Equivalence Checking Using Cuts and Heaps

Andreas Kuehlmann

Florian Krohm

IBM Thomas J. Watson Research Center
Yorktown Heights, NY, U.S.A.

Abstract

This paper presents a verification technique which is
specifically targeted to formally comparing large com-
binational circuits with some structural similarities.
The approach combines the application of BDDs with
circuit graph hashing, automatic insertion of multi-
ple cut frontiers, and a controlled elimination of false
negative verification results caused by the cuts. Two
ideas fundamentally distinguish the presented tech-
nique from previous approaches. First, originating
from the cut frontiers, multiple BDDs are computed
for the internal nets of the circuit, and second, the
BDD propagation is prioritized by size and discontin-
ued once a given limit is exceeded.

1 Introduction

In recent years, formal techniques have become
widely accepted in practical design methodologies to
verify properties of complex systems. The computa-
tional complexity of the corresponding algorithms re-
sults in a fundamental trade-off between the generality
of the verification model and the size of the designs
that can be handled in practice. For example, verify-
ing complex temporal properties using model checking
1s relatively expensive and often not scalable to designs
with a large number of storage elements. Conversely,
a combinational verification model significantly limits
the expressiveness of the properties to be verified, but
1s practically applicable to large designs. Today, com-
binational models are commonly used to prove func-
tional equivalence of two design representations mod-
eled on different levels of abstraction [1, 2]. The match-
ing state encoding of the two models 1s enforced by the
overall design methodology.

An important category of approaches to combina-
tional verification is based on canonical representa-
tions of Boolean functions, typically binary decision
diagrams (BDDs) or their derivatives. The functions
of the two circuits to be compared are converted into
canonical forms which are then structurally compared.

"Permission to make digital/hard copy of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and /or a
fee.”

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06..$3.50

The major advantage of BDDs is their efficiency for a
wide variety of practically relevant combinational cir-
cuits. If the BDD size does not grow too large, this
type of Boolean reasoning is fast and independent of
the actual circuit structure. Moreover, if structural
similarities of the two designs are exploited, BDDs can
effectively find implications between nets even if they
are farther away from the primary inputs [3].

The main problem of BDDs is their exponential
memory complexity. If the BDD structure grows
too large, their storage and manipulation effort be-
comes very expensive. Various approaches have been
proposed to reduce the complexity of BDD-based
equivalence checking by exploiting structural similar-
ities [4, 5, 6, 7]. These techniques have had success
because the vast majority of industrial designs contain
many intermediate functions that occur in the specifi-
cation and in the implementation. These nets can be
used as cutpoints to partition a complex equivalence
check into a set of smaller, simpler comparisons.

Most cutpoint-based verification methods consist of
three phases. First, a set of potential cutpoints is
identified by using random simulation, ATPG tech-
niques, or BDDs. From these candidates the final cut-
points are chosen by specific selection criteria which
are typically difficult to tune to a wider set of appli-
cations. Second, the overall verification task is parti-
tioned along these cutpoints into a set of smaller verifi-
cation problems which are solved independently. And
third, in case of miscompares, false negatives due to
functional constraints at the partition boundaries are
eliminated. There are basically three methods to han-
dle false negatives, all of which have fundamental limi-
tations that are mentioned only briefly or not discussed
at all in the corresponding publications.

The first method is based on resubstitution of the
cutpoint variables by their incoming functions using
the BDD compose operation [5]. This methods is ex-
tremely sensitive to the order in which the cutpoints
are handled. In the worst case, a bad order might
cause the elimination of all cutpoints including the
ones which do not cause false negatives. Practically,
the problem is aggravated with more cutpoints since
the likelihood of false negatives increases. This causes
a dilemma for selecting the right number of cutpoints:
choosing too few results in a blow up of the forward
BDD construction and choosing too many leads to an
explosion of the resubstitution.

