
DAOmap: A Depth-optimal Area Optimization Mapping Algorithm
for FPGA Designs
Deming Chen, Jason Cong

Computer Science Department
University of California, Los Angeles

{demingc, cong}@cs.ucla.edu

ABSTRACT
In this paper we study the technology mapping problem for FPGA
architectures to minimize chip area, or the total number of lookup
tables (LUTs) of the mapped design, under the chip performance
constraint. This is a well-studied topic and a very difficult task
(NP-hard). The contributions of this paper are as follows: (i) we
consider the potential node duplications during the cut
enumeration/generation procedure so the mapping costs encoded
in the cuts drive the area-optimization objective more effectively;
(ii) after the timing constraint is determined, we will relax the
non-critical paths by searching the solution space considering
both local and global optimality information to minimize mapping
area; (iii) an iterative cut selection procedure is carried out that
further explores and perturbs the solution space to improve
solution quality. We guarantee optimal mapping depth under the
unit delay model. Experimental results show that our mapping
algorithm, named DAOmap, produces significant quality and run-
time improvements. Compared to the state-of-the-art depth-
optimal, area minimization mapping algorithm CutMap [21],
DAOmap is 16.02% better on area and runs 24.2X faster on
average when both algorithms are mapping to FPGAs using LUTs
of five inputs. LUTs of other inputs are also used for comparisons.

1. INTRODUCTION
The Field Programmable Gate Array (FPGA) has become
increasingly popular throughout the past decade. The cost
pressures, changing requirements, and short design windows favor
more and more programmable chip solutions. Generally, an
FPGA chip consists of programmable logic blocks, programmable
interconnections, and programmable I/O pads. The LUT-based
FPGA architecture dominates the existing programmable chip
industry, in which the basic programmable logic element is a K-
input lookup table. A K-input LUT (K-LUT) can implement any
Boolean functions of up to K variables. FPGA technology
mapping converts a given Boolean circuit into a functionally
equivalent network comprised only of LUTs. This phase is
followed by a placement and routing phase to realize an
implementation of the mapped network. As the routing resources
in FPGAs are prefabricated and relatively limited compared to
ASIC technologies, the technology mapping process has a
significant impact on the area, performance and power of the
implemented circuit.

Previous technology mapping algorithms for LUT-based FPGA
designs can be roughly divided into four categories according to
their optimization objectives.

 Area Minimization. These algorithms include Chortle-crf
[1], MIS-pga [2], XMap [3], VisMap [4], TechMap [5], and
Praetor [6]. It is an NP-hard problem to solve for general
circuits as DAG’s (directed acyclic graphs) [7].

 Delay Minimization. These algorithms include Chortle-d [8],
MIS-pga-delay [9], TechMap-L [5], DAG-map [10],
FlowMap [11], EdgeMap [12], and SeqMapII [13]. FlowMap
is the first algorithm to guarantee a depth-optimal mapping
solution in polynomial time under the unit delay model.
EdgeMap presents a non-trivial generalization of FlowMap
and achieves optimal delay using the general delay model,
where each interconnection edge has a weight representing
the delay of the interconnection.

 Power Minimization. These algorithms include mapping
algorithms in [14] and [15], PowerMap [16], PowerMinMap
[17], Emap [18], and DVmap [19]. Min-power mapping is
also a NP-hard problem to solve [14].

 Delay and Area Minimization. The algorithms in this
category are particularly interesting because they minimize
both delay and area of the FPGA design. The major works
include FlowMap-r [20] and CutMap [21], where no logic
resynthesis/restructuring is performed. Other works, such as
BoolMap [22], FlowSYN [23] and the work in [24], consider
logic resynthesis during mapping.

Techniques used in the above-mentioned mapping algorithms
include bin packing, dynamic programming, greedy algorithm,
binate covering, network flow algorithm, BDD-based logic
optimization, and cut-enumeration algorithm, etc. For FlowMap-r
and CutMap, both algorithms target minimizing area while
maintaining optimal mapping depth. FlowMap-r started with the
depth-optimal mapping solution produced by FlowMap and then
applied depth-relaxation techniques such as remapping and node
packing for the non-critical paths. It reported better area than
FlowMap, and better area and mapping depth than MIS-pga-delay
and Chortle-d. CutMap combined depth and area minimization
during the mapping process by computing min-cost min-height K-
feasible cuts for critical nodes and computing min-cost K-feasible
cuts for non-critical nodes using the network flow method. It
reported better area than FlowMap-r with the same mapping depth
and similar run-time. CutMap is widely used in the academic
community for various FPGA evaluation and design flows, and
has been considered the state-of-the-art FPGA technology
mapping algorithm for depth-optimal mapping solutions.

In this paper we present a new mapping algorithm, DAOmap, for
Depth-optimal Area Optimization of FPGA designs. We adopt a
cut-enumeration-based method that consists of cut generation and
cut selection. Cut generation traverses the network from primary
inputs (PIs) to primary outputs (POs), and combines subcuts on
the fanin nodes of the target node to generate all the cuts on the
target node (each cut represents one possible LUT implementation
rooted on the target node). After all the cuts are generated, we
traverse the network from POs to PIs and select cuts to produce

