38 0.00 0.40 38 3.3(38 0.06 0.46 38
28 0.01 1.51 29 13.50 28 0.03 1.53 28
47 0.01 4.31 49 59.90 47 0.04 4.34 47

243 0.05 8.75 251 163.20 244 1.26 9.96 243
46 0.00 1.10 46 24.50 46 0.03 1.13 4~
33 0.00 0.40 32 9.t0i 33 0.02 0.42 33
12 0.01 0.52 14 13.10 12 0.01 0.52 12

3918 2.29 443.10 4068 3213.10 3919 54.23 495.04 390f

Table 3 Comparison of our best heuristic to mis-pga(new) and ky

212

especially in case of large and complex circuits. Moreover, no substantial
improvement in the cost of solution can be expected in future because the results of
the best of our heuristics are just about 3.7% above the minimum in the worst case
(bw) and 0.3 % in average!

We are studying enhancements of the proposed techniques for the case when a
collection of library cells with different costs is given (see e.g. Xilinx XC4000
family). Finally, we are analyzing the possibility to adopt the proposed techniques
when delay or power minimization is the goal, i.e. to use them for performance
oriented mapping. Preliminary results can be found in [12].

Acknowledgment

The authors would like to thank Dr. Rajeev Murgai for providing the code of mis-
pga(new) and hints how to run it in the most efficient way.

The research of one of the authors (Michat Servit) was supported by
COPERNICUS Coprodes CP 940453 grant.

References

[1] Kang Yi, Chu-Shik Jhon: A New FPGA Technology Mapping Approach by Cluster
Merging. In: R.W. Hartenstein, M. Glesner (Eds.): Field-Programmable Logic. Springer
1996, pp 366-370.

[2] M. Servft, J. Zamazal: Heuristic Approach to Binate Covering Problem, EDAC'92 Proc.,
1992, pp. 123-129.

[3] R. Murgai, R. Brayton, A. Sangiovanni-Vincentelli: Logic Synthesis tot Field-
Programmable Gate Arrays. Kluver, 1995.

[4] L Stok et al.: BooleDozer - Logic Synthesis for ASICs. IBM J. of Res. and Dev., 1995,
Vol. 40, No, 4, pp. 407-430.

[5] J. Zamazal: Boolean Satisfiability and Covering Problems - Design and Evaluation of
Efficient Algorithms. PhD Dissertation, Czech Technical University, 1995.

[6] O. Coudert, J. Madre: New Ideas for Solving Covering Problems. 31 "~t DAC Proc., 1995.
[7] M. Servft, J Zamazal: Decomposition and Reduction - General Problem-Solving

Paradigms. VLSI Design J., 1995, Vol. 3, Nos. 3-4, pp. 359-371.
[8] C. Papadimitriou, K. Steglitz: Combinatorial Optimization - Algorithms and Complexity.

Prentice-Hall, 1982, pp. 406-409.
[9] The Actel FPGA Data Book, Actel Inc., 1993.
[10] R. Murgai, K. Brayton, A. Sangiovanni-Vincentelli: An Improved Synthesis Algorithm

for Multiplexor-based PGA's. 28 e~ DAC Proc., 1992, pp. 380-386.
[11] Kang Yi, Soeng-Yong Ohm, Chu-Shik Jhon: An Efficient FPGA Technology Mapping

Tightly Coupled with Logic Minimization. IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, to appear in September 1997.

[12] M. Servft, Kang Yi: Binate Covering Approach to FPGA Technology Mapping Problem.
CTU Research Report under preparation.

[13] T. Kam et al.: Synthesis of Finite State Machines - Functional Optimization. Kluver,
1997.