The second method is based on cut frontiers, defined
by the topological order of the cutpoints in the two
networks. False negatives are eliminated by succes-

sively applying the image of the previous cut frontier
to constrain the miscompare function of the current
cut frontier [6]. This method is basically identical to
the backward traversal technique for sequential FSM
verification and therefore has similar limitations: the
size of the BDD representation of the image tends to
blow up in many practical cases.

The third method for eliminating false negatives is
based on ATPG techniques to disprove each counter
example [7] individually. Here the complexity has
shifted into the time domain which makes the approach
impractical if the set of miscomparing patterns is large.
In addition, if the cutpoints are farther away from the
primary inputs and no other functional implications
between the two circuits are known, this technique
might timeout even on individual counter examples.

This paper describes a verification technique which
utilizes BDDs, circuit graph hashing, cutpoint guess-
ing, and false negative elimination. Although the in-
dividual ingredients are known, the innovation of the
presented method is based on their unique combina-
tion and two new ideas. First, the processing of BDDs
is prioritized by their size and limited to an upper
bound which avoids expensive and often unfruitful at-
tempts to verify intractable problems. Second, the
BDD construction is not stopped at cutpoints. In-
stead, the cutpoint variables start additional BDD
frontiers, resulting in multiple, overlapping BDD lay-
ers. In case of false negatives, these BDD layers pro-
vide multiple candidates for the elimination process.
Similar to the BDD construction, the resubstitution
of cutpoint variables is prioritized by size and discon-
tinued once a given limit is exceeded.

The resulting verification engine works well for a
wide variety of practical circuits. If the number of
cutpoints found in the two functions to be compared
is insufficient to verify them successfully, the runtime
or memory usage will not grow out of hand. Con-
trolled by the size limit, the BDD processing will stop
and the problem can be passed to another verification
engine, e.g. one based on permissible functions [8].
Furthermore, if the two functions are not equivalent,
the presented method will fail to prove it since this gen-
erally requires the resubstitution of all cutpoint vari-
ables. Instead, the problem is also forwarded to an
engine which is specialized in identifying miscompar-
ing functions, e.g. random simulation.

2 Overview of the Presented Approach

Similar to a BDD package, the presented verifica-
tion technique is implemented as a Boolean reason-
ing engine providing operations for Boolean function
manipulation and comparison. In fact, the interface
of the software implementation includes all essential
BDD operations and is plug-compatible with a basic
BDD package. A non-canonical circuit graph structure
1s used to store and manipulate functions. During the
construction phase, all Boolean operations are mapped
onto two-input AND gates (represented by vertices)
and inverters (represented by edge attributes). Com-
parable to the unique table in implementations of BDD
packages, a hash table is applied to uniquely identify

and merge structurally equivalent parts of the circuit
graph.

A request for comparing two Boolean functions is
handled in several phases. The overall goal is to merge
the two corresponding subgraphs such that both func-
tions are represented by the same vertex. If this is
not achieved, it is generally undecidable whether the
merging failed due to resource limitations or functional
miscomparison. Therefore, the comparison remains
undecided and the problem is forwarded to the next
verification engine. The algorithm to merge two sub-
graphs can be summarized as follows (see subsequent
sections for further details):

e To identify functionally identical vertices of the
circuit graph which are not found by hashing,
BDDs are computed starting at the primary in-
puts. Contrary to traditional BDD processing
based on depth-first or breadth-first traversal, a
sorted heap similar to event heaps of event-driven
simulators is used to control the propagation of
the BDDs. If during propagation, the BDD size
exceeds a given limit, its processing is cancelled.

e By using cross-references between BDD nodes
and the corresponding circuit graph vertices, sub-
graphs with identical functions can easily be iden-
tified. If found, functionally equivalent vertices
are merged and the subsequent part of the cir-
cuit graph is rehashed. The merged vertices are
marked as potential cutpoints for the next phase.

e If the heap is empty and the two outputs have
not been proven identical, any previously merged
vertices are used as cutpoints to inject new BDD
events onto the heap. The cutpoints are levelized
according to their topological depths. All cut-
points at a given level establish a cut frontier
which initiates another layer of BDD construction
throughout the circuit graph.

o After processing of all cut-frontiers, the resulting
BDDs at the output vertices are checked for false
negatives. Similar to the forward propagation,
this step uses a heap to resubstitute the BDDs
with the smallest size first. If all cutpoint vari-
ables are composed or all resulting BDDs exceed
the given size limit, the process stops and the ver-
ification problem remains unsolved.

