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Abstract. Technology mapping can be viewed as the optimization problem of 
finding a minimum cost cover of the given Boolean network by choosing from 
given library of logic cells. The core of this problem in turn can be formulated as 
the binate covering problem that is NP-hard. A number of heuristics solving the 
binate covering problem has been proposed. However, no experimental comparison 
of efficiency of such techniques with respect to this specific domain has been 
published according to our knowledge. The aim of this paper is to analyze specific 
features of the binate covering formulation of the technology mapping, to propose 
and test a collection of heuristics using MCNC benchmarks and to select the most 
efficient heuristic algorithm. 

1 Introduct ion  

Logic synthesis takes the circuit specification at the functionality level and generates 
an implementation in terms of interconnection of  logic cells from a given library. 
Since synthesis is a difficult task, it is often separated into two phases [3], [4]: 
technology-independent optimization phase (logic optimization), followed by a 
technology mapping phase. The optimization phase attempts to generate an optimum 
abstract representation of the circuit. The technology mapping phase inputs an 
interconnection of abstract operators - the subject Boolean network - and generates an 
interconnection of logic cells selected from a given library. Further we will assume 
that any abstract operator can be implemented by a single logic cell (i.e. we assume 
that the given network is feasible), and that no modifications of  the given subject 
network are allowed while it may improve mapping results [1]. 

Under the above assumption we can easily decompose the technology mapping 
into two subsequent phases without loss of  generality: 
i. Construction of  all (feasible) clusters: a cluster (also called match [4] or supernode 

[3]) is a subnetwork of the given subject network implementable by a single logic 
cell from the given library. 

ii. The selection of clusters for a functionally correct implementation of the subject 
network while optimizing area, delay, or power. 

The enumeration of  all clusters is relatively simple problem; the hard part is 
selecting the optimum subset that satisfies all constraints. This is why we will focus 
our attention to the second phase. It is well known [3], [4] that it can be formulated as 
the binate covering problem where all constraints related to functional correctness are 
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expressed as a product-of-sums (POS) Boolean formula while the optimization criteria 
are expressed as a cost function. 

Because the binate covering problem is NP-hard (for formal proof see e.g. [8]) 
we resort to heuristic methods. A number of such methods has been proposed recently 
[2], [6], [13] (for review see [5]) with the aim of general applicability. On the other 
hand, domain specific xocedures are used in many technology mappers [1], [4], [10] 
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Fig. 1 Feasible subject network 

(for review see [3]) to solve 
essentially the same task. Upon to 
our knowledge, no exhaustive 
comparison of methods of both 
types using a technology mapping 
experimental data has been 
published so far while such an 
experiment has been reported in 
[13] for state minimization of 
incomplete FSMs. This is why we 
decided to propose a collection of 
heuristics and compare their 
efficiency using MCNC 
benchmarks. 

The rest of the paper is 
organized as follows: Section 2 
gives the problem formulation, 
Section 3 describes the proposed 
collection of heuristics. Section 4 
shows some experimental results. 
In Section 5 we finally draw 
conclusions. 

2 Binate Covering Problem Formulation 

Let a feasible subject network and a set of corresponding clusters be given. The 
subject network consists of primary input nodes, primary output nodes and internal 
nodes representing abstract operators (abstract gates/blocks) interconnected via 
(generally multiterminal) nets (Fig. 1). Clus ters  are subnetworks of the given network 
that can be mapped into a single-output library cell. We will say that a node or cluster 
p r o d u c e s  a signal: for example node v 4 produces the signal s 4 and cluster C 3 
produces the signal s 2 . By C ( s )  we will denote the set of all clusters producing the 
signal s : for example C(s2)=  { C 3 , C 4 , C 5 } .  Similarly we will say that a node or 
cluster c o n s u m e s  a signal: for example node v 2 consumes signals $ 3 , s  4 , s  c and 
cluster C 5 consumes signals s 3 , s c , s a , s~.  

Our task is to select an optimum subset S fi'om the set of all clusters C that 
satisfies the following constraints [3, p. 114]: 
• all signals consumed by primary output nodes have to be produced by clusters from 

S ( o u tp u t  cons t ra in t s ) ,  and 
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• if a cluster Cl is in S, each signal consumed by C, should be produced either by a 
primary input  node or by some cluster(s) in S (implication constraints). 

