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Computing Support-Minimal Subfunctions
During Functional Decomposition

Christian Legl, Bernd Wurth, and Klaus Eckl

Abstract—The growing popularity of look-up table (LUT)-
based field programmable gate arrays (FPGA’s) has renewed the
interest in functional or Roth–Karp decomposition techniques.
Functional decomposition is a powerful decomposition method
that breaks a Boolean function into a set of subfunctions and a
composition function. Little attention has so far been given to
the problem of selecting good subfunctions after partitioning the
input variables into the disjoint bound and free sets. Therefore,
the extracted subfunctions usually depend on all bound variables.
In this paper,1 we present a novel decomposition algorithm
that computes subfunctions with a minimal number of inputs.
This reduces the number of LUT’s and improves the usage of
multiple-output SRAM cells. The algorithm iteratively computes
subfunctions; in each iteration step it implicitly computes a set
of possible subfunctions and finds a subfunction with minimal
support. Moreover, our technique finds nondisjoint decomposi-
tions, and thus unifies disjoint and nondisjoint decomposition.
The algorithm is very fast and yields substantial reductions of
the number of LUT’s and SRAM cells.

Index Terms—Programmable logic array, technology mapping.

I. INTRODUCTION

A POPULAR class of field programmable gate arrays
(FPGA’s) is based on the look-up table (LUT) as the

basic programmable logic block. A-input look-up table,
which is usually implemented by a -bit static random-access
memory (SRAM) cell, can realize any Boolean function of
up to variables. Many FPGA architectures have SRAM
cells with several outputs that allow an optimal use of the
memory. For example, a Xilinx XC5000 FPGA is made up of
64-bit memory cells that can be used to implement either two
five-input functions or four four-input functions.

A variety of techniques for logic synthesis to LUT-based
FPGA’s has been developed in recent years. Many of these
techniques use functional decomposition [1]–[12]. Functional
decomposition was pioneered in the early 1960’s by Ashen-
hurst, Curtis, Roth, and Karp [13], [14] and is therefore
sometimes called Roth–Karp decomposition. This kind of
decomposition has the advantage that it always yields func-
tions with fewer inputs than the original function. Thus it
nicely reflects the constraint on the number of LUT inputs.
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Moreover, functional decomposition is a powerful Boolean
logic synthesis method.

Functional decomposition breaks a Boolean functioninto
the composition function and the subfunctions such
that . The two main
problems during functional decomposition are: First, how
shall the input variables be partitioned into bound variables

and free variables ? Given such an input partition into
bound set and free set, there exists a minimum number
of subfunctions . Even with such a minimum number of
subfunctions, which also minimizes the number of inputs to
the composition function, there are many degrees-of-freedom
for the selection of the subfunctions. The second problem
thus is: which subfunctions shall be chosen? Note that
the problem of computing subfunctions is equivalent to the
problem of encoding the set of vertices of the bound variables.
Once the subfunctions have been selected, the computation of
the composition function is simple.

The degrees-of-freedom that exist for the selection of sub-
functions are usually not exploited. One notable exception is
a recent technique that exploits them to obtain composition
functions with a minimal number of literals [2]. This opti-
mization can be valuable if the composition function has more
than inputs and needs to be decomposed further. Of course,
literal count minimization does not guarantee an improved
decomposability of a function [2].

The subfunctions usually depend on all bound vari-
ables. However, each bound variable must only be an input
to at least one subfunction, and not necessarily to all subfunc-
tions. An important problem, which we address in this work,
is the computation of such subfunctionsthat have minimal
support. The advantages are manifold. In case of bound sets
with cardinality larger than , support-minimal subfunctions
can have or less inputs; then, further decomposition is
not necessary any more. This reduces the final LUT count
and sometimes even the circuit depth. If an SRAM cell can
implement several functions as described above, reducing the
support allows to put more functions into a given cell. More-
over, support minimization reduces the number of connections
and therefore increases routability. Since routing resources are
fixed on an FPGA, improved routability is a very attractive
feature.

From a theoretical point of view, it is interesting to ob-
serve that disjoint functional decomposition degenerates to
nondisjoint decomposition if a subfunction depends on just
one bound variable. Thus, computing support-minimal sub-
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Fig. 1. Decomposition of outputr of alu4 (a) without and (b) with support
minimization.

functions during disjoint functional decomposition subsumes
nondisjoint decomposition as a special case.