There are few peculiarities which ensure the effec-
tiveness of the presented technique for a wide variety of
practical applications. First, using AND/INVERTER
structures as a base system to represent Boolean func-
tions in conjunction with vertex hashing results in
a very efficient verification engine for circuits which
are structurally identical except for changes caused by
simple technology mapping steps. This kind of func-
tional comparison is frequently needed to verify trivial
post-synthesis transformations such as scan-path in-
sertion, buffer optimizations etc. Second, the chosen
prioritized BDD processing implements a propagation
scheme which follows the size of the BDDs in the two
circuits. This ensures that functionally identical ver-
tices are found as early as possible, avoiding the pro-
cessing of unnecessary BDDs. Third, after two vertices

are identified as functionally identical, the merging of
the subsequent parts of the circuit graph by rehashing
can often be processed all the way to the outputs. This
effectively saves the construction of BDDs for several
levels in the graph. And last, since the propagation
1s not stopped at the cuts, the BDD layers generally
overlap significantly, which considerably reduces the
likelihood of false negatives.

3 Basic Algorithm for
Checking

Generally, verifying functional equivalence of two
circuits is performed in two steps. First, a circuit
model is constructed based on primitive Boolean op-
erations and then the actual comparison is performed
on that model. In the presented approach, a circuit
graph is built by converting all Boolean operations
into a structure using two-input AND gates and in-
verters. During the graph construction, each vertex
1s entered into a hash table using the vertices of the
two input operands and their polarities as key. Since
identical vertex keys are a sufficient condition for struc-
tural equivalence, the hash table can be used during
graph construction to map isomorphic parts of the two
circuits onto the same subgraph.

Equivalence

Algorithm Check_Equivalence (vy,v2) {
if (v == v2) return equal;
if (vy == NOT(wy)) return not_equal;
for all primary inputs : do {
bdd; = create_bdd_variable ();
store_vertex_at_bdd (bdd;, 2);
put_on_heap (heap, bdd;);

while (heap '= empty) do {
bdd = get_smallest_bdd (heap);
v = get_vertex_from_bdd (bdd);
/* check if handled before */
if (get_bdd_from_vertex (v)) continue;
store_bdd_at_vertex (v, bdd);
for all fanout vertices vou:r of v do {
bddleft = get_bdd_from_vertex (voy:—>left);
bdd,;ght = get_bdd_from_vertex (voyt->right);
bddyes bdd_and (bddics:, bddrigne);
VUpes get_vertex_from_bdd (bddres);
if (vres) {
merge_vertices (VUres, Vout);
if (vy == v3) return equal;
if (vy == NOT(w3)) return not_equal;
} else {
store_vertex_at_bdd (bddres, vVout);
}

put_on_heap (heap, bddres);

}
}
return undecided;

}

Figure 1: Algorithm for heap-based BDD processing.

Figure 2 illustrates the construction of the circuit
graph for a simple example. The two circuits in Fig-

Figure 2: Example for circuit graph manipulation: (a) two
functionally identical circuits, (b) original graph for both cir-
cuits, (c) BDDs are computed for vertices 1,2,3,4,5 which causes
5 and 3 to merge, (d) BDD is computed for 6 which causes 6
and 2 to merge, (e) forward hashing causes 7 and 8 to merge
and solves the verification problem.

ure 2(a) are structurally different but implement the
same function. Figure 2(b) shows the result of the
graph construction after the first phase. The vertices
of the graphs represent AND functions. Similarly, the
filled dots at the edges symbolize the inverters. Note,

that the functions aAb of the first circuit and aVb of the
second circuit are identified as structurally equivalent
(modulo inversion) and mapped to the same vertex 1
in the graph model. No other parts of the two circuits
could be merged by the initial hashing process.