Output  constraints ensure that each primary output is realized by a selected cluster. 
Impl icat ion constraints ensure that the network obtained in terms of the chosen 
clusters is a physical ly realizable circuit, i.e. no cluster selected has a dangl ing  input. 

It is well known that the above constraints can be expressed in terms of  a 
product-of-sums (POS) Boolean formula. For each cluster C}, a Boolean variable x i 

is introduced:  x i = T R U E  ¢:~ C i c S ,  x i = F A L S E  ¢::> C i ~ S .  The constraints 
produce clauses (sum terms) as follows: 

• Given a primary output node v consuming  a signal s, let C(s)  = {C,. 1 , C,.2--. C,k } be 
the set of  clusters generat ing the signal s. Than at least one of  them has to be 
selected, i.e. the output  constraint  for v can be written as follows: 

(Xsl + xs2 +.. .+xsl  ~) 

• Given a signal s consumed by a selected cluster C o , let C(s)  = {C,.1, C,. 2 ... C~.k } be 
the set of  clusters producing the signal s. Than  at least one of then has to be selected, 
i.e. the implicat ion constraint  with respect to s and C o can be written as follows: 

x0 ~ (x, l  + x~2 + . . . + x , , )  **  (2  0 + x ,  1 + x,2 +...+x~k ) 
Take the product  o f  all the sum clauses generated above to form a product-of-sums 
Boolean expression T. Any  satisfying ass ignment  to T is a solution to the binate 
covering problem, and, consequential ly,  to the original technology mapp ing  problem. 

For our example  (Fig. 1), we get T = 7] • T 2.....T 8 where: 

T l = ( x 6 + x  7 ) --- output constraint  fo r f l  (1) 
T 2 = (x 3 + x 4 + x 5) --- output  constraint  for f 2  
T~ = (23 + xl ) "'" implicat ion constraint  for C 3, s 3 
T 4 = (23 + x 2) ... implicat ion constraint  for C 3, s 4 
Ts = (24 + x : )  ..- implicat ion constraint  for C 4, s 4 
T 6 = (25 + x 1 ) --. implicat ion constraint  for C5, s3 
T 7 = (26 + x 3 + x 4 + x 5 ) ... implicat ion constraint  for C 6, s 2 
Ts = (Zv + x2)  --- implicat ion constraint  for C 7, s 4 

The set S = {C 6, C5, C 1 } is a solution to our technology mapping problem because the 
ass ignment  x6,xs,x  j = TRUE and x7,x4.x3,x 2 = FALSE satisfies T. 

Let a posit ive cost be associated with each cluster expressing area needed for the 
implementa t ion  of the cluster. F ind ing  a satisfying ass ignment  with the least sum of  
costs of all selected clusters - the least total cost - is the same as f inding an op t imum 
solution to the original  technology mapping  problem when the total area of  cells is to 
be minimized.  To simplify the argumentat ion we will assume further that all l ibrary 
cells have the same cost, i.e. just  the number  of selected clusters is to be minimized.  
Let us note that general izat ions of this cost measure are quite straightforward [2], [5]. 

For  our example,  the solution set S = {C 6, C 5 , C  1 } has the total cost equal  to 3 
while the solution set S l = { C 6 , C 5 , C  1 ,C4}  has the total cost equal  to 4. Notice that 
S l is a redundant  solution because there exists a proper  subset  of  S 1 that is a 
solution. On the other hand, S is an irredundant solution because no cluster can be 
deleted from S. It is convenient  to dist inguish between two types of redundancy:  
either S contains  one or more clusters producing a signal that is not  consumed by any 

other cluster in S ( A L P H A  redundancy) or S contains  two or more clusters producing  
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the same signal (BETA redundancy).  Notice that 6~ is BETA redundant with respect 
to S l . 

A set of  all output and implication constraints will be called the basic set o f  

constraints because it expresses all conditions that any solution must obey. However, 
as Murgai et.al. [3, p.l15] pointed out, a basic set can be enhanced by adding 
covering constraints in order to help heuristic procedures in obtaining somewhat better 
approximate solutions. Of course, their presence does not affect the optimum solution. 