Fig. 1 shows an output of benchmark circuitalu4 when
decomposed a) without regard to the support of the sub-
functions and b) with subfunctions having minimal support.
Instead of five eight-input subfunctions, the decomposition
with support minimization yields two eight-input subfunctions,
one five-input subfunction and two one-input “subfunctions.”
The subfunctions with one input actually cause a nondisjoint
decomposition with the common variablesand .

Recently, Huanget al. presented a decomposition algorithm
that finds subfunctions independent of certain bound variables
[10]. Since the algorithm assigns just one code to each com-
patible class (called “strict” decomposition), not all functions
independent of certain bound variables can be computed. Cong
and Hwang also presented an algorithm to compute support
minimized subfunctions [11]. This algorithm explicitly checks
whether subfunctions exist that depend only on a certain
subset of the bound variables. Due to its large complexity
this algorithm is only efficient for small bound sets.

This article presents a new algorithm that computes sub-
functions with minimal support. The algorithm iteratively
computes support-minimal subfunctions. In each iteration step,
sets of subfunctions are represented and computed implic-
itly using characteristic functions, which are represented by
BDD’s. In contrast to known methods [10], we do not assign
the same code to all the vertices of a compatible class. By
dealing with classes of bound set vertices we can keep the
average complexity of the algorithm low such that large bound
sets can be handled. Using different encodings for compatible
bound set vertices (“nonstrict” decomposition) as well as being
able to handle large bound sets provides a more general
solution of the problem and improves the result quality. We
will also show that computing support minimized subfunctions
can be easily combined with an efficient approach for the
decomposition of multiple-output functions [7].

II. PRELIMINARIES

A single-output Boolean functionof variables is given by
. A multiple-output Boolean functionis a

vector of single-output Boolean functions and is denoted by
a bold letter, . Vectors ofBoolean variables

are also printed bold, . The supportof a
function is the set of variables it depends on.

A partition of the set divides the set into disjoint
blocksor classes. Therank of the partition, , is the number
of blocks it contains. Let be an equivalence relation on.

Then, the set of equivalence classes underis a partition of
, denoted by . Let

and be partitions of . Then refines if
every block of is contained in a block of . Theproduct
partition of and , denoted ,
is the smallest partition of (i.e., with the smallest number
of blocks) which refines both and . The product of
partitions is .

III. B ACKGROUND

A. Classical Functional Decomposition

This section summarizes the classical functional decompo-
sition theory [13], [14]. In particular, the notionscompatible
and assignablewill be used in other sections.

Given a function and a partition of its input variables
into the bound set BS and the free set
FS , functional decomposition determines
subfunctions and thecomposition function such
that

(1)

For nontrivial decompositions, we have . Let
denote the set of BS-vertices. To check if a decom-

position exists, we use the compatibility relation.
Definition 1: Two bound set vertices and are com-

patible, denoted , if

For completely specified functions, compatibility is an
equivalence relation. The relation induces acompatibility
partition of the BS-vertices

into compatible classes. In the decomposition chart[14],
compatibility of BS-vertices is visualized by identical columns.
The column multiplicity in the decomposition chart equals the
number of compatible classes.

The decomposition conditionstates that a decomposition
according to (1) using subfunction vectorexists if and only if

(2)

We choose the minimum number of subfunctions .
The decomposition condition says that differentcodes are
required for incompatible BS-vertices, but either identical or
different codes are allowed for compatible BS-vertices. Using
different codes for compatible vertices is allowed if not all
codes must be employed, i.e., if .

Coding the bound set vertices is equivalent to determin-
ing the subfunction vector . A common way to determine
subfunctions is to assign a unique code to each compatible
class [3], [10]. Such a decomposition is calledstrict. We
adopt a different,nonstrict decomposition procedure. Our
procedure selects subfunctions iteratively. Thus, the codes of
all compatible classes are determined concurrently bit by bit.
In each step of such a procedure, many functions

are suitable as a subfunction. These functions are called
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Fig. 2. (a) Decomposition chart and (b) compatibility partition.

TABLE I
SOME FUNCTIONS h : f0; 1g3 ! f0;1g

assignable. A detailed explanation of this term is given in
[7], [15]. For ease of explanation we only consider the first
iteration step in the sequel.