After the graph construction is finished, the equiv-
alence check is performed by the algorithm shown
in Figure 1. The following remarks are given for
further clarification: procedure put_on_heap stores
a BDD on the heap only if its size is smaller
than the given limit; otherwise the BDD node is
freed and disregarded. The notations v->left and
v->right refer to the two incoming operands of
vertex v. Procedures get_bdd_from_vertex and

get_vertex_from_bdd provide cross-references be-
tween BDD nodes and the corresponding circuit graph
vertices, and handle inverted edges and inverted BDD
nodes internally.

The overall idea of the algorithm is to merge the
subgraphs of the two output vertices using BDDs to
prove functional equivalence of intermediate vertices.
The BDD propagation is controlled by a sorted heap.
First, for each primary input a BDD variable is created
and entered onto the heap. Then an iterative process
removes the smallest BDD from the heap, processes
the Boolean operation for the immediate fanout of the
corresponding circuit graph vertex, and reenters the
resulting BDDs onto the heap. Functionally equiva-
lent vertices found during that process are immedi-
ately merged and the subsequent parts of the circuit
graph are rehashed by the routine merge_vertices.
The rehashing is applied in depth-first order starting
from the merged vertex toward the primary outputs
and stops if no further reconvergency is found.

Figures 2(c-e) illustrate the results of the equiva-
lence checking algorithm for the circuit graph of Fig-
ure 2(b). It is assumed that the BDDs are processed
in the order of their corresponding vertices 1, 2, 3,4, 5,
and 6. The first four iterations create the BDDs for
vertices 1,2,3, and 4. In the next iteration, the com-
puted BDD for vertex 5 points to the functionally
equivalent vertex 3. Therefore, vertices b and 3 are
merged as indicated in Figure 2(c). The next figure
shows the graph after vertex 6 has been processed and
merged with vertex 2. The subsequent forward rehash-
ing identifies vertices 7 and 8 as structurally identical
and merges them which yields the graph structure of
Figure 2(e). At this point the equivalence of both out-
puts is proven and the algorithm terminates without
building BDDs for the last level of the two circuits.

4 Advanced Algorithm Using Cut
Frontiers

The algorithm of Figure 2 handles BDDs up to a
maximum size only. Therefore, the heap processing
potentially terminates without succeeding to merge
the two output vertices, even if they are functionally
equivalent. In order to exploit the structural similari-
ties found in the previous phase, all vertices that have
been merged are now used as cutpoints to inject new
BDD variables onto the heap.

The cut level c_level(v) of circuit graph vertex v
1s defined as follows:

0 if v is primary input

maz(c_level(v->left),c_level(v->right))+1

clevel(wv)= if v is cut point
maz(c_level(v->left),c_level(v->right))

otherwise.

All cutpoints with identical cut levels are assigned
to a cut frontier which initiates an independent layer of
BDD propagation through the circuit graph. Since the
layers generally overlap, this scheme effectively gen-
erates multiple BDDs for each graph vertex. Intu-
itively, this diversity increases the chance of merging
subgraphs and decreases the likelihood of false nega-
tives.

Algorithm Check_Equivalence_with_Cuts (vi,v2) {
for all vertices ¢ that have been merged before do {
bdd. = create_bdd_variable ();
level, = c_level ()
store_level_at_bdd (bdd., level.);
put_on_heap (heap, bdd.);

while (heap '= empty) do {

bdd = get_smallest_bdd (heap);
v = get_vertex_from_bdd (bdd);
level = get_level_from_bdd (bdd);

if (get_bdd_from_vertex (v)) continue;
store_bdd_at_vertex (v, bdd, level);
for all fanout vertices vou:r of v do {

bddics; = get_bdd_from_vertex (voyu:->left, level);
bdd,;ght = get_bdd_from_vertex (voy:->right, level);
bddres = bdd_and (bddicf:, bddrigne);
VUpes = get_vertex_from_bdd (bddres);
if (vres) {

merge_vertices (VUres, Vout);

if (vy == v3) return equal;

if (vy == NOT(w3)) return not_equal;
} else {

store_vertex_at_bdd (bddres, vres);
store_level_at_bdd (bddres, level);

}
put_on_heap (heap, bddres);
}
}
return undecided;

}

Figure 3: Heap-based BDD propagation with cut frontiers.

