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Minimal Subfunctions

During Functional Decomposition

Christian Legl, Bernd Wurth, and Klaus Eckl

Abstract—The growing popularity of look-up table (LUT)-
based field programmable gate arrays (FPGA’s) has renewed the
interest in functional or Roth—Karp decomposition techniques.
Functional decomposition is a powerful decomposition method
that breaks a Boolean function into a set of subfunctions and a
composition function. Little attention has so far been given to
the problem of selecting good subfunctions after partitioning the
input variables into the disjoint bound and free sets. Therefore,
the extracted subfunctions usually depend on all bound variables.
In this paper,® we present a novel decomposition algorithm
that computes subfunctions with a minimal number of inputs.
This reduces the number of LUT’s and improves the usage of
multiple-output SRAM cells. The algorithm iteratively computes
subfunctions; in each iteration step it implicity computes a set
of possible subfunctions and finds a subfunction with minimal
support. Moreover, our technique finds nondisjoint decomposi-
tions, and thus unifies disjoint and nondisjoint decomposition.
The algorithm is very fast and yields substantial reductions of
the number of LUT’s and SRAM cells.

Index Terms—Programmable logic array, technology mapping.

I. INTRODUCTION

Moreover, functional decomposition is a powerful Boolean
logic synthesis method.

Functional decomposition breaks a Boolean functfonto
the composition functiong and the subfunctionsl; such
that f(x,y) g(di(x),---,de(x),---,y). The two main
problems during functional decomposition are: First, how
shall the input variables be partitioned into bound variables
x and free variabley? Given such an input partition into
bound set and free set, there exists a minimum number
of subfunctionsd;. Even with such a minimum number of
subfunctions, which also minimizes the number of inputs to
the composition functiop, there are many degrees-of-freedom
for the selection of the subfunctions. The second problem
thus is: which subfunctiond;(x) shall be chosen? Note that
the problem of computing subfunctions is equivalent to the
problem of encoding the set of vertices of the bound variables.
Once the subfunctions have been selected, the computation of
the composition function is simple.

The degrees-of-freedom that exist for the selection of sub-
functions are usually not exploited. One notable exception is

POPULAR class of field programmable gate arrays recent technique that exploits them to obtain composition
(FPGA's) is based on the look-up table (LUT) as théunctions with a minimal number of literals [2]. This opti-

basic programmable logic block. A-input look-up table, mization can be valuable if the composition function has more
which is usually implemented by2t-bit static random-accessthank inputs and needs to be decomposed further. Of course,
memory (SRAM) cell, can realize any Boolean function ofiteral count minimization does not guarantee an improved
up to k£ variables. Many FPGA architectures have SRAMecomposability of a function [2].
cells with several outputs that allow an optimal use of the The subfunctions’;(x) usually depend on all bound vari-
memory. For example, a Xilinx XC5000 FPGA is made up oibles. However, each bound variable must only be an input
64-bit memory cells that can be used to implement either twg at least one subfunction, and not necessarily to all subfunc-
five-input functions or four four-input functions. tions. An important problem, which we address in this work,
A variety of techniques for logic synthesis to LUT-basegk the computation of such subfunctiodsthat have minimal
FPGA’s has been developed in recent years. Many of thesgport. The advantages are manifold. In case of bound sets
techniques use functional decomposition [1]-[12]. Functiongjith cardinality larger thark, support-minimal subfunctions
decomposition was pioneered in the early 1960's by Ashegan havek or less inputs; then, further decomposition is
hurst, Curtis, Roth, and Karp [13], [14] and is thereforgot necessary any more. This reduces the final LUT count
sometimes called Roth—Karp decomposition. This kind @fyg sometimes even the circuit depth. If an SRAM cell can
decomposition has the advantage that it always yields fungplement several functions as described above, reducing the
tions with fewer inputs than the original function. Thus i5ypport allows to put more functions into a given cell. More-
nicely reflects the constraint on the number of LUT inputgyer, support minimization reduces the number of connections
Manuscript received March 26, 1997; revised November 1, 1997. and therefore increases routability. Since routing resources are
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From a theoretical point of view, it is interesting to ob-
serve that disjoint functional decomposition degenerates to

1See the Guest Editorial of the Special Issue on Field Programmable Gate
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nondisjoint decomposition if a subfunction depends on just
one bound variable. Thus, computing support-minimal sub-
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Then, the set of equivalence classes unklas a partition of

X, denoted byX /R = {C1,---,Cly/r)}. Letll; = X/R;

andIl, = X’/R, be partitions ofX'. ThenIl, refinesIl; if

every block oflIl, is contained in a block ofl;. The product

partition II,..q of 1I; andll,, denotedll,,.q = II; - Iy,

i k,a,b,l e f,m e,d,g.h,i,n jkoablLefim cdghin S the smallest partition oft’ (i.e., with the smallest number
(@) (b) of blocks) which refines bottl; andIl,. The product ofc

i, . e ‘
Fig. 1. Decomposition of outputof alu4 (a) without and (b) with support partitions I1; 1S llproq = Hi:l 1L;.
minimization.
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lll. BACKGROUND
functions during disjoint functional decomposition subsumes . _ -
nondisjoint decomposition as a special case. A. Classical Functional Decomposition

Fig. 1 shows an output of benchmark circait4 when  This section summarizes the classical functional decompo-

decomposed a) without regard to the support of the sudjtion theory [13], [14]. In particular, the notiormpatible
functions and b) with subfunctions having minimal supporand assignablewill be used in other sections.