Covering constraints [1], [3] are constructed as follows. If  an internal node v is 
covered by clusters Cvl, Cv2... Cvk, write a clause (xvl + x~2 +...+xuk ) indicating that 
at least one of  the clusters Cul, C~2... C~k must be selected. Repeat it for each internal 
node of  the network. Four covering constraints are added in our example: 

(X 6 "t-x7),(X 3 "t-X 4 -I-X 5"[-X7),(X 1 "I-X 4 +X7)  , (X 2 +X5). 
Binate covering problems that originate in technology mapping have some domain 

specific features that can easily be identified (for formal proofs see [12]): 

• Let PLj denote a set of  posit ive literals from Tj where Tj is from the basic set of 

constraints, i.e. PLy represents a set of clusters producing the same signal. It 

holds: if PL i f-I PLt ¢ op then PLi = PL k . See for example PL 2 = PL 7 = {x3,x4,xs} . 

Notice that clusters C 3 , C 4 and C 5 produce s 2 . 

• Let x i = T R U E ,  x i ~ PLj and the formula T is satisfied, then all variables from 

PLy \ {x i } can be set F A L S E  and T remains satisfied. Notice that it is sufficient to 
select just one of  the clusters producing the same signal. The application of  this 

rule allows to avoid generation of  BETA redundant solutions (see Section 3.3). 
• An irredundant solution can always be found by traversing a subject network from 

primary outputs to primary inputs provided that the network is acyclic. The 
application of  this rule allows to avoid generation of  redundant solutions (see 
Section 3.1). 

To conclude this section: we will investigate both basic and enhanced set of 
constraints while minimizing the number of clusters selected. 

3 Heuristic Algorithm Proposal 

According to our experience [3], [51, [61, [71, a greedy algorithm combined with 
backtracking is appropriate to solve the binate covering problem. In this section, we 
will propose the core of  such a procedure with several options that seems to be 
reasonable to investigate experimentally bearing in mind domain-specific knowledge. 

The basic operation of our algorithm is reduction. The reduction consists of  two 

steps: the value TRUE or F A L S E  is assigned to a variablex i , and the formula T is 

simplified accordingly. For our example, we get by assignment x 7 = FALSE  : 

T = ( x 6 ) . T  2 . r  3 . T  4 . r  5 `T  6 . T  7 (2) 

Notice that the above formula (2) can be satisfied only i fx 6 = TRUE because it 

contains the clause (x6). This is why we denote the reduction that is based on 

existence of  a clause in T that contains only one literal as exact. A reduction that is 

not an exact one is denoted as a heuristic reduction. For example: 
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x 6 = T R U E ,  T =T2.T3.T4.T5.T6.(x3+x4+x5) is an exact reduction with 

respect to (2) and x 7 = F A L S E , T  = ( x 6 ) . i r ~ . ~ . T  4 . ~ . T  6 . T  7 is a heuristic 

reduction with respect to (1). 
Using the notion of  exact and heuristic reduction, we can formulate the core of  

the proposed algorithm as follows: 
Step l :  Perform all possible exact reductions. 
Step2: If  a solution was found - remove redundant clusters and STOP. If  the 

reduced formula cannot be satisfied - backtrack to the last heuristic decision 
and assign the opposite value to the variable involved. 

Step3: Perform a heuristic reduction and repeat Step 1. 

The crucial part of  this algorithm is Step 3: select a variable x i from T (select a 
cluster C/)  and assign it a value (accept or reject cluster C, ). There are several 
possibilities: how to define a candidate set for variable selection, how to select a 

variable from the candidate set, and how to assign a value to the variable selected. 

3.1 Candidate  set  

Two options are to be investigated: either to use the whole set of  variables from T as 
the candidate set, or to consider only such variables that appear in positively unate 
clauses (i.e. clauses that do not contain an inverted literal) in the basic set of  
constraints (i.e. covering clauses are not taken into account!). We will call these 
variants as complete and restricted candidate set respectively. In our example (1), the 
complete candidate set is { x l , x  2 . . . . .  x7}, and the restricted candidate set is 
{ x 3 , x 4  . . . . .  xT}. 

Notice that the restriction of the candidate set has the same effect as selecting 
candidate clusters by a traversal from primary outputs to primary inputs. The traversal 
has been used in [1] successfully. This motivated us to explore this option in our 
experiments. 

When the restricted candidate set is used, the solution found is always 
irredundant provided that the subject network is acyclic [12]. Moreover, it ensures that 
a solution will be found without backtracking [12]. 