An extended version of the algorithm of Figure 1
1s used to implement the multi-layer propagation of
BDDs. As shown in Figure 3, the additions mainly
involve a level-oriented handling of BDDs. The proce-
dure get_bdd_from_vertex returns the BDD stored
for the specified level at the vertex. If the given level
exceeds the cut level of the vertex, the BDD of the
cut level itself is taken. The algorithm of Figure 3 is
called repeatedly until no new cut frontiers are found
or equivalence of the two outputs is proven.

5 Elimination of False Negatives

As discussed in the previous section, the application
of cutpoints can potentially introduce false negative
verification results. This occurs, if the insertion of cut
frontiers produces different BDDs for two functionally
equivalent output vertices. To prove equivalence for
those cases, the cutpoint variables that support these
BDDs need to be resubstituted by their driving func-
tions. As discussed above, this resubstitution process
potentially results in a blow-up of the BDDs. In order
to fully explore all BDD pairs constructed for the two
outputs without running into memory explosion, the
elimination process is also controlled by a heap.

Figure 4 shows the corresponding algorithm to elim-
inate false negatives. First, the heap is initialized with
all BDDs computed for the two output vertices. Then,
in each iteration, the BDD with the smallest size is
taken and its topmost cut variable resubstituted by the
corresponding driving function. The resulting BDD is

Algorithm Eliminate False Negatives (vi,v2) {
for level =0 to c_level (v1) do {
bdd = get_bdd_from_vertex (vi, level);
put_on_heap (compose_heap, bdd) ;

for level =0 to c_level (vp) do {
bdd = get_bdd_from_vertex (vz, level);
put_on_heap (compose_heap, bdd) ;

while (compose_heap '= empty) do {
bdd get_smallest_bdd (compose_heap);
v get_vertex_from_bdd (bdd);
bddyar get_cutvar_from_bdd (bdd);
if (bddyar) {
VYvar
level

get_vertex_from_bdd (bddyqar);
c_level (vyqr);

bdd ¢ ync
bddes

Vres

get_bdd_from_vertex (vyqr, level —1);
bdd_compose (bdd, bddyar, bddsync);

get_vertex_from_bdd (bddres);
if (vres) {
merge_vertices (Upes, v);
if (vy == v3) return equal;
if (vy == NOT(w3)) return not_equal;
} else {
store_vertex_at_bdd (bddres, v);
put_on_heap (compose_heap, bddres);

}
}

return undecided;

}

Figure 4: Algorithm to eliminate false negatives.

then checked for a functionally equivalent vertex that
has been processed before. If found, both vertices are
merged and the subsequent parts of the circuit graph
are rehashed. Otherwise, if the size of the resulting
BDD is smaller than the given limit, it is reentered
onto the heap for further processing.

6 Implementation Details

The presented verification technique is implemented
in the verification tool Verity [9] which is in practical
use for various microprocessor projects within IBM.
The approach is embedded in a scenario which starts
with randomly simulating 32 patterns to uncover the
majority of miscomparing outputs quickly and to sim-
ulate trivial functions [10] exhaustively. Then the de-
scribed engine is applied in several iterations with in-
creasing limits for the BDD size. After that, the re-
maining problems are forwarded to other BDD- and
ATPG-based reasoning engines.

In practice, a verification approach based on multi-
ple engines is quite powerful since each engine can be
tuned for a specific class of designs. For example, if
the two designs to be compared are very similar, the
presented engine works highly efficient using a small
limit on the BDD size. Contrarily, with larger lim-
its, the engine can handle design pairs with significant
structural differences, but also uses more time to build
the layered BDD representation.