0-7803-8702-3/04/$20.00 ©2004 IEEE. 752

the LUT mapping result. The difficulty lies in the way we select a
subset of all the cuts to cover the whole circuit. A binate-covering
algorithm will give an optimal solution but with exponential
complexity. To design effective heuristics to select cuts, we have
to consider the global view of the area optimization because early
selections of cuts will have a strong impact on the future
selections of cuts during the traversal from POs to PIs. Through
the mapping procedure, node duplication cannot be avoided if the
optimal mapping depth is to be guaranteed. Actually, how to
handle the different duplication scenarios makes the min-area
FPGA mapping problem NP-hard. In this work we offer three
novel approaches to effectively model and control node
duplications and reduce area through the entire mapping process.
First, we consider the potential duplications during the cut
generation procedure so the mapping solutions encoded in the
cuts consider duplication costs. This will help the cut selection
procedure to make the right decisions to cover the circuit with less
node duplications from a global optimization point of view.
Second, after the timing constraint is determined (the longest
optimal mapping delay of the network), we will relax the non-
critical paths by searching the solution space considering both
local and global optimality information to minimize the mapping
area. Third, we carry out an iterative cut selection procedure that
further explores and perturbs the solution space to improve
solution quality. Experimental results show that our algorithm
produces significant quality and run-time improvements over
CutMap across a series of MCNC benchmarks and a set of
industrial benchmarks.

The rest of this paper is organized as follows. In Section 2 we
provide some basic definitions and formulate the depth-optimal
area optimization problem for FPGA. Section 3 gives a review of
the cut-enumeration-based mapping algorithm. Section 4 shows
the detailed description of our enhancement of cut enumeration in
terms of cost estimation and other novel techniques to minimize
area. Section 5 presents experimental results, and Section 6
concludes this paper.

2. DEFINITIONS AND PROBLEM FORMULATION
A Boolean network can be represented by a DAG where each
node represents a logic gate, and a directed edge (i, j) exists if the
output of gate i is an input of gate j. A PI node has no incoming
edges and a PO node has no outgoing edges. We treat the flip-flop
outputs as special PIs and the flip-flop inputs as special POs, and
make no distinction in terms of notation. We use input(v) to
denote the set of nodes which are fanins of gate v. Given a
Boolean network N, we use Ov to denote a cone rooted on node v
in N. Ov is a sub-network of N consisting of v and some of its
predecessors, such that for any node w Ov, there is a path from
w to v that lies entirely in Ov. The maximum cone of v, consisting
of all the PI predecessors of v, is called a fanin cone of v, denoted
as Fv. We use input(Ov) to denote the set of distinct nodes outside
Ov which supply inputs to the gates in Ov. A cut is a partitioning
(X, X’) of a cone Ov such that X’ is a cone of v. The cut-set of the
cut, denoted V(X, X’), consists of the inputs of cone X’, or
input(X’). A cut is K-feasible if X’ is a K-feasible cone. In other
words, the cardinality of the cut-set is K. We also call the
cardinality of the cut-set the cutsize of the cut. The level of a node
v is the length of the longest path from any PI node to v. The level
of a PI node is zero. The depth of a network is the largest node

level in the network. A Boolean network is l-bounded if |input(v)|
 l for each node v.

Because the exact layout information is not available during the
technology mapping stage, we model each interconnection edge
in the Boolean network as having a constant delay. Therefore, we
approximate the largest delay of the mapped circuit with a unit
delay model, where each LUT on the critical path (the path with
longest delay after mapping) contributes one unit delay. The
largest optimal delay of the mapped circuit is also called the
optimal mapping depth of the circuit.

The mapping problem for depth-optimal area optimization of
FPGA is to cover a given l-bounded Boolean network with K-
feasible cones, or equivalently, K-LUTs in such a way that the
total LUT count after mapping is minimized while the optimal
mapping depth is guaranteed under the unit delay model. Our
initial networks are all 2-bounded and K can be 4, 5 or 6 in this
study. Therefore, our final mapping solution is a DAG in which
each node is a K-LUT and the edge (Ou, Ov) exists if u is in
input(Ov). Our algorithm will work for any reasonable K values.

3. REVIEW OF CUT ENUMERATION
3.1 Cut Enumeration with Delay and Area
Propagation
Cut enumeration is an effective method for finding all the
possible ways of the K-feasible cones rooted on a node [6, 19, 20].
A cut rooted on node v can be represented using a product term
(or a p-term) of the variables associated with the nodes in the cut-
set V(Xv, Xv’). A set of cuts can be represented by a sum-of-
product expression using the corresponding p-terms. Cut
enumeration is guided by the following theorem [6]:

where f(K, v) represents all the K-feasible cuts rooted at node v,
operator + is Boolean OR, and K is Boolean AND on its
operands, but filtering out all the resulting p-terms with more than
K variables. We will use a simple example to illustrate the cut-
enumeration process. We use {s1, …, sn} to represent a cut with
cut-set s1, …, sn, where si is either an internal signal or a PI. In
Figure 1, all the cuts1 rooted on node s can be generated by
combining the cuts rooted on its fanin nodes q and r (refer to
Formula (1)). We call the cuts on the fanin nodes subcuts.
Combining C1 with C2 will form a new cut Cs = {m, n, o, p}
rooted on s (shaded area). The cut-enumeration process will
combine each subcut (or the fanin node itself) on one of the fanin
nodes with each counterpart from the other fanin node to form
new cuts for the root node. If the input of the new cut exceeds K,
the cut is discarded. During this enumeration process, the arrival
time and mapping cost/area for each cut can be calculated (we use
the words cost and area interchangeably). Subsequently, the
arrival time and area for the root node can be obtained as well.

The arrival time of PI nodes is 0. The arrival time will propagate
through the cuts from PIs to POs, where each cut (LUT) on the
paths represents one unit delay. To get the minimum arrival time
for a node v, we have

1 We will use the term cut, and its symbol C, to represent the K-feasible

cone that is a result of this cut for simplicity purpose.

