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ABSTRACT 
In this paper we study the technology mapping problem for FPGA 
architectures to minimize chip area, or the total number of lookup 
tables (LUTs) of the mapped design, under the chip performance 
constraint. This is a well-studied topic and a very difficult task 
(NP-hard). The contributions of this paper are as follows: (i) we 
consider the potential node duplications during the cut 
enumeration/generation procedure so the mapping costs encoded 
in the cuts drive the area-optimization objective more effectively; 
(ii) after the timing constraint is determined, we will relax the 
non-critical paths by searching the solution space considering 
both local and global optimality information to minimize mapping 
area; (iii) an iterative cut selection procedure is carried out that 
further explores and perturbs the solution space to improve 
solution quality. We guarantee optimal mapping depth under the 
unit delay model. Experimental results show that our mapping 
algorithm, named DAOmap, produces significant quality and run-
time improvements. Compared to the state-of-the-art depth-
optimal, area minimization mapping algorithm CutMap [21], 
DAOmap is 16.02% better on area and runs 24.2X faster on 
average when both algorithms are mapping to FPGAs using LUTs 
of five inputs. LUTs of other inputs are also used for comparisons. 

1. INTRODUCTION 
The Field Programmable Gate Array (FPGA) has become 
increasingly popular throughout the past decade. The cost 
pressures, changing requirements, and short design windows favor 
more and more programmable chip solutions. Generally, an 
FPGA chip consists of programmable logic blocks, programmable 
interconnections, and programmable I/O pads. The LUT-based 
FPGA architecture dominates the existing programmable chip 
industry, in which the basic programmable logic element is a K-
input lookup table. A K-input LUT (K-LUT) can implement any 
Boolean functions of up to K variables. FPGA technology 
mapping converts a given Boolean circuit into a functionally 
equivalent network comprised only of LUTs. This phase is 
followed by a placement and routing phase to realize an 
implementation of the mapped network. As the routing resources 
in FPGAs are prefabricated and relatively limited compared to 
ASIC technologies, the technology mapping process has a 
significant impact on the area, performance and power of the 
implemented circuit.  

Previous technology mapping algorithms for LUT-based FPGA 
designs can be roughly divided into four categories according to 
their optimization objectives.  

 Area Minimization. These algorithms include Chortle-crf 
[1], MIS-pga [2], XMap [3], VisMap [4], TechMap [5], and 
Praetor [6]. It is an NP-hard problem to solve for general 
circuits as DAG’s (directed acyclic graphs) [7].  

 Delay Minimization. These algorithms include Chortle-d [8], 
MIS-pga-delay [9], TechMap-L [5], DAG-map [10], 
FlowMap [11], EdgeMap [12], and SeqMapII [13]. FlowMap 
is the first algorithm to guarantee a depth-optimal mapping 
solution in polynomial time under the unit delay model. 
EdgeMap presents a non-trivial generalization of FlowMap 
and achieves optimal delay using the general delay model, 
where each interconnection edge has a weight representing 
the delay of the interconnection.  

 Power Minimization. These algorithms include mapping 
algorithms in [14] and [15], PowerMap [16], PowerMinMap 
[17], Emap [18], and DVmap [19]. Min-power mapping is 
also a NP-hard problem to solve [14].  

 Delay and Area Minimization. The algorithms in this 
category are particularly interesting because they minimize 
both delay and area of the FPGA design. The major works 
include FlowMap-r [20] and CutMap [21], where no logic 
resynthesis/restructuring is performed. Other works, such as 
BoolMap [22], FlowSYN [23] and the work in [24], consider 
logic resynthesis during mapping.  

Techniques used in the above-mentioned mapping algorithms 
include bin packing, dynamic programming, greedy algorithm, 
binate covering, network flow algorithm, BDD-based logic 
optimization, and cut-enumeration algorithm, etc. For FlowMap-r 
and CutMap, both algorithms target minimizing area while 
maintaining optimal mapping depth. FlowMap-r started with the 
depth-optimal mapping solution produced by FlowMap and then 
applied depth-relaxation techniques such as remapping and node 
packing for the non-critical paths. It reported better area than 
FlowMap, and better area and mapping depth than MIS-pga-delay 
and Chortle-d. CutMap combined depth and area minimization 
during the mapping process by computing min-cost min-height K-
feasible cuts for critical nodes and computing min-cost K-feasible 
cuts for non-critical nodes using the network flow method. It 
reported better area than FlowMap-r with the same mapping depth 
and similar run-time. CutMap is widely used in the academic 
community for various FPGA evaluation and design flows, and 
has been considered the state-of-the-art FPGA technology 
mapping algorithm for depth-optimal mapping solutions. 