Instead of five eight-input subfunctions, the decomposition Given a functionf and a partition of its: input variables

with support minimization yields two eight-input subfunctionsinto the bound set BS= {z1,---,2,} and the free set
one five-input subfunction and two one-input “subfunctionsgs — {1, -, yn—s}, functional decomposition determines
The subfunctions with one input actually cause a nondisjoisiibfunctionsdy, - - -, d. and thecomposition functiory such
decomposition with the common variablg¢sand &. that

Recently, Huangt al. presented a decomposition algorithm
that finds subfunctions independent of certain bound variabfdg1, = s Y1, Yn—t)
[10]. Since the algorithm assigns just one code to each com-—= g(dy(x1,- -, 2p), ,de(T1,  *,T0), Y1, Yn—b). (1)

patible class (called “strict” decomposition), not all functions

independent of certain bound variables can be computed. Cd®j nontrivial decompositions, we have < b. Let X =
and Hwang also presented an algorithm to compute suppt#i1}" denote the set of BS-vertices. To check if a decom-
minimized subfunctions [11]. This algorithm explicitly checkgosition exists, we use the compatibility relation.

whether subfunctions exist that depend only on a certainDefinition 1: Two bound set verticeg, andx,, arecom-
subset of the bound variables. Due to its large complexiBatible, denotedx, R ;x,, if

this algorithm is only efficient for small bound sets. n—b .

This article presents a new algorithm that computes sub- Yy € {01 Sk, ) = [0, ¥).
funCtionSdi with minimal Support. The algorithm iteratively For Comp'ete'y specified functior‘ls7 Compaubmty is an
computes support-minimal subfunctions. In each iteration steRyuivalence relation. The relatioR; induces acompatibility
sets qf subfunctlon_s are rep_resenteql and computed impligptition I = X/Rf = {Ly,---,L¢} of the BS-vertices
itly using characteristic functions, which are represented Ryinto ¢ compatible classedn the decomposition charf14],
BDD's. In contrast to known methods [10], we do not assiggompatibility of BS-vertices is visualized by identical columns.
the same code to all the vertices of a compatible class. Byie column multiplicity in the decomposition chart equals the
dealing with classes of bound set vertices we can keep thgmbers of compatible classes.
average complexity of the algorithm low such that large bound The decomposition conditiorstates that a decomposition

sets can be handled. Using different encodings for compatilecording to (1) using subfunction vectbexists if and only if
bound set vertices (“nonstrict” decomposition) as well as being

able to handle large bound sets provides a more general VxX.,X, € & : (%, 8sx,) = d(x,) #d(x,). (2)
solution of the problem and improves the result quality. We

will also show that computing support minimized subfunction\éle choose the_ _minimurr_]_number of su_bfuncti(ms [1d].
can be easily combined with an efficient approach for th-g1e decomposition condition says that differeatlesd(x) are
decomposition of multiple-output functions [7] required for incompatible BS-vertices, but either identical or

different codes are allowed for compatible BS-vertices. Using
different codes for compatible vertices is allowed if not all
codes must be employed, i.e.,4f< 2°,

A single-output Boolean functioof & variables is given by  Coding the bound set vertices is equivalent to determin-
f:{0,1}* — {0,1}. A multiple-output Boolean functiois a ing the subfunction vectod. A common way to determine
vector of single-output Boolean functions and is denoted Isybfunctions is to assign a unique code to each compatible
a bold letterf = (f1,---, fm). Vectors ofBoolean variables class [3], [10]. Such a decomposition is callsttict. We
2; are also printed boldx = (x1,---,z;). The supportof a adopt a different,nonstrict decomposition procedure. Our
function is the set of variables it depends on. procedure selects subfunctions iteratively. Thus, the codes of

A partition II of the setX’ divides the set into disjoint all compatible classes are determined concurrently bit by bit.
blocksor classes Therank of the partition,|T1|, is the number In each step of such a procedure, many functiongo, 1}* —
of blocks it contains. Lef? be an equivalence relation eti. {0, 1} are suitable as a subfunction. These functions are called

Il. PRELIMINARIES
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T1L2Z3 Lo TABLE I
Y1Y2 000 001 010 011 100 101 110 111 L THE ONSET OF x(e) REPRESENTINGALL ASSIGNABLE SUBFUNCTIONS
5 ‘
00 (1|1 |11 |1 |1 |1 s s s
01 1{0{1(0{1]0 0|0 (000) (010) (100) | (0OL) (111) f(0i1) (101) (110)
1y €o ey e4 e1 er e3 es eg
10 011101 011 |1 010 000 — — — 0 0 1 1 1
11 0|1 |ojojo oo }1 L 100 - - - 1 1 0 0 0
0 0 0 - - 1 1 1
(@) (b) 1 1 1 - - 0 0 0
. . . - 0 0 0 1 1 - - -
Fig. 2. (a) Decomposition chart and (b) compatibility partition. 1 1 1 0 0 . _ _
TABLE |
Some Functions /= 0,1} — {0,1} Let A : {0,1}* — {0,1} be a function of the bound
BS-vertices , _ ] variables. To implicitly represent-functions, we employ
(EOOLO) (60011) (601L0) (E(”le) (6“201) (61(}}3) (enLO?? (€“ng function h |assign. 5 piiective mapping from the set of all functions of the
1 42 1 & . . . b
0 0 0 0 0 0 0 0 no bound variables, which has cardinalzy to {0,1}? where
0 0 0 0 0 0 0 1 T1TyT3 no p=|X = 20, A tuple e = (e, ep—1) € {0,1}7 then
0 o0 0 0 0 0 1 0} moaks | 00 o50gents afunctioh(x). The variable:; assumes value “1”
D 06 0 0 0 0 1 1 172 no p unctioh(x). varl j u valu