(1))] , ([),()(u K f uvKf
K

vinputu

753

 Arrv = MIN [MAX (Arri) + 1] (2)

where C represents every cut generated for v through cut
enumeration. Here, the arrival time of C is MAX(Arri) + 1, where
Arri is the minimum arrival time on input signal i of C. We call
the cut C that provides Arrv as MCv. Notice that there can be more
than one MCv for node v, and all the MCv’s form a set Xv. Thus,
the minimum arrival time for each node in the network is
propagated from the PIs through cuts and iteratively calculated
until all the POs are reached by a topological order. The longest
minimum arrival time of the POs is the minimum arrival time of
the circuit, i.e., the optimal mapping depth of the circuit.

Similarly, the area can be propagated along the process of cut
enumeration. The area for a cut C is calculated as follows:

 AC = [Ai / f(i)] + UC (3)

where UC is the area contributed by cut C itself (to be covered
later), Ai is the estimated area of a cone rooted on signal i, and f(i)
is the fanout number of signal i. Therefore, the area on i is shared
and distributed into other fanout nodes of i. Once the outputs of i
reconverge, the total area on i will be summed up. This process is
trying to estimate the area more accurately, considering the
effects of gate fanouts [6]. The cut that gives the best AC on node
v is the effective cost of v. The area propagation in [6] was based
on sub-networks, such as MFFCs (maximum fanout free cones2),
where nodes outside of the target MFFC did not contribute area to
AC, and UC = 1 always. It was area-oriented and did not guarantee
optimal mapping depth. This area estimation model would
represent the actual mapping area for duplication-free mapping
based on MFFCs and would be a lower bound of the minimum
mapped area if node duplication was allowed [6]. We will show
that this conclusion on the lower bound no longer holds with the
optimal mapping depth constraint in Section 4.

3.2 Complexity Analysis
The number of cuts on a node for the worst case is O(nK), where n
is the total number of nodes in the network. However, when LUT
input K is small, the number of cuts generated for each node v is a
small constant because all the cuts are usually generated within a
small cone Ov contained in Fv. Figure 2 shows this situation,

2 For any node u root node v, if u is contained in the cone, all of the

outputs of u are also in the cone. On the other hand, if all of the outputs
of u are in the cone, then u is also in the cone [20].

where the vertical coordinate shows the number of cuts generated
for each node averaging over the 20 largest MCNC benchmarks
along the value of K. This implies that the complexity of cut-
enumeration algorithm is practically linear to n for small K.
Nonetheless, the number of cuts can be large when K 7. For
large K, we can apply cut-pruning techniques to control the
number of cuts to be generated. Since this is not the focus of this
work, interested readers are referred to [6].

4. ALGORITHM DESCRIPTION
Based on the cut-enumeration framework, we first present our
enhancements in terms of area propagation (Section 4.1), cost
function (Section 4.2), and global duplication cost adjustment
(Section 4.3). Then we present a series of novel techniques to
guide the cut selection procedure (Section 4.4).

4.1 Area Propagation under Timing Constraints
To guarantee optimal mapping depth, we need to propagate the
estimated area together with the propagation process of the
minimum arrival time. Thus, Ai of Formula (3) in our case will be
the best propagated area in the fanin cone Fi. Then, after we have
calculated the area for each cut rooted on node v, the best
propagated area in the fanin cone Fv is as follows:

 Av = MIN (AC) (4)

Av represents the best achievable mapping area up to node v under
the constraint that it also generates the optimal mapping delay up
to the point of v. Through Formula (3) and (4), the areas of the
cuts and nodes are iteratively calculated until the enumeration
process reaches all the POs. Later on, during the cut selection
stage when we know that v is not on a critical path, a cut C Xv
may be picked as long as it will not violate the timing constraint
and will produce a better area in the same time. Thus, Av
represents an area estimation guarded by a timing constraint that
usually is overstressed unless v is on a critical path. Nonetheless,
we have to stick to Av during cut enumeration because we do not
know whether v is a critical node or not until the entire cut-
enumeration process is completed. Therefore, v is a PO (Av) is no
longer a lower bound on the minimum area of all mapping
solutions under the optimal mapping depth constraint.

4.2 Cost Function for a Cut
Although each cut represents one LUT, using a fixed unit area for
a cut will not accurately reflect the property of the cut. Figure 3
illustrates this situation. Although both cut C1 and cut C2 have a
cutsize of 2, C2 is obviously a better cut because it covers many
more nodes than C1, thus implementing more logic. We also

 C on v i input(C)

i = input(C)

Root node of the
new cut Cs

Subcut C2

Cut-set
nodes

Multiple fanouts
New cut Cs

Figure 1: Cut generation

q r

s
Subcut C1

p nm o

t u Cut Ct
Cut Cu

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7
K

A
ve

ra
ge

 c
ut

s
pe

r n
od

e

Figure 2: Average number of cuts on each node along K

C Xv

754

observe that C2 covers two sets of reconvergent paths completely,
which is the reason it can cover six nodes with a small cutsize.
Therefore, the number of all the reconvergent paths covered by a
cut is also in the cost function.3 The third factor we consider is the
fanout number of the root node. The larger this fanout number,
the larger the possibility that picking this cut will reduce potential
duplications. For example, node 5 has four fanouts. Picking cut C2
or C3 will cause node 5 to be duplicated multiple times when each
of its other fanout nodes (on dashed lines) is mapped. However,
picking a cut rooted on node 5 itself will reduce these potential
duplications. Finally, cuts of different cutsizes have different
areas. The number of edges in a mapped network is on the order
of O(Kn), where n is the number of LUTs in the network. If the
number of edges is minimized, it naturally minimizes the number
of LUTs as well. This indicates that always preferring LUTs with
large input numbers will hurt the area from the overall picture.
We use the following formula to calculate the area of a cut C:

))((CC

C
C

RvfN
IU (5)

where IC is the cutsize of C, NC is the number of nodes covered by
C, f(v) is fanout number of the root node v, RC is the number of
reconvergent paths completely covered by C. and are positive
constants (we set = 0.8 and = 0.4). The smaller the value of
UC, the better the cost of C is.