In this paper we present a new mapping algorithm, DAOmap, for 
Depth-optimal Area Optimization of FPGA designs. We adopt a 
cut-enumeration-based method that consists of cut generation and 
cut selection. Cut generation traverses the network from primary 
inputs (PIs) to primary outputs (POs), and combines subcuts on 
the fanin nodes of the target node to generate all the cuts on the 
target node (each cut represents one possible LUT implementation 
rooted on the target node). After all the cuts are generated, we 
traverse the network from POs to PIs and select cuts to produce 
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the LUT mapping result. The difficulty lies in the way we select a 
subset of all the cuts to cover the whole circuit. A binate-covering 
algorithm will give an optimal solution but with exponential 
complexity. To design effective heuristics to select cuts, we have 
to consider the global view of the area optimization because early 
selections of cuts will have a strong impact on the future 
selections of cuts during the traversal from POs to PIs. Through 
the mapping procedure, node duplication cannot be avoided if the 
optimal mapping depth is to be guaranteed. Actually, how to 
handle the different duplication scenarios makes the min-area 
FPGA mapping problem NP-hard. In this work we offer three 
novel approaches to effectively model and control node 
duplications and reduce area through the entire mapping process. 
First, we consider the potential duplications during the cut 
generation procedure so the mapping solutions encoded in the 
cuts consider duplication costs. This will help the cut selection 
procedure to make the right decisions to cover the circuit with less 
node duplications from a global optimization point of view. 
Second, after the timing constraint is determined (the longest 
optimal mapping delay of the network), we will relax the non-
critical paths by searching the solution space considering both 
local and global optimality information to minimize the mapping 
area. Third, we carry out an iterative cut selection procedure that 
further explores and perturbs the solution space to improve 
solution quality. Experimental results show that our algorithm 
produces significant quality and run-time improvements over 
CutMap across a series of MCNC benchmarks and a set of 
industrial benchmarks. 

The rest of this paper is organized as follows. In Section 2 we 
provide some basic definitions and formulate the depth-optimal 
area optimization problem for FPGA. Section 3 gives a review of 
the cut-enumeration-based mapping algorithm. Section 4 shows 
the detailed description of our enhancement of cut enumeration in 
terms of cost estimation and other novel techniques to minimize 
area. Section 5 presents experimental results, and Section 6 
concludes this paper. 

2. DEFINITIONS AND PROBLEM FORMULATION 
A Boolean network can be represented by a DAG where each 
node represents a logic gate, and a directed edge (i, j) exists if the 
output of gate i is an input of gate j. A PI node has no incoming 
edges and a PO node has no outgoing edges. We treat the flip-flop 
outputs as special PIs and the flip-flop inputs as special POs, and 
make no distinction in terms of notation. We use input(v) to 
denote the set of nodes which are fanins of gate v. Given a 
Boolean network N, we use Ov to denote a cone rooted on node v 
in N. Ov is a sub-network of N consisting of v and some of its 
predecessors, such that for any node w  Ov, there is a path from 
w to v that lies entirely in Ov. The maximum cone of v, consisting 
of all the PI predecessors of v, is called a fanin cone of v, denoted 
as Fv. We use input(Ov) to denote the set of distinct nodes outside 
Ov which supply inputs to the gates in Ov. A cut is a partitioning 
(X, X’) of a cone Ov such that X’ is a cone of v. The cut-set of the 
cut, denoted V(X, X’), consists of the inputs of cone X’, or 
input(X’). A cut is K-feasible if X’ is a K-feasible cone. In other 
words, the cardinality of the cut-set is  K. We also call the 
cardinality of the cut-set the cutsize of the cut. The level of a node 
v is the length of the longest path from any PI node to v. The level 
of a PI node is zero. The depth of a network is the largest node 

level in the network. A Boolean network is l-bounded if |input(v)| 
 l for each node v.  

Because the exact layout information is not available during the 
technology mapping stage, we model each interconnection edge 
in the Boolean network as having a constant delay. Therefore, we 
approximate the largest delay of the mapped circuit with a unit 
delay model, where each LUT on the critical path (the path with 
longest delay after mapping) contributes one unit delay. The 
largest optimal delay of the mapped circuit is also called the 
optimal mapping depth of the circuit. 