if the vertex(y) is contained in the onset &f and it assumes
- I : value “0” if the vertex(j) is contained in the offset of. For
0 1 0 1 0 1 0. 0 |x2xz3+Z1x3| no . . .
T o 1T o 1 0 1 73 ves example, the functiorl = «3 is represented by the minterm
0 1 0 1 0 T T 0 [¥2z3+zixa| yes e = (01010101). A set of h-functions is represented by the
212273 onset of a characteristic function and thus in a single BDD.
0 1 0 1 0 1 1 1 r1T2 + I3 yes . L _
. Using Property 1, we compute the characteristic function

x(e) that implicitly represents the set of all assignable sub-
functions for the first iteration step. Table Il shows the onset
of function x(e) for the example of Fig. 2(a). After selecting
assignable A detailed explanation of this term is given inatsubfunctlon f“’”.‘ the set ?f :sf&grl:;ble fuTc_tt|on$,t_|n th? first
[7], [15]. For ease of explanation we only consider the firgtcP @ neWX(e) IS computed for the next jteration step.
; : : A more detailed description of the iterative decomposition
iteration step in the sequel. lqorith be found in [7

Property 1: In this first iteration step of the iterative proce-a gorithm can be found in [7].
dure, a functiorh is assignablaf and only if neither onset nor
offset contain vertices of more tha@i—! compatible classes. IV. NEW ALGORITHM

Example 1: Let us illustrate the detection of assignable sub-
functions in the first iteration step. Fig. 2(a) shows the deco
position chart for functionf(z1,x2,z3,y1,y2) = T1 T3 y1 +
32 +T1 T2 T3y1 +T2 T3 Y1 + w1222 +w17223y1 - Fig. 2(b)

In order to compute subfunctions with minimal support,

Yhree problems have to be solved. First, how do we compute
subfunctions that are independent of a single bound variable
x;? Second, how can this be done efficiently? Third, how are

shows th)e part|t|on13f = {Ly, Ly, Ls} of the set of BS- ¢ q,nctions calculated that are independent of a maximal
vertices A’ = {0,1}°. For example, BS-vertices (001) andriumber of bound variables?

(111) are compatible because the second and the last column

in the decomposition chart are identical. They build the . .

compatible clasd.o. A. Computlng _SubfuncUons Independent

Table | shows some functions : {0,1}> — {0,1} and ©f @ Single Variabler;

indicates their assignability in the first step of the iterative pro- We first show how to implicitly compute subfunctions that

cedure decomposing of Fig. 2(a). The functioni(x) = x3, are independent of a certain bound variableFor discussion,

which causes a nondisjoint decomposition, is also assignatdeus consider two BS-vertices that differ only in the value

because vertices of not more than two classes are containedfin:;. Such vertices are called;-adjacent An z;-adjacency

the onset (classel, and Ls) and in the offset (classds, and pair is a pair ofz;-adjacent vertices.

L3). Since clasd.s overlaps both on- and offset, we have a If the onset of a Boolean functioh(x) contains just one

nonstrict decomposition. This subfunction cannot be found mgrtex of anz;-adjacency pair, the onset representation must

a strict decomposition technique where complete compatillepend onz;. In order to obtain a function independent of

classes are coded with a unique code. x;, we have to assure that each adjacency pair is completely
contained in either the onset or the offset. Based on this

- " . condition, we state a formula to compute all these functions
B. A General Implicit Decomposition Algorithm P

implicitly,
We now describe a general implicit algorithm for single-
output decomposition. This algorithm, which has been used in 21 o
an extended version in [7], is the basis for the new algorithm I (e) = H (ejé; +e5¢5) 3)

presented in Section IV. 7=0
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whered is the number of bound variables; is the variable
representing the BS-vertéx), andé; is the variable represent-
ing its adjacent BS-vertex. Let us interpret formula (3). The
term (e;é; +¢;¢;) is 1 if the adjacency pair that contains the By
BS-vertex(j) either belongs to the onsét;é,) or the offset
(e;¢;) of a functionh(x). Z,.(e) is 1 for a given tuplee if By
this condition holds for each BS-vertex, i.e.then represents
an xz;-independent function.
Now, we can easily calculate all assignable subfunctions
that are independent af;. The set of assignable functions igFig- 3. Partition (a)lI; and (b)II, .
represented by (e) and the set of;-independent functions by
1., (e). Therefore, we implicitly compute the set of assignableeems to be a reasonable choicélads it has a small number
functions that are independent of as the productx(e) - of classes. However, it can be shown that we may not be able
I:,(e). to find assignable functions independentzpfif we compute
Example 2: Let us compute all subfunctions independent;-independent functions based &y [16].
of x; for the function f of Example 1. Thez;-adjacency In order to compute subfunctions independentzpfeffi-
pairs are((000), (100)), ((010), (110)), ((001),(101)), and ciently, we have to solve the following problem. Determine a
((011),(111)). We implicitly represent allz;-independent partition I15, such that
subfunctions using formula (3) « IIg, refineslly,
T, (e) = (eocs + o e1)(cacs + €2 Cg) « if there exists any assignable function independent;of
then at least one is constructable with respedi o, and
» llg, comprises a minimum number of classes.