4.3 Global Duplication Cost Adjustment
It is intuitive that the quality of the mapping result is directly
related to the accuracy of area estimation. Although the area
model presented in the previous section no longer represents a
lower bound of the mapped area, it has obvious advantages. Using
the example shown in Figure 1, if Cs is used to implement an LUT
in the final mapping and there is no duplication involved, the area
rooted on node s, As, should be equally shared by fanouts t and u.
Otherwise, As will be falsely double-counted when it is
propagated to both t and u later. However, this estimation has its
downside. Suppose the final mapping result uses Ct and Cu
(Figure 1), then the estimation is no longer accurate because Cu
treats node s as not duplicated4 but s is actually duplicated in Ct.
Thus, the area model can under-estimate the actual mapping area.

3 Starting from the root node, do a breadth-first search toward the cut-set

nodes to find the reconvergent nodes, such as node 3 in the example.
4 The area As is divided by 2 and propagated to Cu.

To address this issue during cut enumeration, we adjust the
estimated area according to the potential node duplication
scenarios. These can be captured by checking the subcuts that are
with or without multiple fanouts. In Figure 1, when subcuts C1
and C2 are combined to form Cs, we observe that there will not be
any node duplications for node q because it is a single-fanout
node. However, there will be a duplicated node for node r since it
has another fanout (dashed line) that goes out of cut Cs. We
change Formula (3) to the following:

 AC = [Ai / f(i)] + UC + Pf1 + Pf2 (6)

where f1 and f2 are the two fanin nodes of the root node v, and C is
formed by the two subcuts Cf1 and Cf2 rooted on f1 and f2
respectively. Pf1 and Pf2 are the duplication costs of the subcuts,
which are defined respectively as follows:

otherwise 0

1 if f(i)I
N

P C
Cf

f
 (7)

where C is defined as above, Cf is the subcut on either f1 or f2, and
f(i) is the fanout number of corresponding f1 or f2. NCf is the
number of nodes Cf contains, and IC is the cutsize of C. The
intuition is that the larger NCf is, the larger the possibility that
more nodes in Cf will be duplicated, thus the larger duplication
cost it produces. IC is treated as a normalizing factor because the
larger IC is, the more likely it is that C will contain more nodes.
This, in a way, alleviates the duplication cost experienced in the
local area of the cut, i.e., in Cf. Notice, once AC is adjusted it stays
that way, and the related node cost will also consequently be
adjusted. Meanwhile, the new cost will propagate to the cuts and
nodes on the fanouts. In Figure 1, once the costs of Cs and As are
adjusted, they will start to influence the costs of Cu and Au, etc.
Thus, this cost adjustment has a global impact for the area
propagation process and makes the area estimation more closely
related to the actual mapping implementation in a global point of
view. This will improve the quality of the final mapping, as
shown in the section of experimental results.

4.4 Cut Selection
After cut enumeration, we obtain the optimal mapping depth of
the network. This mapping depth will be set as the required time
for the circuit. The critical path(s) is the path that leads to such a
mapping depth, and the nodes on non-critical paths will have the
luxury of selecting different cuts that offer smaller costs with a
relaxed delay value as long as the required time of the circuit is
maintained. This is a standard technique for area minimization
under timing constraints. As mentioned in the Introduction section,
we will carry out a topological order traversal starting from POs,
then the inputs of the generated LUTs are iteratively mapped. The
procedure continues until all the PIs are reached.

As mentioned before, the difficulty of mapping lies in the method
of selecting cuts to cover the whole circuit to minimize the total
area. We cannot greedily pick the cuts with the smallest costs
calculated through the cut-enumeration process, because that will
forfeit some important optimization factors in terms of reducing
node duplications locally. Therefore, we design several novel
heuristics that will search the solution space, guided by both local
and global optimization information to increase area savings. We
also carry out an iterative cut selection procedure that further

i = input(C)

1

2 3

4 5

6

C1

C2

C3

Figure 3: Illustration of various cuts

755

explores and perturbs the solution space to improve solution
quality. The iterative cut selection procedure will be introduced
first because it is in the outer loop of the optimization cycle.

4.4.1 Iterative Cut Selection Procedure
We design an iterative cut selection (ICS) procedure that produces
a final mapping result based on previous cut selection iterations.
A previous iteration can be considered as a tentative mapping that
provides guidance for the next iteration. This iterative procedure
offers extra opportunities to reduce duplications (as shown later).
It is intertwined with local cost adjustment techniques (Section
4.4.2). Figure 4 provides a high-level description of the algorithm.