100 T T
o 00 o o ® %gww@ o
¢ o 298 o o 2SseaR AR
O, O
20 F%B® HIRIE T & »
o ° ® o
© &0 4
o0 © & o © %o o
o °© o, ©
= aP o 0@ §
S O oo ©
< o
> o o Y
8 o °
= o 4
2 o .
1= ;s 4
<
S 10 F k3 ° 4
2 5o o o °
s ° %Qo S0 %>o ©° LN
— A4
90 o oo s o
§ ° @ ¢ AP
g o 0 0 9% °
5 o 6% o °
@ o o o8 ©
%o © Sad
© 4
© °
1 L

! ! !
10 100 1000 10000 100000 1e+06

Total number of vertices

Figure 5: Number of functionally equivalent vertices versus
total number of vertices in typical circuit graphs.

7 Practical Experiments

This section presents practical results to support
the previous claims. The first experiment was con-
ducted to validate the assumptions that many indus-
trial circuits are structurally similar and that the pre-
sented method can effectively exploit this property.
The test is based on a suite of approximately 300 cir-
cuits taken from several PowerPC, System/390, and
AS/400 microprocessor designs within IBM. These cir-
cuits cover the whole complexity spectrum from simple
data-path components to full chips.

To measure the structural similarity of the two de-
signs to be compared, the number of vertices in the
circuit graph representations were counted which have
functionally equivalent counterparts. The numbers in-
clude all hash table matches during graph construc-
tion, the merge operations during BDD propagation,
and the matches during the following forward rehash-
ing step. Note that the effect of constant folding is
not included, since it is highly dependent on the im-
plementation of the switch-level extraction algorithm.
The results for the 300 designs are shown in Figure 5.
As displayed in the picture, for about 80 % of the cir-
cuits, more than 80 % of the graph vertices did find an
equivalent counterpart vertex. This attests to the fact
that equivalence checking in practice can and should
heavily exploit structural similarity.

Next, the performance of the presented technique
was measured for a number of IBM internal circuits.
The tests were based on the verification tool Verity
and performed on a RS/6000 workstation model 390,
the results are shown in Table 1. The second and third
column report the design complexity in terms of the
number inputs, outputs, gates, and transistors. The
next column shows the number of functional compar-
1sons and consistency checks performed by Verity. The
reported seven designs are taken from various micro-
processor designs: D9000 is a large chip where all func-
tional components are black-boxed. This design exer-
cises an extreme verification case with no logic but a
huge number of verification problems. As shown, the
runtime and memory consumption is reasonable and

Design Inputs/ Gates/ Comparisons/ CPU Memory
OQutputs Transistors Checks (sec) (MB)
D9000 202615 / 84354 -/ - 406068 / 3109078 | 13922.4 670.3
D9001 47370 / 5802 1024763 / 14460 93236 / 687792 1785.7 552.7
D9002 2383 / 3325 28432 / 57806 7316 / 86066 3437.7 83.1
D9003 1519 / 482 29807 / - 3108 / 44765 1760.9 31.8
D9004 11661 / 2398 51759 / - 23838 / 100204 572.0 47.8
D9005 209 / 84 1923 / 7874 168 / 8192 24.0 14.0
D9006 133 / 247 3677 / 16672 594 /12130 136.2 25.1

Table 1: Verification performance for selected circuits.

expected to grow linearly with larger chips. D9001 is
the flat design of a complete microprocessor. The two
representations to be compared are modeled on gate-
and transistor-level and are structurally very similar.
In this case, the graph hashing solves the majority
of the verification problems, where slight irregulari-
ties are effectively “bridged” by the BDD propaga-
tion. D9002 is a multiplier circuit for which the gate-
level representation is compared against the custom-
designed transistor-level implementation. The larger
structural difference is clearly reflected in a larger
runtime effort to compare them. D9003 and D9004
are two designs which previously could not be veri-
fied without manually partitioning them into smaller
pleces. Using the presented approach, Verity can han-
dle these circuits for the first time automatically. The
last two designs are typical data-path units.