Property 1: In this first iteration step of the iterative proce-
dure, a function is assignableif and only if neither onset nor
offset contain vertices of more than compatible classes.

Example 1: Let us illustrate the detection of assignable sub-
functions in the first iteration step. Fig. 2(a) shows the decom-
position chart for function

. Fig. 2(b)
shows the partition of the set of BS-
vertices . For example, BS-vertices (001) and
(111) are compatible because the second and the last column
in the decomposition chart are identical. They build the
compatible class .

Table I shows some functions and
indicates their assignability in the first step of the iterative pro-
cedure decomposing of Fig. 2(a). The function ,
which causes a nondisjoint decomposition, is also assignable
because vertices of not more than two classes are contained in
the onset (classes and ) and in the offset (classes and

). Since class overlaps both on- and offset, we have a
nonstrict decomposition. This subfunction cannot be found by
a strict decomposition technique where complete compatible
classes are coded with a unique code.

B. A General Implicit Decomposition Algorithm

We now describe a general implicit algorithm for single-
output decomposition. This algorithm, which has been used in
an extended version in [7], is the basis for the new algorithm
presented in Section IV.

TABLE II
THE ONSET OF�(e) REPRESENTINGALL ASSIGNABLE SUBFUNCTIONS

Let be a function of the bound
variables. To implicitly represent -functions, we employ
a bijective mapping from the set of all functions of the
bound variables, which has cardinality to where

. A tuple then
represents a function . The variable assumes value “1”
if the vertex is contained in the onset of, and it assumes
value “0” if the vertex is contained in the offset of. For
example, the function is represented by the minterm

. A set of -functions is represented by the
onset of a characteristic function and thus in a single BDD.

Using Property 1, we compute the characteristic function
that implicitly represents the set of all assignable sub-

functions for the first iteration step. Table II shows the onset
of function for the example of Fig. 2(a). After selecting
a subfunction from the set of assignable functions in the first
step, a new is computed for the next iteration step.
A more detailed description of the iterative decomposition
algorithm can be found in [7].

IV. NEW ALGORITHM

In order to compute subfunctions with minimal support,
three problems have to be solved. First, how do we compute
subfunctions that are independent of a single bound variable

? Second, how can this be done efficiently? Third, how are
subfunctions calculated that are independent of a maximal
number of bound variables?

A. Computing Subfunctions Independent
of a Single Variable

We first show how to implicitly compute subfunctions that
are independent of a certain bound variable. For discussion,
let us consider two BS-vertices that differ only in the value
of . Such vertices are called -adjacent. An -adjacency
pair is a pair of -adjacent vertices.

If the onset of a Boolean function contains just one
vertex of an -adjacency pair, the onset representation must
depend on . In order to obtain a function independent of

, we have to assure that each adjacency pair is completely
contained in either the onset or the offset. Based on this
condition, we state a formula to compute all these functions
implicitly,

(3)
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where is the number of bound variables, is the variable
representing the BS-vertex , and is the variable represent-
ing its adjacent BS-vertex. Let us interpret formula (3). The
term is if the adjacency pair that contains the
BS-vertex either belongs to the onset or the offset

of a function . is for a given tuple if
this condition holds for each BS-vertex, i.e.,then represents
an -independent function.

Now, we can easily calculate all assignable subfunctions
that are independent of . The set of assignable functions is
represented by and the set of -independent functions by

. Therefore, we implicitly compute the set of assignable
functions that are independent of as the product

.
Example 2: Let us compute all subfunctions independent

of for the function of Example 1. The -adjacency
pairs are , and

. We implicitly represent all -independent
subfunctions using formula (3)

According to Table II, the set of all assignable functions is
given by

Computing the set of assignable subfunctions independent of
yields

Minterm represents the function ,
minterm the function . Thus, there
are two subfunctions independent of.

B. Increasing the Efficiency by Partitioning

Up to now, we explained how to compute all subfunctions
independent of working with BS-vertices. As the number
of BS-vertices grows exponentially with the number of bound
variables, the number of variables, which and
depend on, becomes large even for small bound sets. This
would yield large BDD’s and limit the algorithm’s efficiency.
The problem is how to achieve efficiency for larger bound sets.