 Figure 4: Algorithm of iterative cut selection (ICS)

The early iterations will offer profiling information for the
subsequent iteration. The profiling information includes the LUT
roots (updated through list L), which were the selected LUT root
nodes (LUT outputs) for the LUTv’s in the mapping solution S of
the previous iteration. It also includes the list of nodes that were
duplicated in the previous iteration. A duplicated node can be
found when more than one LUT is covering the node. The
profiling information is collected in update_profiling_info.
Subroutine pick_cut will use the profiling data and some other
criteria to update the cost of each cut rooted on v for the current
iteration. update_req_time will update the required times of the
input nodes of the selected LUTv through the following formula:

 Reqi = MIN (Reqv 1) (8)

where Reqi is the required time of signal i that may have multiple
fanout nodes. The required times on the fanouts, Reqv’s, are
already decided following topological order before finalizing the
value of Reqi.

4.4.2 Local Cost Adjustment
To map a critical node v, only the cut that provides Av (Formula
(4)) is picked to implement the LUT to guarantee the optimal
mapping depth. How to select the cuts for the non-critical nodes
thus becomes the key to reduce mapping area. To increase the
chance of duplication reduction, we will not directly pick the cut
with the best cost calculated globally by the cut-enumeration
process. Instead, the cost of the examined cut will be adjusted
depending on the characteristics of the cut itself (thus the term
local). After the cost adjustment, it is possible that another cut

with an originally unfavorable cost becomes the most favorable to
map the current node. We will introduce three techniques below.

Input Sharing. During the cut selection procedure, LUT roots are
either in list L waiting to be mapped or have been removed from L
and mapped already. When we try to pick a cut C for a node from
L, we will check to see if some of the cut-set nodes (input nodes)
of C are already LUT roots. If this is the case, C will not generate
as many new LUT roots as other cuts do when those other cuts do
not have this feature.5 In other words, cut C takes advantage of
existing resources and does not require new resources. This
reduces the chances that a newly picked cut will cut into the
interior territories of existing LUTs. As a result, the input nodes
are shared among several mapped LUTs, and node duplications
are reduced. When the ICS procedure is carried out, the current
mapping iteration also considers the LUT roots generated from
previous iterations (named as tentative LUT roots). Not all of the
tentative LUT roots are considered. We only select those roots
that have strong features, such as those that have a large number
of fanouts. This indicates that these roots are most likely to be
kept all the way to the final mapping. 6 The cost of cut C is
recalculated and significantly reduced according to how many
inputs it shares from existing LUT roots (both real and tentative).
Thus, the cut selection is largely influenced by the local settings
around the target node and its cuts.

Slack Distribution. We define the slack on a node v as follows:

 Slackv = Reqv Arrv (9)
When Slackv is greater than 0, it means v is not on the critical path
so that there is more flexibility to choose a cut C that is not in Xv
(refer to Section 4.1), as long as the required time propagated
back to the input nodes of this cut is still larger or equal to the
minimum arrival times on those nodes. It is easy to see that if C
uses up all the slacks available on v, there will exist at least one
path in Fv that will no longer have the flexibility to pick cuts
outside of Xn, where n is on that path and n v. So, we want to
distribute the slacks along the edges of the entire paths to
encourage more nodes on the paths to have the flexibility to
search their solution space. We design a simple slack distribution
technique, which is applied in terms of the adjusted cost. We
define the slack of a cut C rooted on v as follows:
 SlackC = Reqv – 1 – MAX (Arri) (10)

If SlackC < 0, C is not a timing_feasible cut. Choosing it will
violate the optimal mapping depth constraint, so such a cut will be
discarded. The larger the SlackC, the better for C in terms of slack
distribution effects. We then adjust the cost of C accordingly.
Cut Probing. This technique includes several heuristics that
examine the characteristics of the target cut C from other angles
and tries to probe the amount of area gain locally before making
decisions about cut selection. We again use the example shown in
Figure 3. First, cut C3 has a nice feature that hasn’t been

5 Suppose a node w is a cut-set node for both cut Ca rooted on node a and

cut Cb rooted on b. Ca is picked to implement LUTa, and w is added into
list L and becomes an LUT root. Later on, when we map b, Cb has an
advantage because it shares input w with LUTa.

6 These tentative roots only influence cost adjustment and may or may not
become the real LUT roots for the current iteration.

algorithm ICS
input: network, output: mapping solution S.
for each iteration do
 L := list of POs; S := ;
 req_time(v | v L) := optimal_mapping_depth;
 while L do
 remove a node v from L;
 LUTv := pick_cut(v);
 S := S { LUTv };
 update_profiling_info(LUTv);
 update_req_time(input(LUTv));
 L := L { input(LUTv) };
 end-while
end-for
output S;

i input(LUTv) for all v

i input(C)

756

considered before. It will cause the fanout number of gate 3 to be
reduced to 1 because C3 covers both fanout nodes of gate 3. We
thus reduce the cost of C3 by a small constant because the number
of total edges is reduced by using it. Second, considering the cut-
set nodes and the root node of any cut C, these nodes themselves
will all become LUT roots if C is picked, so they will have a
small chance of being duplicated (due to the effect of our strong
input sharing feature). If these nodes actually were duplicated in
the previous iterations found by update_profiling_info, it means
that cut C actually reduces duplications in the current iteration.
The higher the number of duplicated cut-set nodes was, the more
cost savings cut C gets. The third probing technique is related to
the reconvergent paths. In Figure 3, there are two sets of
reconvergent paths within cut C2. This eliminates the chances of
gate 1 and gate 3 getting duplicated even though they have
multiple fanouts. If the previous iterations indicate that these
gates were indeed duplicated before, we will have extra cost
savings for choosing cut C2. Notice this technique is different
from the reconvergent-path consideration before in Section 4.2.