l\7\le state a two step algorithm to solve this problem:

“(eres +e1es)(eser +ezer).
According to Table IlI, the set of all assignable functions

given by Step 1: Merge BS-vertices into one class if they are com-
x(e) = ereseseser + €183 €5 eger + € €263€4€5C6 patible and theirr;-adjacent vertices are also compatible. The
+ €0e2€3€4C; G + Cp €1€32 €4€7 + €ELC2C4CT. obtained partition is calledl, = {Bj,---}.

Computing the set of assignable subfunctions independent. 0§tep 2 I\/'Ierge' a cIassB]’» < H”&_ that contains only gd-
: jacency pairs with any other class; € II’; that contains
x1 Yields i ) ; ok Bi
- - vertices compatible with the vertices &f;.

x(e) - I, (e) = eperezestiestoer + CoeLe2e3e4e5e6ET - The obtained partition of the set of BS-vertices is called the
Minterm egeiezestieseger represents the functiod = zs, basis partitionIlg,.
minterm egerestzeatsectry the functiond = z3. Thus, there  Example 3: Let us perform Step 1 of our algorithm and
are two subfunctions independent of. compute partitionlly, for function f of Fig. 2(a). Vertices
(011) and (101) are grouped into one class as they are
compatible and their adjacent vertices (111) and (001) are
) ~also compatible. Vertex (110) cannot be grouped with any
~ Up to now, we explained how to compute all subfunctiongiher vertex as it is the only vertex of the compatible class
mdepende_nt ofc; working with _BS-ve_rtlces. As the numberL3 that is adjacent to a vertex of compatible cldss Thus,
of BS-vertices grows exponentially with the number of bounge obtainIl, as shown in Fig. 3(a).
variables, the number of variables, which x(e) andZ..(e) ~ Now, we perform Step 2. ClasB! € I, is made up
depend on, becomes large even for small bound sets. Thisthe adjacency paif(000),(100)). As these vertices are
would yield large BDD’s and limit the algorithm’s eﬁiCienCy-compatibIe with vertex (010) of clasi’, the classess, and

The problem is how to achieve efficiency for larger bound setg; are merged. We obtain the basis partitiip, as shown
We suggest to group BS-vertices into classes, and associﬁfep:ig_ 3(b). o

variablesc; with classes instead of individual vertices. These pjease note an important property Hf;,. The vertices
classes form a partitiofl of the set of BS-vertices. We Us€sf each class have their adjacent vertices in at most one

the classes ofl to build functionsh(x) by assigning each other class. Therefore, only pairs of classesiof have to
class to either the on- or offset &{x). Such a functiorh(x) pe commonly contained in the on- or offset of a function
is calledconstructablewith respect toll [7]. independent ofr;.

By choosing a certain partitiodl, we obtain a tradeoff \we can now compute all subfunctions that are independent

between the efficiency of our algorithm and the quality of¢ z; and constructable based @hy,. Similar to (3), this is
its results. The efficiency of our algorithm increases Withone implicitly using ’

a decreasing number of variables and thus a decreasing

B. Increasing the Efficiency by Partitioning

number of classes dil. The result quality increases with an s, | R
increasing number of functions constructable with respect to Zei(e) = H (ejé; +25¢;) (4)
II and thus an increasing number of classes$lof J=1

Note that we may only choose a partitidh that equals wheree; now represents a clags; € I, and not a vertex
11, or refinesll;. At first sight, the compatibility partitiohl; as beforeg; represents the clags;, € 115, “adjacent” to5;,
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C. Computing Subfunctions Independent of Several Variables

So far, we computed a basis partitii, for asinglebound
variablez;. In order to compute s-preferable functions that are
independent of several bound variables, we introduce the basis
partition 115 for all bound variables. Theasis partitionIls
is defined as

(6)

Fig. 4. PartitionIlz, with z;-adjacency pairs. s = H g,
i with P, #0

i.e., the class containing vertices that are adjacent to vertices of © lkeep the ndumber of glgssﬁe{s Hf"f sk:nall, the' %rloduct
B,. Then, the characteristic functidd,_ (e) of all assignable 'S °™Y computed over partitionsls, of those variablesr;

functions that are independent of and constructable with for which §-preferable functions exist at all, ."é')"‘f # 0. .
respect toll,. is The following theorem expresses the meaning of the basis