We suggest to group BS-vertices into classes, and associate
variables with classes instead of individual vertices. These
classes form a partition of the set of BS-vertices. We use
the classes of to build functions by assigning each
class to either the on- or offset of . Such a function
is calledconstructablewith respect to [7].

By choosing a certain partition , we obtain a tradeoff
between the efficiency of our algorithm and the quality of
its results. The efficiency of our algorithm increases with
a decreasing number of variables and thus a decreasing
number of classes of . The result quality increases with an
increasing number of functions constructable with respect to

and thus an increasing number of classes of.
Note that we may only choose a partition that equals

or refines . At first sight, the compatibility partition

(a) (b)

Fig. 3. Partition (a)�0

� and (b)�� .

seems to be a reasonable choice ofas it has a small number
of classes. However, it can be shown that we may not be able
to find assignable functions independent ofif we compute

-independent functions based on [16].
In order to compute subfunctions independent ofeffi-

ciently, we have to solve the following problem. Determine a
partition such that

• refines ,
• if there exists any assignable function independent of,

then at least one is constructable with respect to, and
• comprises a minimum number of classes.

We state a two step algorithm to solve this problem:
Step 1: Merge BS-vertices into one class if they are com-

patible and their -adjacent vertices are also compatible. The
obtained partition is called .

Step 2: Merge a class that contains only ad-
jacency pairs with any other class that contains
vertices compatible with the vertices of .

The obtained partition of the set of BS-vertices is called the
basis partition .

Example 3: Let us perform Step 1 of our algorithm and
compute partition for function of Fig. 2(a). Vertices
(011) and (101) are grouped into one class as they are
compatible and their adjacent vertices (111) and (001) are
also compatible. Vertex (110) cannot be grouped with any
other vertex as it is the only vertex of the compatible class

that is adjacent to a vertex of compatible class. Thus,
we obtain as shown in Fig. 3(a).

Now, we perform Step 2. Class is made up
of the adjacency pair . As these vertices are
compatible with vertex (010) of class , the classes and

are merged. We obtain the basis partition as shown
in Fig. 3(b).

Please note an important property of . The vertices
of each class have their adjacent vertices in at most one
other class. Therefore, only pairs of classes of have to
be commonly contained in the on- or offset of a function
independent of .

We can now compute all subfunctions that are independent
of and constructable based on . Similar to (3), this is
done implicitly using

(4)

where now represents a class and not a vertex
as before; represents the class “adjacent” to ,
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Fig. 4. Partition�� with x1-adjacency pairs.

i.e., the class containing vertices that are adjacent to vertices of
. Then, the characteristic function of all assignable

functions that are independent of and constructable with
respect to is

(5)

where represents the set of assignable functions that
are constructable with respect to . These subfunctions are
calleds-preferable(support-preferable) functions with respect
to .

The following theorem gives the condition on which resort-
ing to s-preferable functions is sufficient to obtain subfunctions
independent of variable .

Theorem 1: In the first step of the iterative decomposition
algorithm, there exists a function s-preferable with respect to

if and only if there exists an assignable function independent
of .

The proof of Theorem 1 can be found in the Appendix.
It can also be shown that the partition is the smallest

partition such that Theorem 1 holds. Experimental results show
that the set of s-preferable functions is much smaller than the
set of all assignable functions independent of.

Example 4: We compute the set of s-preferable functions.
Now, we have a variable for each class . First,
we determine , i.e., the set of assignable subfunctions
constructable w.r.t.

To compute , which represents -independent func-
tions, we determine pairs of “adjacent” classes. As can be
seen in Fig. 4, classes and as well as classes and

are such pairs.
Therefore, we have

.
Now, we compute the set of s-preferable functions

There are two s-preferable functions: represented
by and represented by .

We have shown how to find subfunctions independent of a
certain bound variable efficiently. We have not addressed
how to find subfunctions independent of several bound vari-
ables. This problem is solved in the next section.

C. Computing Subfunctions Independent of Several Variables

So far, we computed a basis partition for a singlebound
variable . In order to compute s-preferable functions that are
independent of several bound variables, we introduce the basis
partition for all bound variables. Thebasis partition
is defined as

(6)

To keep the number of classes of small, the product
is only computed over partitions of those variables
for which s-preferable functions exist at all, i.e., .
The following theorem expresses the meaning of the basis
partition :

Theorem 2: The basis partition is the partition with
the smallest number of classes such that all subfunctions s-
preferable with respect to any single bound variablecan
be computed.