Figure 5: Algorithm of pick_cut

All of the local adjustment techniques are implemented in the
subroutine pick_cut. Its high-level description is shown in Figure
5. share_no is the number of shared inputs of a cut C with
existing LUTs. The new cost is the old cost divided by share_no.
When share_no is 1, we set it as 1.15 (obtained by empirical
study) to count in the sharing effect. The direct effect of sharing
an input with another LUT is that the portion of area from that
input can be treated as ignorable for the target cut. Division
achieves this purpose by weighing each shared input with the
same amount of cost savings. It is a local operation concentrating
on edge reduction. We use the term SlackC to count the slack
distribution effect. Symbol is 0.3 in our case. The cost
adjustment by cut probing is done in subroutine cut_probing.

Overall, local cost adjustment plays an important role in our
mapping. We find that the combination of global cost estimation
from cut enumeration and local cost adjustment from cut selection

works greatly to reduce overall node duplications and save area.
This combination is able to capture the optimization objective in a
global fashion and yet maintain the best features of cuts according
to its own virtues locally. In addition, ICS helps to weave
everything together. It builds a new set of solution S based on the
previously obtained intelligence, and is able to further improve
the quality of results.

5. EXPERIMENTAL RESULTS
DAOmap is implemented using C language within the UCLA
RASP system [25]. We first show the details of the comparison
results between DAOmap and CutMap in terms of LUT counts
and run-time using both MCNC benchmarks and industrial
benchmarks. Then we will present some analysis for the effects of
the various techniques we apply. This analysis helps us to better
understand what factors are the most important to determine a
good mapping solution under timing constraints. It also helps
researchers in general to understand the impact of optimization
techniques from both global and local optimization perspectives.
In addition, it shows how learned intelligence can help to obtain
better solutions under the iterative mapping paradigm.

5.1 Comparison Results with CutMap
Both DAOmap and CutMap are run on a 750 MHz SunBlade
1000 Solaris machine. We first collect the data by using the 20
largest MCNC benchmarks. Table 1 shows that DAOmap is
16.02% better than CutMap in terms of LUT counts on average,
and runs 24.2X faster when both are mapped with 5-LUT. The
mapping depth for each benchmark is the same for DAOmap and
CutMap, so it is not shown. We also map with 4-LUT and 6-LUT.
Using 4-LUT, DAOmap is 13.98% better on area and 13.2X
faster. Using 6-LUT, DAOmap is 12.44% better on area and 4.7X
faster. In this case, the run-time reduction is smaller because the
number of cuts generated per node is relatively large when K = 6
(Section 3.2). As explained before, when K is large, cut-pruning
can be applied to reduce the number of cuts, and this has proven
to be very effective to reduce run-time in [6]. This will be
considered in our future work. Nonetheless, when K is small, the
number of cuts per node is a small constant in our algorithm. This
offers a significant improvement compared to the complexity of
CutMap. CutMap’s worst complexity is O(2Kmn K/2 +1) [21],
where n is the number of the nodes in the network, and m is the
number of edges in the network. CutMap uses a network flow
computation to generate cuts. Although it does not need to
generate all the cuts rooted on a node, the computation is
considerably more expensive per single-cut generation when
compared to that of cut enumeration. We would like to mention
that CutMap can be run with a switch ‘–x’, which will carry out
depth relaxation on the non-critical paths. It can improve
CutMap’s mapping area but incur longer run-time. With this
switch on, DAOmap is 11.62%, 14.76%, and 11.13% better on
area, and 57.7X, 38.7X, and 10.1X faster on run-time than
CutMap for 4-LUT, 5-LUT and 6-LUT mapping respectively.
Notice that we show the results directly after mapping for both
algorithms. People can run a postprocessing procedure, such as a
predecessor packing algorithm after the initial mapping. We try a
powerful packing procedure, mpack (available in the RASP
package). It can further improve CutMap’s area results by 3-5%
on average for various K values. Interestingly, it does not improve
DAOmap’s results much - only 1% on average. Since packing is
not the research goal of this work, we omit the detailed data here.

algorithm pick_cut
input: target node v, output: LUTv.
if v is critical, return the cut that provides Av;
best_cost = ;
for each timing_feasible cut C on v do
 costC := AC;
 share_no := number of shared input nodes of C;
 if share_no = 0 then
 share_no := 1;
 else-if share_no = 1 then
 share_no := 1.15;
 end-if
 costC := costC / share_no;
 costC := costC SlackC;
 costC := cut_probing(C, costC);
 if (best_cost > costC) then
 best_cost := costC;
 LUTv := C;
 end-if
end-for
output LUTv;

757

We also run DAOmap and CutMap on six large industrial
benchmarks, which are provided to us under non-disclosure
agreements. Table 2 shows the results (no –x switch for CutMap
and no packing for both). For two of the benchmarks, CutMap
cannot finish mapping after 10 hours. We can observe that
DAOmap obtains better results consistently. Especially, the run-
time improvement is close to two orders even without counting
the two cases where CutMap drags on. This shows the efficiency
of the cut-enumeration-based algorithm and its good scaling
feature toward million-gate FPGA designs.

5.2 Impact of Various Techniques
To show the effectiveness of our mapping algorithm and provide
some insights on the most important factors for area minimization,
we carry out experiments to evaluate individual techniques
presented in this paper. Table 3 shows the results. 7 Each
technique is taken out of the mapping procedure individually to
assess how the quality of result drops compared to the flow where
every technique is included. The bigger the percentage drops, the
more effective the technique is for area reduction.
The important factors are input sharing, min-cost propagation,
global cost adjustment, and ICS. Input sharing proves to be the
most important technique to reduce area because it reduces the
number of edges and node duplications significantly. The min-
cost propagation is trying to evaluate how accurate our cost
estimation model is in general. Formula (4) shows that Av is the
cost of the cut that has the minimum cost among all the cuts in Xv.