partition 1Lg:
P,.(e) = x(e) - T, (e) (5) Theorem 2: The basis partitionll; is the partition with
' ' the smallest number of classes such that all subfunctions s-
where y(e) represents the set of assignable functions thaeferable with respect to any single bound variabjecan
are constructable with respect I, . These subfunctions areP® computed. _ _
calleds-preferable(support-preferable) functions with respect 1he proof of Theorem 2 can be found in the Appendix.
to z;. After we have computed?,, (e) based onlls for each
The following theorem gives the condition on which resorf2ound variable, we choose a minteasuch thatP,, (e) = 1
ing to s-preferable functions is sufficient to obtain subfunctiod@r & maximum number of;. The subfunction represented by
independent of variable;. this minterme then depends on a minimal number of bound
Theorem 1:1n the first step of the iterative decompositioryariables. In order to find this minteres, we build a matrix
algorithm, there exists a function s-preferable with respect ¥§1ere each column corresponds with a mintesrand each
x; if and only if there exists an assignable function independei corresponds with a functioR,.,. An entry for columne
of ;. and row?,, =1 if P,,(e) = 1. Selecting a subfunction with
The proof of Theorem 1 can be found in the Appendix. Minimal support then corresponds with selecting a column
It can also be shown that the partitidh;, is the smallest With the maximum number of “1”s. Since this problem is
partition such that Theorem 1 holds. Experimental results shGfuivalent to selecting an optimal subfunction during multiple-
that the set of s-preferable functions is much smaller than tAdtPut decomposition, we use tineaxcolalgorithm of [15].
set of all assignable functions independentsaf This algorithm, which represents the matrix by a single BDD,
Example 4: We compute the set of s-preferable functiondS Similar to theLmaxalgorithm that was suggested by Kagh
Now, we have a variable; for each classB; € Ilg,. First, al. [17]. A detailed description of the algorithm can be found

we determinex(e), i.e., the set of assignable subfunctiond! [15]: ) _ o )
constructable w.r.tII In order to compute subfunctions with minimal support in

each iteration step of the decomposition algorithR), (e)
x(€) = coeaty + G Gaey + Gl + e163 @3 + Eleq + ez, Must be updated in each step. This is done using Formula
(5) where x(e) represents the functions that are assignable
To computeZ,, (e), which represents:;-independent func- in the current iteration step. To conclude this section, we
tions, we determine pairs of “adjacent” classes. As can bgtline how to compute support-minimal subfunctions during
seen in Fig. 4, classeB;, and B, as well as classeB; and multiple-output decomposition.
B, are such pairs.
Therefore, we have D. Detecting S-Preferable Multiple-Output Decompositions

An approach to detect subfunctions which are concurrently
assignable for several outputs is proposed in [7]. Extracting
subfunctions that can be shared among several outputs reduces
the circuit area. It is shown in [7] that during multiple-
output decomposition of the function vectbe= (f1,- -, fin)

. [ _ an optimum multiple-output decomposition can be obtained
Pai(e) = x(e) - Lni(e) = Ereacscs + 1tz ta. by considering only assignable subfunctions which are con-
) = 3 represented structable with respect tél

Z.,(e) = (e1e2 +e1¢2)(eaca +C3¢)

Now, we compute the set of s-preferable functions

There are two s-preferable functiongx

by @1 ezezes andd(x) = T3 represented by, eses eg.
We have shown how to find subfunctions independent of a = H g,

certain bound variable; efficiently. We have not addressed k=1

how to find subfunctions independent of several bound vavitere the compatibility partitions of the individual outputs are

ables. This problem is solved in the next section. given bylly, . Shared subfunctions are then found by solving
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TABLE 1l
PrROBLEM CHARACTERISTICS
sup. sup. of
f of f| b |¢€||Hg|| #indep. | #assign. | #s-pref. |dy |d2 | d3
fetip 9 5 (6| 20 65536 628138 9| 1| 3| 5
fea2 16 | 7 (3] 21 |1.8-10'9]3.0-10%° 6] 5| 7| -
Finas Il 104 |53]7] 38 |~ 1010 | > 10308 |27.10%| 8|16]53

pairs. Such a class must be unified with another cis§ Lj,.
In the example, clas® is unified with B;. After taking all
such unions, the classés; € 115, have been computed.

Note thatz;-adjacent BS-vertices are represented by paths
passing through the same nodepreset (b). So, we can de-
termine adjacent classes by simply evaluating the predecessor
relations in the BDD while we computHg,. Therefore, we
Fig. 5. BDD for example functiory. get all information we need to compulé;. andZ,, by a
reordering of the BDD and a subsequent BDD traversal.

a covering problem similar to the one described in the last
section. VI. EXPERIMENTAL RESULTS

Our goal now is to detect;-independent subfunctions  The implicit algorithm for single-output decomposition was
among the set of shared subfunctions. Quite similar to tiiplemented in the prograi®ODEC-Simplicit single-output
previous discussion about how to compute s-preferable s@ecomposition with support minimization), which is embedded
functions that are independet of several bound variablggio the synthesis tool TOS-TUR.
we need a common basis to represent the set of shareghe experimental data in Table Il give some typical prob-
subfunctions as well as s-preferable functions. These shafggh parameters. The data were gathered during the decom-
subfunctions that are independent of several bound variabjgssition of single-output functions in the benchmark circuits

can be computed using the partitiohy clipexample2  and the industrial benchmaikd4 . The
. om support size off, the number of bound variables, the number