The proof of Theorem 2 can be found in the Appendix.
After we have computed based on for each

bound variable, we choose a mintermsuch that
for a maximum number of . The subfunction represented by
this minterm then depends on a minimal number of bound
variables. In order to find this minterm, we build a matrix
where each column corresponds with a mintermand each
row corresponds with a function . An entry for column
and row if . Selecting a subfunction with
minimal support then corresponds with selecting a column
with the maximum number of “1”’s. Since this problem is
equivalent to selecting an optimal subfunction during multiple-
output decomposition, we use themaxcol algorithm of [15].
This algorithm, which represents the matrix by a single BDD,
is similar to theLmaxalgorithm that was suggested by Kamet
al. [17]. A detailed description of the algorithm can be found
in [15].

In order to compute subfunctions with minimal support in
each iteration step of the decomposition algorithm,
must be updated in each step. This is done using Formula
(5) where represents the functions that are assignable
in the current iteration step. To conclude this section, we
outline how to compute support-minimal subfunctions during
multiple-output decomposition.

D. Detecting S-Preferable Multiple-Output Decompositions

An approach to detect subfunctions which are concurrently
assignable for several outputs is proposed in [7]. Extracting
subfunctions that can be shared among several outputs reduces
the circuit area. It is shown in [7] that during multiple-
output decomposition of the function vector
an optimum multiple-output decomposition can be obtained
by considering only assignable subfunctions which are con-
structable with respect to

where the compatibility partitions of the individual outputs are
given by . Shared subfunctions are then found by solving
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Fig. 5. BDD for example functionf .

a covering problem similar to the one described in the last
section.

Our goal now is to detect -independent subfunctions
among the set of shared subfunctions. Quite similar to the
previous discussion about how to compute s-preferable sub-
functions that are independet of several bound variables,
we need a common basis to represent the set of shared
subfunctions as well as s-preferable functions. These shared
subfunctions that are independent of several bound variables
can be computed using the partition

(7)

where the basis partition of an individual output is given by
. The multiplication with is necessary in order to be able

to compute all functions that are constructable with respect to
such that an optimum multiple-output decomposition can

be obtained.

V. IMPLICIT COMPUTATION OF PARTITION

In order to compute the basis partition , we use a BDD
of function , where bound variables must be ordered before
free variables, and is the bound variable directly before the
free variables. The BDD for the function of the continued
example is shown in Fig. 5. Bycut nodes , drawn grey
in Fig. 5, we denote the set of BDD nodes which have an
index and at least one predecessor withindex . All
paths going to one node cut nodes correspond with
vertices of a compatibility class [3]. In Fig. 5 where

, there are three compatibility classes, , and .
The predecessors of the nodes cut nodes form a set of
nodes, denotedpreset . A pair of nodes preset is
now merged to a meta-node if they have the same successors.
In our example, the pair of nodes circled by the dashed line
is merged to a meta-node.

Now, those paths containing an edge (pair) from a (meta)
node with to a node
represent a class . All paths that contain an edge from a node

with to a node
represent a class which contains only adjacency

TABLE III
PROBLEM CHARACTERISTICS

pairs. Such a class must be unified with another class .
In the example, class is unified with . After taking all
such unions, the classes have been computed.

Note that -adjacent BS-vertices are represented by paths
passing through the same node . So, we can de-
termine adjacent classes by simply evaluating the predecessor
relations in the BDD while we compute . Therefore, we
get all information we need to compute and by a
reordering of the BDD and a subsequent BDD traversal.

VI. EXPERIMENTAL RESULTS

The implicit algorithm for single-output decomposition was
implemented in the programISODEC-S(implicit single-output
decomposition with support minimization), which is embedded
into the synthesis tool TOS–TUM.2

The experimental data in Table III give some typical prob-
lem parameters. The data were gathered during the decom-
position of single-output functions in the benchmark circuits
clip,example2 and the industrial benchmarkind4 . The
support size of , the number of bound variables, the number
of compatible classes, and the number of classes of ,
which is the number of levels of BDD’s representing charac-
teristic functions, are given in columns 2–5. The number of
functions that are independent of a certain variable (#indep.)
and assignable in the first iteration step (#assign.) are shown
next. The maximum number of functions s-preferable with
respect to a single variable is given in column 8. The
support sizes of the extracted subfunctions are shown next.