The mapping problem for depth-optimal area optimization of 
FPGA is to cover a given l-bounded Boolean network with K-
feasible cones, or equivalently, K-LUTs in such a way that the 
total LUT count after mapping is minimized while the optimal 
mapping depth is guaranteed under the unit delay model. Our 
initial networks are all 2-bounded and K can be 4, 5 or 6 in this 
study. Therefore, our final mapping solution is a DAG in which 
each node is a K-LUT and the edge (Ou, Ov) exists if u is in 
input(Ov). Our algorithm will work for any reasonable K values. 

3. REVIEW OF CUT ENUMERATION 
3.1 Cut Enumeration with Delay and Area 
Propagation 
Cut enumeration is an effective method for finding all the 
possible ways of the K-feasible cones rooted on a node [6, 19, 20]. 
A cut rooted on node v can be represented using a product term 
(or a p-term) of the variables associated with the nodes in the cut-
set V(Xv, Xv’). A set of cuts can be represented by a sum-of-
product expression using the corresponding p-terms. Cut 
enumeration is guided by the following theorem [6]: 

 
where f(K, v) represents all the K-feasible cuts rooted at node v, 
operator + is Boolean OR, and K  is Boolean AND on its 
operands, but filtering out all the resulting p-terms with more than 
K variables. We will use a simple example to illustrate the cut- 
enumeration process. We use {s1, …, sn} to represent a cut with 
cut-set s1, …, sn, where si is either an internal signal or a PI. In 
Figure 1, all the cuts1  rooted on node s can be generated by 
combining the cuts rooted on its fanin nodes q and r (refer to 
Formula (1)). We call the cuts on the fanin nodes subcuts. 
Combining C1 with C2 will form a new cut Cs = {m, n, o, p} 
rooted on s (shaded area). The cut-enumeration process will 
combine each subcut (or the fanin node itself) on one of the fanin 
nodes with each counterpart from the other fanin node to form 
new cuts for the root node. If the input of the new cut exceeds K, 
the cut is discarded. During this enumeration process, the arrival 
time and mapping cost/area for each cut can be calculated (we use 
the words cost and area interchangeably). Subsequently, the 
arrival time and area for the root node can be obtained as well.  

The arrival time of PI nodes is 0. The arrival time will propagate 
through the cuts from PIs to POs, where each cut (LUT) on the 
paths represents one unit delay.  To get the minimum arrival time 
for a node v, we have 
                                                                 
1 We will use the term cut, and its symbol C, to represent the K-feasible 

cone that is a result of this cut for simplicity purpose. 
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        Arrv = MIN    [MAX (Arri) + 1]                (2) 
 

where C represents every cut generated for v through cut 
enumeration. Here, the arrival time of C is MAX(Arri)  + 1, where 
Arri is the minimum arrival time on input signal i of C. We call 
the cut C that provides Arrv as MCv. Notice that there can be more 
than one MCv for node v, and all the MCv’s form a set Xv. Thus, 
the minimum arrival time for each node in the network is 
propagated from the PIs through cuts and iteratively calculated 
until all the POs are reached by a topological order. The longest 
minimum arrival time of the POs is the minimum arrival time of 
the circuit, i.e., the optimal mapping depth of the circuit.  

Similarly, the area can be propagated along the process of cut 
enumeration. The area for a cut C is calculated as follows: 

 AC =  [Ai / f(i)] + UC   (3) 
 

where UC is the area contributed by cut C itself (to be covered 
later), Ai is the estimated area of a cone rooted on signal i, and f(i) 
is the fanout number of signal i. Therefore, the area on i is shared 
and distributed into other fanout nodes of i. Once the outputs of i 
reconverge, the total area on i will be summed up. This process is 
trying to estimate the area more accurately, considering the 
effects of gate fanouts [6]. The cut that gives the best AC on node 
v is the effective cost of v. The area propagation in [6] was based 
on sub-networks, such as MFFCs (maximum fanout free cones2), 
where nodes outside of the target MFFC did not contribute area to 
AC, and UC = 1 always. It was area-oriented and did not guarantee 
optimal mapping depth. This area estimation model would 
represent the actual mapping area for duplication-free mapping 
based on MFFCs and would be a lower bound of the minimum 
mapped area if node duplication was allowed [6].  We will show 
that this conclusion on the lower bound no longer holds with the 
optimal mapping depth constraint in Section 4. 