Overall, the proposed engine greatly extends the
class of designs which can be handled automatically.
For example, with the exception of D9000, none of the
industrial designs of Table 1 could be verified in a rea-
sonable amount of time using a BDD engine only.

8 Conclusions

The paper presents a new method to perform
functional comparison of combinational circuits using
BDDs, circuit graph hashing, cutpoint guessing, and
false negative elimination. To generally avoid a mem-
ory blow-up, the BDD construction is limited to a
maximum size. A BDD propagation scheme controlled
by a sorted heap in combination with vertex hashing
of the circuit graph effectively exploits structural sim-
ilarities of the two circuits to be compared. In addi-
tion, functionally identical internal nets are used as
cutpoints to partition the verification problems into a
set of smaller, possibly easier tasks. These cutpoints
are combined to start new overlapping BDD propaga-
tion layers which potentially get closer to the outputs.
Similar to the construction process, the elimination of
false negatives by resubstituting the cutpoint variables
is controlled by a sorted heap.

Overall, the presented approach performs efficiently
for a wide variety of designs with some degree of struc-
tural similarity. Compared to a pure BDD approach,
many practical designs can now be verified without
manual partitioning; others run significantly faster.
The combination of the presented technique with alter-
native verification engines specialized in other classes
of designs results in a powerful practical verification
tool which is robust and efficient for most applications.

9 Acknowledgments

The authors would like to thank Arjen Mets, Mark
Williams, and Jiazhao Xu from IBM Fishkill, Victor
Rodriguez from IBM Austin, Robert Kanzelman from
IBM Rochester, and Ee Cho from IBM Poughkeep-
sie for their significant contributions to develop and
support the verification tool Verity. They also wish
to thank Geert Janssen from the Technical Univer-
sity Eindhoven for providing his BDD-package and for
valuable technical discussions.

References

[1] G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean com-
parison of hardware and flowcharts,” IBM Journal of Research
and Development, vol. 26, pp. 106—116, January 1982.

[2] D. P. Appenzeller and A. Kuehlmann, “Formal verification of
a PowerPC microprocessor,” in Proceedings of the IEEE In-
ternational Conference on Computer Design, (Austin, TX),
pp. 79-84, IEEE, October 1995.

[3] J. Jain, R. Mukherjee, and M. Fujita, “Advanced verifica-
tion technique based on learning,” in Proceedings of the 82th
ACM/IEEE Design Automation Conference, (San Francisco),
pp. 420-426, ACM/IEEE, June 1995.

[4] C. L. Berman and L. H. Trevillyan, “Functional comparison of
logic designs for VLSI circuits,” in Digest of Technical Papers
of the IEEE International Conference on Computer-Aided
Design, pp. 456—459, IEEE, November 1989.

[5] C. van Eijk and G. Janssen, “Exploiting structural similarities
in a BDD-based verification method,” in Proceedings of the
2nd International Conference on Theorem Provers in Circuit
Design, pp. 110-125, 1995.

[6] Y. Matsunaga, “An efficient equivalence checker for combi-
natorial circuits,” in Proceedings of the §5th ACM/IEEE
Design Automation Conference, (Las Vegas), pp. 629-634,
ACM/IEEE, June 1996.

[7] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel verification
framework combining structural and OBDD methods in a syn-
thesis environment,” in Proceedings of the 82th ACM/IEEE
Design Automation Conference, (San Francisco), pp. 414—419,
ACM/IEEE, June 1995.

”

[8] D. Brand, “Verification of large synthesized designs,” in Digest
of Technical Papers of the IEEE International Conference
on Computer-Aided Design, (Santa Clara, CA), pp. 534-537,
IEEE, November 1993.

[9] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin, “Verity - a
formal verification program for custom CMOS circuits,” IBM
Journal of Research and Development, vol. 39, pp. 149-165,
January/March 1995.

[10] F. Krohm, A. Kuehlmann, and A. Mets, “The use of random
simulation in formal verification,” in Proceedings of the IEEE
International Conference on Computer Design, (Austin, TX),
pp. 371-376, IEEE, October 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