7 The percentages in the table and figure in this section are based on the

mapping results using 5-LUT across the 20 largest MCNC benchmarks.

Table 2: DAOmap vs. CutMap on large industrial
benchmarks using 5-LUT

If we remove this operation, and Av is just the cost from the first
cut that offers the minimum arrival time Arrv, and we keep
everything else the same, we observe that the quality of result
drops by 4.35%. This indicates that our cost estimation through
min-cost propagation is working well overall, so it has a large
influence on the mapping result. Global duplication cost
adjustment offers the next largest gain. It shows how important it
is to estimate the additional cost due to potential node
duplications. The globally adjusted cost is closer to reality and
makes a positive impact for cut selection. ICS offers considerable
gain and shows the effectiveness of the concept of iterative
improvement. Slack distribution offers some observable help.
The cost function evaluation is done against a flow that treats the
cost of each cut as UC = 1. Surprisingly, our sophisticated cost
function does not offer much help (only 0.27%). This is counter-
intuitive because we show that a cut can be completely different
in every aspect from another cut. We have tried other cost
functions, and the impact is similar if not worse. Since the area is
propagated from PIs, we believe our area model naturally prefers
cuts that cover more nodes because the overall estimated area will
be smaller that way even when we count each cut as having one
unit area. Nonetheless, our cost function considers other factors
and tries to augment the good features of the area estimation
model. We believe this cost function offers valuable insights for
technology mapping in general. Cut probing also provides a
limited gain. We think its gain may be shadowed by the strong
influences of other techniques because cut probing usually does
not change the cost of a cut significantly. Cut probing itself offers
a neat way to take advantage of learned intelligence and the
characteristics of cut-enumeration-based method. The idea can be
extended into other optimization fields that use cut-enumeration
technique as a framework, such as pattern generation that is
applied in many VLSI optimization areas.

Table 3: Individual technique evaluation

 CutMap DAOmap Comparison
Bench
marks

LUT
No.

Run
Time (s)

LUT
No.

Run
Time (s)

LUT
(Reduce)

Run Time
(Improve)

alu4 1233 17 1065 2 -13.6% 8.5
apex2 1578 78 1352 2 -14.3% 39.0
apex4 1153 59 931 2 -19.3% 29.5
bigkey 1465 8 1245 2 -15.0% 4.0
clma 6345 888 5405 25 -14.8% 35.5
des 1075 6 965 2 -10.2% 3.0
diffeq 990 14 817 2 -17.5% 7.0
dsip 908 4 686 1 -24.4% 4.0
elliptic 2556 102 1965 8 -23.1% 12.8
ex1010 4181 395 3567 14 -14.7% 28.2
ex5p 870 125 778 2 -10.6% 62.5
frisc 2398 242 1999 8 -16.6% 30.3
misex3 1141 33 980 2 -14.1% 16.5
pdc 3757 288 3222 15 -14.2% 19.2
s298 1649 941 1257 7 -23.8% 134.4
s38417 4437 248 3819 16 -13.9% 15.5
s38584 3757 27 2982 79 -20.6% 0.3
seq 1414 34 1188 2 -16.0% 17.0
spla 3278 154 2734 13 -16.6% 11.8
tseng 759 5 706 1 -7.0% 5.0
Ave. -16.02% 24.2X

Table 1: LUT number and run-time comparisons of DAOmap vs.
CutMap using 5-LUT on the 20 largest MCNC benchmarks

Techniques % dropped
Cut Enumeration
Min-cost propagation 4.35%
Global cost adjustment 2.68%
Cut Selection
Input sharing 4.55%
Iterative cut selection (ICS) 2.04%
Slack distribution 0.86%
Cut probing 0.25%
Cost Function 0.27%

 CutMap DAOmap Comparison
Bench
marks LUT No.

Run
Time (s) LUT No.

Run
Time (s)

LUT
(Reduce)

Run Time
(Improve)

big1 9928 301 9169 93 -7.6% 3.2
big2 - >10H. 14625 708 - -
big3 10005 28926 9031 106 -9.7% 272.9
big4 11800 583 9364 156 -20.6% 3.7
big5 - >10H. 32230 3377 - -
big6 39000 14437 32028 402 -17.9% 35.9
Ave. -13.98% 78.9X

758

Next, we study how ICS influences mapping results alone. Figure
6 shows the details. For mapping with a single iteration only (the
base case), we first go through the netlist and set all the nodes
whose fanout numbers are greater than 3, as tentative LUT roots
(like a manual profiling used in [19]). Then we go through the
single iteration of the cut selection procedure. There is no other
profiling information involved. For other iteration numbers, the
full-blown ICS procedure is activated. The interesting observation
is that when the iteration number is more than 3, ICS actually
starts to hurt the final mapping results slightly. We believe this is
because that the profiling procedure accumulatively stores
information through the iterations, and this eventually exceeds
what the current iteration can take advantage of. In other words,
the intelligence learned previously starts to become vague. The
iteration number of 3 offers the best result, and it is used in all of
the DAOmap results.

Figure 6: Area improvement along mapping iterations

We would like to emphasize that we also evaluate the individual
techniques using the industrial benchmarks. Similar conclusions
are drawn as those shown in Table 3. This indicates that our area
optimization techniques are general enough to target circuits with
different sizes and various characteristics.