3.2 Variable  select ion 

For variable selection, we propose to use slight modifications of score functions as 
defined in [2]. The score functions used are based on the following simple 
observation: the probability that a cluster C i will be included in at least one minimal 
solution is directly proportional to the number of  terms containing literal x i , while the 
contribution from clause Tj containing literal x i is inversely proportional to the 
number of  literals contained in it. We define weight  w i of Tj as inversely 
proportional to the number of literals in Tj. It holds for our example (1): 
% = 1 / 2 ,  w 2 = l / 3 , w 3 = l / 2 . . . e t c .  

Direct  score DS i approximates the probability that a cluster C i is a part of  at 
least one minimal solution: 
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m 

D S  i = ~ ,  d w j  
j=l 

where a w j  = w j  if 7) contains literal x i , otherwise dw) = 0 ,  and m is the number of  
variables in 7". It holds for our example: D S  l = w  3 + w  6 = 1 ! 2 + 1 1 2  , 

D S  2 = w 4  + w S + w  8 = 1 / 2 + 1 / 2 + t / 2 ,  D S  3 = w 2  + w  7 = 1 / 3 + 1 / 4 , . . .  etc. 
Similar statement as above can be drawn for the probability that a cluster C i 

will not be included in at least one minimal solution. I nd i r ec t  s core  IS  i approximates 

this probability: 
m 

I S  i = Y ~ i w  ] 
j=l 

wheretwj  = wj if Tj contains literal Y i ,  otherwise iwj  = 0. It holds for our example: 

IS  1 = 0 ,  IS  2 = 0 ,  IS  3 = w 3 + w  4 = 1 / 2 + 1 / 2  = 1 , 1 3  4 --- w 5 --- 112 . . . .  etc. 
Obviously, a variable x i with the highest value of D S  i o r  I S  i is a candidate for 

the value assignment. The difference D I F  i = D S  i - I S  i can be used for the same 
purpose as well. 

3.3 Value assignment 

Three strategies of  value assignment are to be investigated: Accept  [2], Reject  [2] and 
Accept-or-Reject.  

A c c e p t  strategy assigns x i = T R U E  to the variable x i having the highest value 
of  D S  i . Ties are resolved with respect t o l S  i . For our example (1), the first 
assignment made is: x 2 = T R U E .  

R e j e c t  strategy assigns x i = F A L S E  to the variable x i having the highest value 
of IS  i .  Ties are resolved with respect t o D S  i .  For our example (1), the first 
assignment made is: x 3 = F A L S E .  

A c c e p t - o r - R e j e c t  strategy assigns a value to the variable having the highest value 
of [D1FiI : x i = T R U E  if DIF,. > O, otherwise x i = F A L S E .  For our example (1), the 
first assignment made is: x 2 = T R U E .  

Notice that the reject strategy provides irredundant solutions only, while the 
remaining ones may produce a redundant solution [2]. However,  the notion of  
(heuristic) reduction can be e n h a n c e d  by using the domain-specific features of  
technology mapping. I f  x i e PL i is set T R U E  (i.e. C i is accepted), then all the 
remaining variables from PLj  are set F A L S E  and the constraint formula is simplified 
accordingly. For our example (1), we get by assignment x 3 = T R U E  : 

x 4 = F A L S E  and x 5 = F A L S E  ~ T = T I • T 3 • T 4 " ( x  2 ) "  ( x  1 ) '  T 7 ' T 8 

This allows us to avoid generation of  BETA redundant solutions and to speed-up the 
whole process. 

3.40rthogonal  set of heuristics 

It is possible to derive an orthogonal set of  heuristics by combining three types of  
options: bas i c  or e n h a n c e d  set of  constraints, c o m p l e t e  or re s t r i c t ed  candidate set, and 
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accept or reject or accept-or-reject strategy. For  obvious reasons,  the enhanced 
definition o f  reduction is applied in all cases. 

4 Experiments 

M C N C  benchmarks  listed in Table  1 were used for exper imenta t ion.  A feasible  

acycl ic  subject  network was generated for each benchmark using the same technique  

as in [1]: a modif ied  misll  provided an opt imized network that was d e c o m p o s e d  by ite 
in order  to obtain a feasible network. The  set o f  clusters was der ived  for A C T E L  

ACT1 [9] library cell using the front-end of  the mapper  descr ibed in [1]. All  

computa t ions  were  done on HP9000/735 (99 MHz,  41 M F L O P S ,  80 Mby te  memory) .  

4.1 Problem size 

Table  1 lists the number  o f  nodes and clusters (#clu) for each benchmark  as well  as 

basic set ofconstr, enh. set ofconstr. 