The number of classes of is typically small compared
with the number of BS-vertices, . This translates into a
set of s-preferable functions which is also small compared
with the other sets. The reduction of inputs of the extracted
subfunctions is apparent. As one subfunction of depends
on only one input, a nondisjoint decomposition has been
performed. For , the first selected subfunction depends
on only 8 out of 53 bound variables.

A. Reductions in LUT Count

Table IV shows the effectiveness of the new single-output
decomposition approach in reducing the LUT count if two-
level networks are decomposed (multilevel circuits were col-
lapsed before decomposition). We applied our decomposition
algorithm recursively to obtain functions with at most 5
inputs. A variable partitioning heuristic similar to the heuristic
presented in [18] was used here targeting minimal LUT count.

The number of primary inputs and outputs are
given in column 2 and 3. Columns 4, 5, and 6, show the LUT
count, the circuit depth, and CPU time (DEC AlphaStation 250

2TOS has been developed at the Technical University of Munich, Germany.
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TABLE IV
DECOMPOSITION OF TWO-LEVEL CIRCUITS

4/266), respectively, of single-output decomposition without
support minimization (usual) where subfunctions are chosen
randomly. The columns underISODEC-Sshow the results of
the new approach.

An average LUT count reduction of 28.4% for the MCNC
benchmarks demonstrates the potential of decomposition with
support minimization. The reduction is even more impressive
for the industrial benchmarks (IND) due to the extremely
good result forind4 . Although, we do not explicitly consider
delay information during decomposition, the circuit depth is
reduced by 12.0% for the set of MCNC benchmarks and by
10.5% for the set of industrial benchmarks. This reduction is
due to the fact that we have to perfom fewer decompositions
to get a network with five-input nodes if we select support
minimized subfunctions. Besides the area reduction this has
the additional effect that also the circuit depth may be reduced.
The increase in CPU time is acceptable. Decompositions with
up to 53 bound variables (ind4 ) are performed. The number
of classes in the basis partition, , ranges from 9 (apex6 )
up to 50 (apex2,too large,frg1,vda,ind4 ) in this
experiment.

B. Technology Mapping for SRAM-Cell-Based FPGA’s

We target the Xilinx XC3000 architecture, which has SRAM
cells with five inputs and two outputs. We mapped the de-
composed MCNC benchmark circuits of Table IV to this
Xilinx XC3000 architecture. We also placed and routed the
mapped circuits on Xilinx XC3100A FPGA’s (3120APC68-4,

TABLE V
RESULTS AFTER PLACEMENT AND ROUTING

3130APC44-4, 3142APG132-4, 3164APG132-4, 3190APC84-
4, 3195APQ208-4) using the Xilinxppr tool. We selected the
smallest part type such that the utilization of SRAM cells was
below 80% as recommended in [19]. The results are shown
in Table V. The results for the single-output decomposition
approach without support minimization and our new single-
output decomposition approach are given in the columns
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TABLE VI
MAPPING TO XILINX XC3000 CLBS

titled usualand ISODEC-S, respectively. The number of two-
output SRAM cells (CLB’s) are given in column 2 and 5. An
abbreviation for the part type on which a certain circuit was
implemented is shown in column 3 and 6. Column 4 and 7
show the worst case pad-to-pad delays of the circuits after
placement and routing. These delays were computed with the
Xilinx xdelay tool. Note that due to the large number of
primary inputs and outputs, circuitsapex6 and i7 cannot be
implemented on a single XC3100A FPGA.

The average reduction in the number of CLB’s is 29.9%.
This reduction in the number of CLB’s is even larger than the
reduction of 28.4% in the number of LUT’s. That shows that
ISODEC-Snot only generates a smaller number of nodes but
also nodes with fewer inputs. Therefore, two nodes could more
often be mapped into one two-output SRAM cell compared to
the usual single-output decomposition approach. The reduced
number of SRAM cells has also the advantage that in 8 out
of 17 cases a smaller part type could be used to implement
a circuit. All circuits that have been generated byISODEC-S
could be placed and routed without any problems. This shows
that in contrast to [20] we do not have to sacrifice area in
order to obtain routable designs. Even without considering the
circuit delay during technology mapping, pad-to-pad delays
were reduced by 21.3%. This improvement is achieved by the
area and circuit depth reduction withISODEC-S. It indicates
that ISODEC-Ssignificantly improves the mapping result.