Il =1I- HH{; (7) of compatible classe$, and the number of classes &fj,
k=1 which is the number of levels of BDD’s representing charac-

where the basis partition of an individual output is given biristic functions, are given in columns 2-5. The number of
117+ . The multiplication withl1 is necessary in order to be abldunctions that are independent of a certain variabiedep)
to compute all functions that are constructable with respect@d assignable in the first iteration stéfagsign) are shown

1T such that an optimum multiple-output decomposition ca#fXt: The maximum number of functions s-preferable with
be obtained. respect to a single variable; is given in column 8. The

support sizes of the extracted subfunctions are shown next.
The number of classes di is typically small compared

] - with the number of BS-vertice2®. This translates into a
In order to compute the basis partitiéhy, , we use a BDD g of s-preferable functions which is also small compared

of function f, where bound variables must be ordered befo{Gih the other sets. The reduction of inputs of the extracted

free variables, and; is the bound variable directly before thegpfunctions is apparent. As one subfunctiorygf, depends

free variaples. The I_3DD_ for the functiofi of the continued only one input, a nondisjoint decomposition has been

example is shown in Fig. 5. Byutnodegb), drawn grey performed. Forfin, the first selected subfunction depends

in Fig. 5, we denote the set of BDD nodes which have g, only 8 out of 53 bound variables.

index > b and at least one predecessor witldex < b. All

paths going to one node € cutnodegb) correspond with A. Reductions in LUT Count

vertices of a compatibility class < 11y [3]. In Fig. 5 where . i

b = 3, there are three compatibility classés, L», and Ls. Table IV_ _shows the effe_ctlvenes_s of the new smgle_—output

The predecessors of the nodes cutnodegb) form a set of decomposition approach in reducing the LUT count if two-

nodes, denotegresetb). A pair of nodes/;, v, € presetb) is level networks are decomposed (multilevel circuits were col-

now merged to a meta-node if they have the same successigiesed before decomposition). We applied our decomposition

In our example, the pair of nodes circled by the dashed lif@gOrithm recursively to obtain functions with at most 5

is merged to a meta-node. inputs. A vgrlable partitioning heuristic _S|m|Ia_r t[O the heuristic
Now, those paths containing an edge (pair) from a (mete5esented in [18] was useq here targeting minimal LUT count.

node€ preset (b) with indez = b to a nodec cut_nodes (b) _The. number of primary inputé#/) and outputs#0) are

represent a class’. All paths that contain an edge from a nodd'Ven N column 2 and 3. Columns 4, 5, and 6, show the LUT

€ preset (b) with indez < b— 1 to a nodee cut_nodes (b) count, the circuit depth, and CPU time (DEC AlphaStation 250

represent a clas®; C L; which contains only adjacency 2TOS has been developed at the Technical University of Munich, Germany.

V. IMPLICIT COMPUTATION OF PARTITION Ilg,



360 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

TABLE IV
DecomposITION OF Two-LEVEL CIRCUITS
usual ISODEC-S
net #I | #0 || #LUT | depth | CPU || #LUT | depth | CPU
9sym 9 1 8 3 0.1 8 3 0.4
alu2 10 6 55 6 11 52 6 7.3
alu4 14 8 316 1 9.6 231 11 210.3
apex2 39 3 328 16 113.3 165 11 161.9
apex6 135 | 99 213 6 8.5 207 6 8.3
apex7 49 37 76 5 7.5 71 5 7.9
b9 41 | 21 57 5 0.6 41 4 0.9
clip 9 5 22 3 0.4 22 3 0.5
duke?2 22 | 29 258 8 6.3 213 8 21.5
example2 85 66 156 5 2.2 139 4 2.4
frgl 28 3 116 11 12.1 40 9 55.7
i7 199 | 67 139 2 0.3 103 2 0.6
misex?2 25 18 41 4 0.4 40 4 0.4
misex3c 14 | 14 200 10 4.3 152 8 29.1
rdg4 8 4 12 2 0.2 12 2 0.5
sa02 10 4 25 4 0.5 22 3 7.0
too_large 38 3 328 16 113.3 165 11 163.4
vda 17 | 39 495 7 10.5 351 8 54.4
veg?2 25 8 79 9 3.5 59 9 5.7
> (MCNC) || 777 | 435 2024 133 294.7 2093 117 738.2
perc. - - 100%| 100% - -28.4%| -12.0% -
ind1 36 9 220 6 392 185 6 41.9
ind2 17 | 27 315 8 20.9 263 7 30.7
ind3 33 | 27 1362 15 111.5 881 11 392.2
ind4 20 | 27 7427 24 | 33252 2367 18 | 33524
ind5 90 | 22 157 4 7.3 136 4 8.8
indé 237 | 218 341 7 29.0 322 7 29.3
ind7 42 | 479 494 8 41.4 434 8 47.7
ind8 22 | 42 1077 14 56.4 915 16 159.4
S"(IND) 497 | 851 || 11393 86 | 3631.1 5503 77 | 4062.4
perc. - - 100%| 100%| - -51.7% -10.5% -
4/266), respectively, of single-output decomposition without TABLE V
support minimization ysua) where subfunctions are chosen RESULTS AFTER PLACEMENT AND ROUTING
randomly. The columns undé8ODEC-Sshow the results of usual ISODEC-S
the new approach net #CLB part delay #CLB part delay
: 9sym 7 |3120A| 24.1 7 [3120A| 258
An average LUT count reduction of 28.4% for the _I\/_ICNC_ o 47 |3120A| 840 44 |3120A| 192
benchmarks demonstrates the potential of decomposition withjua 273 |3190A| 126.6 201 [3164A| 99.4
support minimization. The reduction is even more impressiveapexz fgi 3190A 153.5 12213 3164A| 104.9
H H apex - - - -
for the |ndust.r|al benchmarks (IND) due to. t.he extrgmely apex’ [ N 51 |31424] 499
good result folind4 . Although, we do not explicitly consider 1,9 a4 13120A0 41.1 30 13120A1 391
delay information during decomposition, the circuit depth is clip 17 |3120A) 304 16 |3120A) 29.4
reduced by 12.0% for the set of MCNC benchmarks and bydvke2 | 200 |3190A | 119.7 161 |3164A ) 69.1
o . . . . example2 117 [3195A| 66.1 102 [3195A| 54.6
10.5% for the set of industrial benchmarks. This reduction s, 08 |3142A| 853 35 13120A| 60.7
due to the fact that we have to perfom fewer decompositions7 102 - - 84 - -
to get a network with five-input nodes if we select support misex2 33 13120A1 347 31 |3120A) 35.3
LS . . . . misex3c 165 |3164A| 110.7 121 {3142A 72.8
minimized subfunctions. Besides the area reduction this hagg, 10 |3120a] 254 10 |3120a] 234
the additional effect that also the circuit depth may be reducedsac? 24 13120A[ 31.3 21 |3120A| 32.0
The increase in CPU time is acceptable. Decompositions withc:ioJarge igg 21392 }ggg ;gé gig‘é: 12;-(15
H : vda 1) - < da.
up to 53 bqund vangblesr(qz_l ) are performed. The number g2 65 131301 600 19 |3120a| 697
of classes in the basis partitiofi] 5|, ranges from 9dpex6 ) S 2395 T 11986.0 1678 —11012.0
up to 50 @pex2,too _large,frgl,vda,ind4 ) in this perc. 100% - 100 %|| -29.9%| - -21.3%