# o J ' ~ s  after exact red after exact red 
name input output internal #clu #cons #clu #cons gcons #clu #cons 

5xpl 7 10 4( 60 119 69 43 159 43 85 
alu2 10 6 171 208 429 118 117 60t3 117 198 
alu4 14 8 88 92 156 5! 8 244 8 5 

apex2 39 3 104 117 241 2~ 25 345 25 4C 
apex6 135 99 31C 450 646 37") 317 956 317 512 
apex7 49 37 95 113 191 42 ~ 286 40 

b9 41 21 5 c ~ 117 61 47 176 47 83 
bx~ 5 28 65 141 380 3~  128 445 128 359 

c1908 33 25 91 262 526 37~ 186i 700 186 472 
c499 41 32 16~ 18( 320 24 2~ 484 24 180 

c5315 178 123 535 624 1247 235 175 1786 177 624 
c880 60 26 173 235 441 325 17( 614 176 443 
clip 9 5 48 6~ 103 55 43! 151 43 813 

counl 35 16 35 35 52 12 0 91 0 C 
i l l l  i l l ~ .  i 

des 256 245 1308 190[ 5275 238~ 1136 6583 1136 2919 
duke2 22 29 164 256 535 268 184 669 184 358 

e64 65 65 95 12." 184 31 61 279 61 125 
f5h~ 8 8 4C 42 74 5 114 7 9 

misexl 8 7 18 31 65 31 2~ 83 25 43 
misex2 25 t8 38 4~ 70 13 1~ 108 17 21 

rd73 7 3 28 3"~ 64 lzl 14i 92 14 19 
rd84 8 4 48 52 118 29 25 166 25 49 

rot 135 107 248 28c~ 516 97 87 764 87 289 
sao2 10. 4 47 5( 68 21 19i 115 19 37 
vg2 25 i 8 33 34 47 8 8 80 8 15 

z4ml 7! 4 12 14 24 6 51 36 5 14 

Table 1 Sizes and complexity of benchmarks 
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numbers of constraints (#cons) for both basic and enhanced set of constraints. 
Additionally, problem sizes after exact reduction (after the first application of the Step 
1) are listed as well. 

4.2 Efficiency of heuristics 

set of constr. 
cand set 
kstrateev 

SUM 

~et of com'tr. 
cand set 
strategy 

SUM 

enhanced 
restricted 

accept 
cost ] time 
39181 2.29 

enhanced 
restricted 

acc-or-re[. 
cost time 
3921 2.12 

enhanced 
restricted 

reject 
cost l time 
39531 4.29 

enhanced enhanced 
complete complete 

accept ace-or-re[, i 
cost ltime cost I time 
392,9114.46 39271 2.60 

enhanced 
complete 

re/ect 
cost I time 
39331 4.14 

basic 
restricted 

accept 
cost [ time 
3933J 1.83 

basic basic basic basic 
restricted restricted complete[ complete 

acc-or-re[, reject accept acc-or-re[. 
cost [ time cost I time cost time cost time 

| s 

3941j 1.94 3971[ 3.9t3 3930 2.69 3932 2.94 

basic 
complete 

reject 
cost [ time 
3955J 3.88 

Table 2 Comparison of heuristics 

Table 2 lists summarized costs of solutions (in the number of clusters used) and run 
times (in seconds) for all cluster selection heuristics proposed in this paper. Results of 
mis-pga(new) 1 (mis-pga) [3, p. 59], [10] and of the algorithm of Kang Yi and Chu- 
Shik Jhon (ky) [1] are presented in Table 3 in order to enable comparison between our 
algorithms and the best representatives of domain-specific mappers. Table 3 also 
contains costs of minimal solutions (min cost) provided by the commercial ILP solver 
CPLEX (for the formulation of our problem in terms of 0-1 LP see [ 11 ], [12]). 

Mis-pga(new) is based on a different philosophy than the other mappers under 
comparison: it does not contain explicitly expressed phases of cluster enumeration and 
selection and it allows to modify the given subject network. This is why it is not 
possible to measure mis-pga cluster selection time. However, the comparison of run 
times of the whole technology mapping procedure is possible (see Table 3, columns 
full time). Additionally, results provided by mis-pga might be better than the minimum 
results provided under our assumption that no modifications of the given subject 
network are allowed. In reality, this happened for vg2 and duke2 only. 