Furthermore, we compared the results of our single-output
decomposition algorithm with four state-of-the-art FPGA tech-
nology mapping approaches, which areAlgorithm 3proposed
by Huanget al. [10], FGMap proposed by Laiet al. [3], [21],
FGSyn also proposed by Laiet al. [12], and SIS-1.3[22].
We have chosenAlgorithm 3 since it is a functional single-
output decomposition method that also computes subfunctions
with minimal support.FGMap has been chosen since it is a
functional single-output decomposition method that performs
nondisjoint decompositions as it is also done by our approach.
FGSyn is, in contrast to our single-output decomposition ap-
proach, a functional multiple-output decomposition approach.
It also performs nondisjoint decompositions.SIS-1.3combines
various collapsing, decomposition and don’t care optimization
techniques.

As it was suggested in [21], large circuits have been
preoptimized withSISusing the scriptscript.rugged[22]. The
results shown in columnAlgo. 3 of Table VI are the best
results reported forAlgorithm 3 in [10]. Results from [21]
are repeated in columnFGMap. Results forFGSyn (bx-csn)
from [12] are repeated in columFGSyn. Results for SIS-
1.3 shown in Table VI have been obtained using the FPGA
synthesis script given in [22]. ColumnISODEC-Sgives the
results of our new method. After technology mapping, the
node functions were assigned to CLB’s as permitted by the
XC3000 technology.
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ISODEC-S outperforms the single output decomposition
approachesAlgorithm 3 and FGMap by 31.6% and 18.4%,
respectively. It also outperforms the multiple-output decom-
position approachFGSynby 9.4%. The improvement when
compared withSIS-1.3is 14.1%.

VII. CONCLUSION

We analyzed the problem of support minimization dur-
ing functional decomposition and proposed a new, implicit
algorithm to compute subfunctions with minimal support.
The efficiency of our algorithm mainly stems from the fact
that we derived a suitable partitioning of the bound set
vertices into classes and dealed with these classes instead of
individual vertices. Therefore, it can handle large bound sets.
Our algorithm is more general than the method of [10], since
we perform nonstrict decompositions.

Experimental results show that the module count is reduced
substantially and that the mapped circuits can be placed and
routed without any problems. These results demonstrate the
importance of the problem of support minimization during de-
composition as well as the effectiveness of the new algorithm.

Currently, we are working on the problem of comput-
ing subfunctions with other properties like, e.g., symmetry.
Combining this work with multiple-output decomposition and
support minimization will lead to a more general understand-
ing of the encoding problem in functional decomposition.

APPENDIX

A. Proof of Theorem 1

(Only if:) By definition any s-preferable function is assign-
able and independent of .

(If:) We show how to build a subfunction which is s-
preferable with respect to from an assignable function
which is -independent but not s-preferable with respect to

. Since is not constructable with respect to , there exist
two vertices and such that these vertices are commonly
contained in a class of , but . As and

are compatible, they might as well have identical code.
There are two cases for which denotes the -adjacent
vertex to and which denotes the -adjacent vertex to

1) If and are commonly contained in a class of
and are compatible and can have identical code. We

change function such that obtains the code associated
with , and obtains the code associated with. 2) If
and are not commonly contained in a class of , then

and are commonly contained in a class of due
to Step 2 of the computation procedure of . Refering to
the notation of Step 2, let and . We change
function such that and , which are compatible, obtain
the code associated with . The code of is not changed.
This procedure can be repeated until a functionwhich is
s-preferable with respect to is obtained.

B. Proof of Theorem 2

By definition of the product of partitions, is the partition
with the smallest number of classes that refines all partitions

of the product of partitions. Since we omit each partition
of a bound variables in the product for which no s-

preferable function exists at all, only a minimal refinement is
done. Since is a refinement of each considered , all
functions that are constructable with respect to any considered

are also constructable with respect to. So, the set of
functions which are s-preferable with respect to anyis com-
pletely contained in the set of functions that are constructable
with respect to .
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