3.2 Complexity Analysis 
The number of cuts on a node for the worst case is O(nK), where n 
is the total number of nodes in the network. However, when LUT 
input K is small, the number of cuts generated for each node v is a 
small constant because all the cuts are usually generated within a 
small cone Ov contained in Fv. Figure 2 shows this situation, 

                                                                 
2 For any node u  root node v, if u is contained in the cone, all of the 

outputs of u are also in the cone. On the other hand, if all of the outputs 
of u are in the cone, then u is also in the cone [20].  

where the vertical coordinate shows the number of cuts generated 
for each node averaging over the 20 largest MCNC benchmarks 
along the value of K. This implies that the complexity of cut-
enumeration algorithm is practically linear to n for small K. 
Nonetheless, the number of cuts can be large when K  7. For 
large K, we can apply cut-pruning techniques to control the 
number of cuts to be generated. Since this is not the focus of this 
work, interested readers are referred to [6]. 

4. ALGORITHM DESCRIPTION 
Based on the cut-enumeration framework, we first present our 
enhancements in terms of area propagation (Section 4.1), cost 
function (Section 4.2), and global duplication cost adjustment 
(Section 4.3). Then we present a series of novel techniques to 
guide the cut selection procedure (Section 4.4). 

4.1 Area Propagation under Timing Constraints 
To guarantee optimal mapping depth, we need to propagate the 
estimated area together with the propagation process of the 
minimum arrival time. Thus, Ai of Formula (3) in our case will be 
the best propagated area in the fanin cone Fi. Then, after we have 
calculated the area for each cut rooted on node v, the best 
propagated area in the fanin cone Fv is as follows: 

 Av = MIN (AC)    (4) 
 

Av represents the best achievable mapping area up to node v under 
the constraint that it also generates the optimal mapping delay up 
to the point of v. Through Formula (3) and (4), the areas of the 
cuts and nodes are iteratively calculated until the enumeration 
process reaches all the POs. Later on, during the cut selection 
stage when we know that v is not on a critical path, a cut C  Xv 
may be picked as long as it will not violate the timing constraint 
and will produce a better area in the same time. Thus, Av 
represents an area estimation guarded by a timing constraint that 
usually is overstressed unless v is on a critical path. Nonetheless, 
we have to stick to Av during cut enumeration because we do not 
know whether v is a critical node or not until the entire cut- 
enumeration process is completed. Therefore, v is a PO (Av) is no 
longer a lower bound on the minimum area of all mapping 
solutions under the optimal mapping depth constraint.  

4.2 Cost Function for a Cut 
Although each cut represents one LUT, using a fixed unit area for 
a cut will not accurately reflect the property of the cut. Figure 3 
illustrates this situation. Although both cut C1 and cut C2 have a 
cutsize of 2, C2 is obviously a better cut because it covers many 
more nodes than C1, thus implementing more logic. We also 
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observe that C2 covers two sets of reconvergent paths completely, 
which is the reason it can cover six nodes with a small cutsize. 
Therefore, the number of all the reconvergent paths covered by a 
cut is also in the cost function.3 The third factor we consider is the 
fanout number of the root node. The larger this fanout number, 
the larger the possibility that picking this cut will reduce potential 
duplications. For example, node 5 has four fanouts. Picking cut C2 
or C3 will cause node 5 to be duplicated multiple times when each 
of its other fanout nodes (on dashed lines) is mapped. However, 
picking a cut rooted on node 5 itself will reduce these potential 
duplications. Finally, cuts of different cutsizes have different 
areas. The number of edges in a mapped network is on the order 
of O(Kn), where n is the number of LUTs in the network. If the 
number of edges is minimized, it naturally minimizes the number 
of LUTs as well. This indicates that always preferring LUTs with 
large input numbers will hurt the area from the overall picture. 
We use the following formula to calculate the area of a cut C: 

        
))(( CC

C
C

RvfN
IU             (5) 

where IC is the cutsize of C, NC is the number of nodes covered by 
C, f(v) is fanout number of the root node v, RC is the number of 
reconvergent paths completely covered by C.  and  are positive 
constants (we set  = 0.8 and  = 0.4). The smaller the value of 
UC, the better the cost of C is. 

4.3 Global Duplication Cost Adjustment 
It is intuitive that the quality of the mapping result is directly 
related to the accuracy of area estimation. Although the area 
model presented in the previous section no longer represents a 
lower bound of the mapped area, it has obvious advantages. Using 
the example shown in Figure 1, if Cs is used to implement an LUT 
in the final mapping and there is no duplication involved, the area 
rooted on node s, As, should be equally shared by fanouts t and u. 
Otherwise, As will be falsely double-counted when it is 
propagated to both t and u later. However, this estimation has its 
downside. Suppose the final mapping result uses Ct and Cu 
(Figure 1), then the estimation is no longer accurate because Cu 
treats node s as not duplicated4 but s is actually duplicated in Ct. 
Thus, the area model can under-estimate the actual mapping area. 