experiment.

3130APC44-4, 3142APG132-4, 3164APG132-4, 3190APC84-

B. Technology Mapping for SRAM-Cell-Based FPGA's 4, 3195APQ208-4) using the Xilinppr tool. We selected the
We target the Xilinx XC3000 architecture, which has SRAMmMallest part type such that the utilization of SRAM cells was
cells with five inputs and two outputs. We mapped the dbelow 80% as recommended in [19]. The results are shown
composed MCNC benchmark circuits of Table IV to thign Table V. The results for the single-output decomposition
Xilinx XC3000 architecture. We also placed and routed thepproach without support minimization and our new single-
mapped circuits on Xilinx XC3100A FPGA'’s (3120APC68-4putput decomposition approach are given in the columns
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TABLE VI
MapPPING TO XILINX XC3000 CLBS

Algo. 3 FGMap FGSyn SIS-1.3 ISODEC-S
net #CLB #CLB #CLB #CLB #CLB CPU
9sy1n 7 7 - 7 7 0.4
alu2 54 53 55 ) 76 44 7.3
alug 180 - 56 43 48 9.9
apex?2 - - 60 55 75 20.0
apex4 393 356 - 372 329 15.9
apex6 186 - 181 154 126 0.6
apex7 51 a7 13 47 40 0.1
clip 24 20 18 26 16 0.8
des 865 - - 710 493 12.4
duke2 105 178 85 109 121 7.0
f51m 12 11 8 11 9 0.03
misex| 11 8 8 9 9 0.03
misex2 28 21 22 21 21 0.04
rd73 7 7 5 5 6 0.1
rd8&4 12 12 8 10 10 0.5
rot 152 194 136 140 123 0.8
5802 32 27 25 28 2] 7.0
vg2 20 23 17 19 17 0.2
example2 - - - 70 63 0.1
vda - - - 173 139 1.4
C499 62 - 54 66 50 0.1
880 84 74 87 76 7 0.7
C1908 - - 73 83 68 0.1
2670 - - 122 113 113 0.5
C5315 - - 316 290 281 0.7
C7552 - - 317 275 265 2.0
> (sub-Algo 3) 2285 - - - 1564 -
perc. 100 % - - - -31.6 % -
> (sub-FGMap) - 1038 - - 847 -
perc. - 100 % - - -18.4 % -
> (sub-FGSyn) - - 1696 - 1537 -
perc. - - 100 % - -9.4 % -
> (all) - - - 2988 2568 -
perc. - - - 100 % -14.1 % -