5 Conc lus ions  and Future  W o r k  

Thorough analysis of the data collected can be summarized as follows: 
• In average, the enhanced set of constraints provides better results than the basic 

one. 
• In average, the restricted candidate set provides better results than the complete 

o n e .  

Standard options: ite_map -cn 1 -F 50 -d 4 -f7 -rNU ' ite map -cn 1 -d 4 -f8 -r 
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• In average, the accept strategy provides slightly better results than the accept-or- 
reject strategy that, in turn, provides better results than the reject one. 

• ALPHA type of redundancy appeared only if the complete candidate set and 
accept or accept-or-reject strategy is used. 

• BETA type of  redundancy was not observed. 

• Backtracking was not employed. 
The majority of above observations is in agreement with the results of  

theoretical analysis [12]. However, two phenomena seems to be rather confusing: we 
expected, based on results from [2], that the reject strategy will provide better quality 
solutions than the remaining strategies, and that a backtracking will be needed when 
the complete candidate set is employed. The explanation of both phenomena lies 
probably in specific properties of technology mapping binate covering problems. 

The main achievement of  our work is that the best heuristic from the orthogonal 
collection of  heuristics under test was identified: Enhanced set of  constraints / 
Restricted candidate set / Accept strategy. This heuristic provides better results (by 
4% in average) than those provided by mis-pga(new) [10] and practically the same 
results as ky [1] in much shorter time. It should be noted that our approach is better 

name 
5xp 1 
alu2 
alu4 

apex2 
apex6 
apex7 

b9 
bw 

c1908 
c499 

c5315 
c880 

clip 
count 

des 
duke2 

e64 
f51m 

misexl 
misex2 

rd73 
rd84! 

rot 
sao2 
vg2 

z4mt 
SUM 

enh. / res. / accept mis-pga ky nlin 
cost time full time cos t  full time cost] time full time cost 

34 0.00 3.20 36 23.70 33 0.15 3.35 33 
162 0.04 13.64 169 140.10 162 0.66 14.26 162 

88 0.01 3.41 109 19.70 881 0.11 3.51 88 
103 0.03 5.63 103 81.20 103 0.12 5.72 103 
230 0.11 15.11 275 145.80 230 1.68 16.68 229 

90 0.03 2.53 92 41.30 90 0.I0 2.60 90 
56 0.01 1.21 62 36.20 55 0.06 1.26 55 
56 0.04 45.34 55 12.60 55 0.56 45.86 54 

154 0.05 19.25 160 141.30 154 2.47 21.67 151 
164 0.02 8.62 164 60.90 164 1.94 10.54 164 
520 0.19 49.09 558 448,40 521 4.54 53.44 519 
154 0.05 8.45 161 94.50 153 0.29 8.69 153 
42 0.02 4.32 43 46.00 41 0.04 4.34 41 
39 0.02 0.42 39 8.6( 39 0.01 0.41 39 

1278 1.47 227.47 1285 1520.30 1280 38.76 264.76 1278 
152 0.07 13.57 148 65.00 154 0.89 14.39 151 
94 0.03, 0.63 94 1.20 94 0.31 0.91 94 
39 0.011 3.11 40 31.30 39 0.05 3,15 39 
16 0.01 1.tl  16 8.40 t6 0.04 1.14 16 
38 0.00 0.40 38 3.3( 38 0.06 0.46 38 
28 0.01 1.51 29 13.50 28 0.03 1.53 28 
47 0.01 4.31 49 59.90 47 0.04 4.34 47 

243 0.05 8.75 251 163.20 244 1.26 9.96 243 
46 0.00 1.10 46 24.50 46 0.03 1.13 4~ 
33 0.00 0.40 32 9.t0i 33 0.02 0.42 33 
12 0.01 0.52 14 13.10 12 0.01 0.52 12 

3918 2.29 443.10 4068 3213.10 3919 54.23 495.04 390f 

Table 3 Comparison of our best heuristic to mis-pga(new) and ky 
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especially in case of  large and complex circuits. Moreover, no substantial 
improvement in the cost of  solution can be expected in future because the results of  
the best of  our heuristics are just about 3.7% above the minimum in the worst case 
(bw) and 0.3 % in average! 

We are studying enhancements of  the proposed techniques for the case when a 
collection of library cells with different costs is given (see e.g. Xilinx XC4000 
family). Finally, we are analyzing the possibility to adopt the proposed techniques 
when delay or power  minimization is the goal, i.e. to use them for performance 
oriented mapping. Preliminary results can be found in [12]. 
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