                                                                 
3 Starting from the root node, do a breadth-first search toward the cut-set 

nodes to find the reconvergent nodes, such as node 3 in the example. 
4 The area As is divided by 2 and propagated to Cu.  

To address this issue during cut enumeration, we adjust the 
estimated area according to the potential node duplication 
scenarios. These can be captured by checking the subcuts that are 
with or without multiple fanouts. In Figure 1, when subcuts C1 
and C2 are combined to form Cs, we observe that there will not be 
any node duplications for node q because it is a single-fanout 
node. However, there will be a duplicated node for node r since it 
has another fanout (dashed line) that goes out of cut Cs. We 
change Formula (3) to the following: 

 AC    =  [Ai / f(i)] + UC + Pf1 + Pf2                 (6)
  

where f1 and f2 are the two fanin nodes of the root node v, and C is 
formed by the two subcuts Cf1 and Cf2 rooted on f1 and f2 
respectively. Pf1 and Pf2 are the duplication costs of the subcuts, 
which are defined respectively as follows:  

      
otherwise            0

1   if     f(i)I
N

P C
Cf

f
  (7) 

where C is defined as above, Cf is the subcut on either f1 or f2, and 
f(i) is the fanout number of corresponding f1 or f2. NCf is the 
number of nodes Cf contains, and IC is the cutsize of C. The 
intuition is that the larger NCf is, the larger the possibility that 
more nodes in Cf will be duplicated, thus the larger duplication 
cost it produces. IC is treated as a normalizing factor because the 
larger IC is, the more likely it is that C will contain more nodes. 
This, in a way, alleviates the duplication cost experienced in the 
local area of the cut, i.e., in Cf. Notice, once AC is adjusted it stays 
that way, and the related node cost will also consequently be 
adjusted. Meanwhile, the new cost will propagate to the cuts and 
nodes on the fanouts. In Figure 1, once the costs of Cs and As are 
adjusted, they will start to influence the costs of Cu and Au, etc. 
Thus, this cost adjustment has a global impact for the area 
propagation process and makes the area estimation more closely 
related to the actual mapping implementation in a global point of 
view. This will improve the quality of the final mapping, as 
shown in the section of experimental results.  

4.4 Cut Selection 
After cut enumeration, we obtain the optimal mapping depth of 
the network. This mapping depth will be set as the required time 
for the circuit. The critical path(s) is the path that leads to such a 
mapping depth, and the nodes on non-critical paths will have the 
luxury of selecting different cuts that offer smaller costs with a 
relaxed delay value as long as the required time of the circuit is 
maintained. This is a standard technique for area minimization 
under timing constraints. As mentioned in the Introduction section, 
we will carry out a topological order traversal starting from POs, 
then the inputs of the generated LUTs are iteratively mapped. The 
procedure continues until all the PIs are reached.  

As mentioned before, the difficulty of mapping lies in the method 
of selecting cuts to cover the whole circuit to minimize the total 
area. We cannot greedily pick the cuts with the smallest costs 
calculated through the cut-enumeration process, because that will 
forfeit some important optimization factors in terms of reducing 
node duplications locally. Therefore, we design several novel 
heuristics that will search the solution space, guided by both local 
and global optimization information to increase area savings. We 
also carry out an iterative cut selection procedure that further 
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explores and perturbs the solution space to improve solution 
quality. The iterative cut selection procedure will be introduced 
first because it is in the outer loop of the optimization cycle. 

4.4.1 Iterative Cut Selection Procedure 
We design an iterative cut selection (ICS) procedure that produces 
a final mapping result based on previous cut selection iterations. 
A previous iteration can be considered as a tentative mapping that 
provides guidance for the next iteration. This iterative procedure 
offers extra opportunities to reduce duplications (as shown later). 
It is intertwined with local cost adjustment techniques (Section 
4.4.2). Figure 4 provides a high-level description of the algorithm. 

 Figure 4: Algorithm of iterative cut selection (ICS) 

The early iterations will offer profiling information for the 
subsequent iteration. The profiling information includes the LUT 
roots (updated through list L), which were the selected LUT root 
nodes (LUT outputs) for the LUTv’s in the mapping solution S of 
the previous iteration. It also includes the list of nodes that were 
duplicated in the previous iteration. A duplicated node can be 
found when more than one LUT is covering the node. The 
profiling information is collected in update_profiling_info. 
Subroutine pick_cut will use the profiling data and some other 
criteria to update the cost of each cut rooted on v for the current 
iteration. update_req_time will update the required times of the 
input nodes of the selected LUTv through the following formula:  

 Reqi = MIN (Reqv  1)               (8)
    

where Reqi is the required time of signal i that may have multiple 
fanout nodes. The required times on the fanouts, Reqv’s, are 
already decided following topological order before finalizing the 
value of Reqi.  