titled usualandISODEC-$ respectively. The number of two- Furthermore, we compared the results of our single-output
output SRAM cells (CLB’s) are given in column 2 and 5. Ardecomposition algorithm with four state-of-the-art FPGA tech-
abbreviation for the part type on which a certain circuit wasology mapping approaches, which a&kgorithm 3 proposed
implemented is shown in column 3 and 6. Column 4 and by Huanget al. [10], FGMap proposed by Laet al. [3], [21],
show the worst case pad-to-pad delays of the circuits affe€GSynalso proposed by Laet al. [12], and SIS-1.3[22].
placement and routing. These delays were computed with ¥e have choserlgorithm 3 since it is a functional single-
Xilinx xdelay tool. Note that due to the large number obutput decomposition method that also computes subfunctions
primary inputs and outputs, circuigpex6 andi7 cannot be with minimal support.FGMap has been chosen since it is a
implemented on a single XC3100A FPGA. functional single-output decomposition method that performs
The average reduction in the number of CLB’s is 29.9%0ondisjoint decompositions as it is also done by our approach.
This reduction in the number of CLB'’s is even larger than theGSyn is, in contrast to our single-output decomposition ap-
reduction of 28.4% in the number of LUT’s. That shows thgiroach, a functional multiple-output decomposition approach.
ISODEC-Snot only generates a smaller number of nodes blitalso performs nondisjoint decompositioS-1.3combines
also nodes with fewer inputs. Therefore, two nodes could morarious collapsing, decomposition and don'’t care optimization
often be mapped into one two-output SRAM cell compared techniques.
the usual single-output decomposition approach. The reduced\s it was suggested in [21], large circuits have been
number of SRAM cells has also the advantage that in 8 goteoptimized withSISusing the scripscript.rugged22]. The
of 17 cases a smaller part type could be used to implemeasults shown in columrmilgo. 3 of Table VI are the best
a circuit. All circuits that have been generated IBDDEC-S results reported forAlgorithm 3 in [10]. Results from [21]
could be placed and routed without any problems. This shoare repeated in columRGMap. Results forFGSyn (bx-csn)
that in contrast to [20] we do not have to sacrifice area from [12] are repeated in colufRFGSyn Results forSIS-
order to obtain routable designs. Even without considering the3 shown in Table VI have been obtained using the FPGA
circuit delay during technology mapping, pad-to-pad delagynthesis script given in [22]. ColumiBODEC-Sgives the
were reduced by 21.3%. This improvement is achieved by thesults of our new method. After technology mapping, the
area and circuit depth reduction witBODEC-S It indicates node functions were assigned to CLB’s as permitted by the
that ISODEC-Ssignificantly improves the mapping result.  XC3000 technology.
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ISODEC-Soutperforms the single output decompositiotls,
approachedlgorithm 3 and FGMap by 31.6% and 18.4%, 1lg,
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of the product of partitions. Since we omit each partition
of a bound variableg; in the product for which no s-

respectively. It also outperforms the multiple-output deconpreferable function exists at all, only a minimal refinement is
position approactFGSynby 9.4%. The improvement whendone. Sincellg is a refinement of each considerék,, all

compared withSIS-1.3is 14.1%.

VII. CONCLUSION

We analyzed the problem of support minimization du
ing functional decomposition and proposed a new,
algorithm to compute subfunctions with minimal support.
The efficiency of our algorithm mainly stems from the fact

implicWith respect tallg.

functions that are constructable with respect to any considered
I,
functions which are s-preferable with respect to anys com-

jpletely contained in the set of functions that are constructable

are also constructable with respectllg. So, the set of

O

ACKNOWLEDGMENT

that we derived a suitable partitioning of the bound set The authors are very grateful to Prof. K. J. Antreich of the
vertices into classes and dealed with these classes insteadewhnical University of Munich, Munich, Germany, for many
individual vertices. Therefore, it can handle large bound seta&luable discussions and his steady interest in their work.

Our algorithm is more general than the method of [10], since
we perform nonstrict decompositions.

Experimental results show that the module count is reduceﬂ
substantially and that the mapped circuits can be placed a c]
routed without any problems. These results demonstrate the
importance of the problem of support minimization during de—2
composition as well as the effectiveness of the new algorithm.

Currently, we are working on the problem of comput-
ing subfunctions with other properties like, e.g., symmetry.[3
Combining this work with multiple-output decomposition and
support minimization will lead to a more general understand!
ing of the encoding problem in functional decomposition.

(5]

APPENDIX [6]

A. Proof of Theorem 1 71
(Only if:) By definition any s-preferable function is assign-

able and independent af;.

(If:)) We show how to build a subfunctiod which is s-
preferable with respect te; from an assignable functiod

. . . . 9]
which is z;-independent but not s-preferable with respect td
x;. Sinced’ is not constructable with respectliys, , there exist
two verticesx,, andx,, such that these vertices are commonIY10
contained in a class dilg,, butd’'(x,) # d'(x.). As x,, and ]
X,, are compatible, they might as well have identical code.
There are two cases fa, which denotes ther;-adjacent
vertex tox, andx,, which denotes the;-adjacent vertex to (11
x,,: 1) If x,, andx,, are commonly contained in a cIassH)@i,
%, and%,, are compatible and can have identical code. Wé?!
change function?’ such thatx,, obtains the code associated

(8]

with x,,, andx,, obtains the code associated wih. 2) If x, [13]
and x,, are not commonly contained in a classmygi, then [14]
x, and x,, are commonly contained in a class Ofs, due

to Step 2 of the computation procedure Idf;,. Refering to [15]

the notation of Step 2, let, € B}, andx,, € B; We change
functiond’ such thatx,, andx,,, which are compatible, obtain [16]
the code associated with,. The code ofk,, is not changed.
This procedure can be repeated until a functibmhich is
s-preferable with respect to; is obtained.

[17]
[18]
B. Proof of Theorem 2

By definition of the product of partitiong]s is the partition
with the smallest number of classes that refines all partition]
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