6. CONCLUSION
In this paper we presented a technology mapping algorithm,
DAOmap, for FPGA architectures to minimize chip area under
timing constraints. Our approach closely monitored various node
duplication scenarios during both the cut-enumeration stage and
the cut-selection stage. We designed novel heuristics that captured
the mapping cost accurately with consideration of both local and
global optimization information. Our work frame offered more
flexibility and excellent efficiency for FPGA area optimization
and guaranteed optimal mapping depth under the unit delay model.
We evaluated these novel techniques in a systematic way and
provided insights on the most important factors for technology
mapping under the cut-enumeration paradigm. Experimental
results showed that DAOmap produced significant quality and
run-time improvements. Compared to the state-of-the-art depth-
optimal, area minimization mapping algorithm CutMap, DAOmap
is 16.02% better on area and runs 24.2X faster on average when
both algorithms mapped to FPGAs using 5-LUT. Our future work
will add cut-pruning techniques for larger K values and evaluate
how much this will influence mapping results and run-time.

Acknowledgement
This work is partially supported by the California MICRO
program and the NSF Grant CCR-0306682.

REFERENCES
[1] R. J. Francis, et al., “Chortle-crf: Fast Technology Mapping for

Lookup Table-Based FPGAs,” DAC, 1991.
[2] R. Murgai, et al., “Improved Logic Synthesis Algorithms for Table

Look Up Architectures,” ICCAD, Nov., 1991.
[3] K. Karplus, “Xmap: A Technology Mapper for Table-lookup Field-

Programmable Gate Arrays,” DAC, 1991.
[4] N.-S. Woo, “A Heuristic Method for FPGA Technology Mapping

Based on the Edge Visibility,” DAC, 1991.
[5] P. Sawkar and D. Thomas, “Technology Mapping for Table-Look-

Up Based Field Programmable Gate Arrays,” ACM/SIGDA
Workshop on Field Programmable Gate Arrays, Feb. 1992.

[6] J. Cong, C. Wu, and E. Ding, “Cut Ranking and Pruning: Enabling A
General and Efficient FPGA Mapping Solution,” FPGA, Feb. 1999.

[7] A. Farrahi and M. Sarrafzadeh, “Complexity of the Lookup-Table
Minimization Problem for FPGA Technology Mapping,” IEEE
TCAD, Vol. 13, No. 11, pp. 1319-1332, Nov. 1994.

[8] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping for
lookup table-based FPGA’s for performance,” ICCAD, Nov. 1991.

[9] R. Murgai, et al., “Performance Directed Synthesis for Table Look
Up Programmable Gate Arrays,” ICCAD, Nov., 1991.

[10] K. C. Chen, et al., “DAG-Map: Graph-based FPGA Technology
Mapping for Delay Optimization,” IEEE Design and Test of
Computers, vol. 9, no. 3, pp. 7-20, Sep., 1992.

[11] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm
for Delay Optimization in Lookup-Table Based FPGA Designs,”
ICCAD, Nov. 1992.

[12] H. Yang and D. F. Wong, “Edge-map: Optimal Performance Driven
Technology Mapping for Iterative LUT based FPGA Designs,”
ICCAD, Nov. 1994.

[13] P. Pan and C.L. Liu, “Optimal Clock Period FPGA Technology
Mapping for Sequential Circuits,” DAC, June 1996.

[14] A.H. Farrahi and M. Sarrafzadeh, “FPGA Technology Mapping for
Power Minimization,” Proc. of Intl. Workshop in Field
Programmable Logic and Applications, 1994.

[15] J. Anderson and F. N. Najm, “Power-Aware Technology Mapping
for LUT-Based FPGAs,” IEEE Intl. Conf. on Field-Programmable
Technology, 2002.

[16] Z-H. Wang et al., “Power Minimization in LUT-Based FPGA
Technology Mapping,” ASPDAC, 2001.

[17] H. Li, W. Mak, and S. Katkoori, “Efficient LUT-Based FPGA
Technology Mapping for Power Minimization,” ASPDAC, 2003.

[18] J. Lamoureux and S.J.E. Wilton, “On the Interaction between Power-
Aware CAD Algorithms for FPGAs,” IEEE/ACM International
Conference on Computer Aided Design, 2003.

[19] D. Chen, et al., “Low-Power Technology Mapping for FPGA
Architectures with Dual Supply Voltages,” FPGA, Feb. 2004.

[20] J. Cong and Y. Ding, “On Area/Depth Trade-off in LUT-Based
FPGA Technology Mapping,” IEEE Trans. on VLSI Systems, vol. 2,
no. 2, pp. 137-148, June 1994.

[21] J. Cong and Y. Hwang, “Simultaneous Depth and Area Minimization
in LUT-Based FPGA Mapping,” FPGA, Feb. 1995.

[22] C. Legl, B. Wurth, and K. Eckl, “A Boolean Approach to
Performance-Directed Technology Mapping for LUT-Based FPGA
Designs,” DAC, June 1996.

[23] J. Cong and Y. Ding, “Beyond the Combinatorial Limit in Depth
Minimization for LUT-Based FPGA Designs,” ICCAD, Nov. 1993.

[24] S-C Chang, M. Marek-Sodowska, and T. Hwang, “Technology
Mapping for TLU FPGA Based on Decomposition of Binary
Decision Diagrams,” IEEE Transactions on CAD, Vol. 15, No. 10,
pp. 1226-1236, Oct. 1996.

[25] UCLA RASP FPGA/CPLD Technology Mapping & Synthesis
Package, http://ballade.cs.ucla.edu/software_release/rasp/htdocs/ .

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1 2 3 4 5 6
Mapping Iterations

Im
pr

ov
em

en
t %

759

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