4.4.2 Local Cost Adjustment 
To map a critical node v, only the cut that provides Av (Formula 
(4)) is picked to implement the LUT to guarantee the optimal 
mapping depth. How to select the cuts for the non-critical nodes 
thus becomes the key to reduce mapping area. To increase the 
chance of duplication reduction, we will not directly pick the cut 
with the best cost calculated globally by the cut-enumeration 
process. Instead, the cost of the examined cut will be adjusted 
depending on the characteristics of the cut itself (thus the term 
local). After the cost adjustment, it is possible that another cut 

with an originally unfavorable cost becomes the most favorable to 
map the current node. We will introduce three techniques below. 

Input Sharing. During the cut selection procedure, LUT roots are 
either in list L waiting to be mapped or have been removed from L 
and mapped already. When we try to pick a cut C for a node from 
L, we will check to see if some of the cut-set nodes (input nodes) 
of C are already LUT roots. If this is the case, C will not generate 
as many new LUT roots as other cuts do when those other cuts do 
not have this feature.5 In other words, cut C takes advantage of 
existing resources and does not require new resources. This 
reduces the chances that a newly picked cut will cut into the 
interior territories of existing LUTs. As a result, the input nodes 
are shared among several mapped LUTs, and node duplications 
are reduced. When the ICS procedure is carried out, the current 
mapping iteration also considers the LUT roots generated from 
previous iterations (named as tentative LUT roots). Not all of the 
tentative LUT roots are considered. We only select those roots 
that have strong features, such as those that have a large number 
of fanouts. This indicates that these roots are most likely to be 
kept all the way to the final mapping. 6  The cost of cut C is 
recalculated and significantly reduced according to how many 
inputs it shares from existing LUT roots (both real and tentative). 
Thus, the cut selection is largely influenced by the local settings 
around the target node and its cuts.  

Slack Distribution. We define the slack on a node v as follows: 

 Slackv = Reqv  Arrv   (9) 
When Slackv is greater than 0, it means v is not on the critical path 
so that there is more flexibility to choose a cut C that is not in Xv 
(refer to Section 4.1), as long as the required time propagated 
back to the input nodes of this cut is still larger or equal to the 
minimum arrival times on those nodes. It is easy to see that if C 
uses up all the slacks available on v, there will exist at least one 
path in Fv that will no longer have the flexibility to pick cuts 
outside of Xn, where n is on that path and n  v. So, we want to 
distribute the slacks along the edges of the entire paths to 
encourage more nodes on the paths to have the flexibility to 
search their solution space. We design a simple slack distribution 
technique, which is applied in terms of the adjusted cost. We 
define the slack of a cut C rooted on v as follows: 
 SlackC = Reqv – 1 – MAX (Arri)  (10) 
  
If SlackC < 0, C is not a timing_feasible cut. Choosing it will 
violate the optimal mapping depth constraint, so such a cut will be 
discarded. The larger the SlackC, the better for C in terms of slack 
distribution effects. We then adjust the cost of C accordingly.  
Cut Probing. This technique includes several heuristics that 
examine the characteristics of the target cut C from other angles 
and tries to probe the amount of area gain locally before making 
decisions about cut selection. We again use the example shown in 
Figure 3. First, cut C3 has a nice feature that hasn’t been 
                                                                 
5 Suppose a node w is a cut-set node for both cut Ca rooted on node a and 

cut Cb rooted on b. Ca is picked to implement LUTa, and w is added into 
list L and becomes an LUT root. Later on, when we map b, Cb has an 
advantage because it shares input w with LUTa. 

6 These tentative roots only influence cost adjustment and may or may not 
become the real LUT roots for the current iteration. 

algorithm ICS 
input: network, output: mapping solution S. 
for each iteration do 
     L := list of POs; S := ;  
     req_time(v | v  L) := optimal_mapping_depth; 
     while L   do  
          remove a node v from L; 
          LUTv := pick_cut(v); 
          S := S  { LUTv }; 
          update_profiling_info(LUTv); 
          update_req_time(input(LUTv)); 
          L := L  { input(LUTv) }; 
     end-while 
end-for 
output S; 

i  input(LUTv) for all v 

i  input(C) 
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considered before. It will cause the fanout number of gate 3 to be 
reduced to 1 because C3 covers both fanout nodes of gate 3. We 
thus reduce the cost of C3 by a small constant because the number 
of total edges is reduced by using it. Second, considering the cut-
set nodes and the root node of any cut C, these nodes themselves 
will all become LUT roots if C is picked, so they will have a 
small chance of being duplicated (due to the effect of our strong 
input sharing feature). If these nodes actually were duplicated in 
the previous iterations found by update_profiling_info, it means 
that cut C actually reduces duplications in the current iteration. 
The higher the number of duplicated cut-set nodes was, the more 
cost savings cut C gets. The third probing technique is related to 
the reconvergent paths. In Figure 3, there are two sets of 
reconvergent paths within cut C2. This eliminates the chances of 
gate 1 and gate 3 getting duplicated even though they have 
multiple fanouts. If the previous iterations indicate that these 
gates were indeed duplicated before, we will have extra cost 
savings for choosing cut C2. Notice this technique is different 
from the reconvergent-path consideration before in Section 4.2. 

Figure 5: Algorithm of pick_cut 

All of the local adjustment techniques are implemented in the 
subroutine pick_cut. Its high-level description is shown in Figure 
5. share_no is the number of shared inputs of a cut C with 
existing LUTs. The new cost is the old cost divided by share_no. 
When share_no is 1, we set it as 1.15 (obtained by empirical 
study) to count in the sharing effect. The direct effect of sharing 
an input with another LUT is that the portion of area from that 
input can be treated as ignorable for the target cut. Division 
achieves this purpose by weighing each shared input with the 
same amount of cost savings. It is a local operation concentrating 
on edge reduction. We use the term   SlackC to count the slack 
distribution effect. Symbol  is 0.3 in our case. The cost 
adjustment by cut probing is done in subroutine cut_probing. 

Overall, local cost adjustment plays an important role in our 
mapping. We find that the combination of global cost estimation 
from cut enumeration and local cost adjustment from cut selection 

works greatly to reduce overall node duplications and save area. 
This combination is able to capture the optimization objective in a 
global fashion and yet maintain the best features of cuts according 
to its own virtues locally. In addition, ICS helps to weave 
everything together. It builds a new set of solution S based on the 
previously obtained intelligence, and is able to further improve 
the quality of results.  

5. EXPERIMENTAL RESULTS 
DAOmap is implemented using C language within the UCLA 
RASP system [25]. We first show the details of the comparison 
results between DAOmap and CutMap in terms of LUT counts 
and run-time using both MCNC benchmarks and industrial 
benchmarks. Then we will present some analysis for the effects of 
the various techniques we apply. This analysis helps us to better 
understand what factors are the most important to determine a 
good mapping solution under timing constraints. It also helps 
researchers in general to understand the impact of optimization 
techniques from both global and local optimization perspectives. 
In addition, it shows how learned intelligence can help to obtain 
better solutions under the iterative mapping paradigm.  

5.1 Comparison Results with CutMap  
Both DAOmap and CutMap are run on a 750 MHz SunBlade 
1000 Solaris machine. We first collect the data by using the 20 
largest MCNC benchmarks. Table 1 shows that DAOmap is 
16.02% better than CutMap in terms of LUT counts on average, 
and runs 24.2X faster when both are mapped with 5-LUT. The 
mapping depth for each benchmark is the same for DAOmap and 
CutMap, so it is not shown. We also map with 4-LUT and 6-LUT. 
Using 4-LUT, DAOmap is 13.98% better on area and 13.2X 
faster. Using 6-LUT, DAOmap is 12.44% better on area and 4.7X 
faster. In this case, the run-time reduction is smaller because the 
number of cuts generated per node is relatively large when K = 6 
(Section 3.2). As explained before, when K is large, cut-pruning 
can be applied to reduce the number of cuts, and this has proven 
to be very effective to reduce run-time in [6]. This will be 
considered in our future work. Nonetheless, when K is small, the 
number of cuts per node is a small constant in our algorithm. This 
offers a significant improvement compared to the complexity of 
CutMap. CutMap’s worst complexity is O(2Kmn K/2 +1) [21], 
where n is the number of the nodes in the network, and m is the 
number of edges in the network. CutMap uses a network flow 
computation to generate cuts. Although it does not need to 
generate all the cuts rooted on a node, the computation is 
considerably more expensive per single-cut generation when 
compared to that of cut enumeration. We would like to mention 
that CutMap can be run with a switch ‘–x’, which will carry out 
depth relaxation on the non-critical paths. It can improve 
CutMap’s mapping area but incur longer run-time. With this 
switch on, DAOmap is 11.62%, 14.76%, and 11.13% better on 
area, and 57.7X, 38.7X, and 10.1X faster on run-time than 
CutMap for 4-LUT, 5-LUT and 6-LUT mapping respectively. 
Notice that we show the results directly after mapping for both 
algorithms. People can run a postprocessing procedure, such as a 
predecessor packing algorithm after the initial mapping. We try a 
powerful packing procedure, mpack (available in the RASP 
package). It can further improve CutMap’s area results by 3-5% 
on average for various K values. Interestingly, it does not improve 
DAOmap’s results much - only 1% on average. Since packing is 
not the research goal of this work, we omit the detailed data here.  

algorithm pick_cut 
input: target node v, output: LUTv. 
if v is critical, return the cut that provides Av; 
best_cost = ; 
for each timing_feasible cut C on v do 
     costC := AC; 
     share_no := number of shared input nodes of C; 
     if share_no = 0 then 
          share_no := 1; 
     else-if share_no = 1 then 
          share_no := 1.15; 
     end-if 
     costC := costC / share_no; 
     costC := costC    SlackC; 
     costC := cut_probing(C, costC); 
     if (best_cost > costC) then 
          best_cost := costC; 
          LUTv := C; 
     end-if 
end-for 
output LUTv; 
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We also run DAOmap and CutMap on six large industrial 
benchmarks, which are provided to us under non-disclosure 
agreements. Table 2 shows the results (no –x switch for CutMap 
and no packing for both). For two of the benchmarks, CutMap 
cannot finish mapping after 10 hours. We can observe that 
DAOmap obtains better results consistently. Especially, the run-
time improvement is close to two orders even without counting 
the two cases where CutMap drags on. This shows the efficiency 
of the cut-enumeration-based algorithm and its good scaling 
feature toward million-gate FPGA designs. 

5.2 Impact of Various Techniques 
To show the effectiveness of our mapping algorithm and provide 
some insights on the most important factors for area minimization, 
we carry out experiments to evaluate individual techniques 
presented in this paper. Table 3 shows the results. 7  Each 
technique is taken out of the mapping procedure individually to 
assess how the quality of result drops compared to the flow where 
every technique is included. The bigger the percentage drops, the 
more effective the technique is for area reduction. 
The important factors are input sharing, min-cost propagation, 
global cost adjustment, and ICS. Input sharing proves to be the 
most important technique to reduce area because it reduces the 
number of edges and node duplications significantly. The min-
cost propagation is trying to evaluate how accurate our cost 
estimation model is in general. Formula (4) shows that Av is the 
cost of the cut that has the minimum cost among all the cuts in Xv.  

                                                                 
7 The percentages in the table and figure in this section are based on the 

mapping results using 5-LUT across the 20 largest MCNC benchmarks.  

Table 2: DAOmap vs. CutMap on large industrial 
benchmarks using 5-LUT 

If we remove this operation, and Av is just the cost from the first 
cut that offers the minimum arrival time Arrv, and we keep 
everything else the same, we observe that the quality of result 
drops by 4.35%. This indicates that our cost estimation through 
min-cost propagation is working well overall, so it has a large 
influence on the mapping result. Global duplication cost 
adjustment offers the next largest gain. It shows how important it 
is to estimate the additional cost due to potential node 
duplications. The globally adjusted cost is closer to reality and 
makes a positive impact for cut selection. ICS offers considerable 
gain and shows the effectiveness of the concept of iterative 
improvement. Slack distribution offers some observable help. 
The cost function evaluation is done against a flow that treats the 
cost of each cut as UC = 1. Surprisingly, our sophisticated cost 
function does not offer much help (only 0.27%). This is counter-
intuitive because we show that a cut can be completely different 
in every aspect from another cut. We have tried other cost 
functions, and the impact is similar if not worse. Since the area is 
propagated from PIs, we believe our area model naturally prefers 
cuts that cover more nodes because the overall estimated area will 
be smaller that way even when we count each cut as having one 
unit area. Nonetheless, our cost function considers other factors 
and tries to augment the good features of the area estimation 
model. We believe this cost function offers valuable insights for 
technology mapping in general. Cut probing also provides a 
limited gain. We think its gain may be shadowed by the strong 
influences of other techniques because cut probing usually does 
not change the cost of a cut significantly. Cut probing itself offers 
a neat way to take advantage of learned intelligence and the 
characteristics of cut-enumeration-based method. The idea can be 
extended into other optimization fields that use cut-enumeration 
technique as a framework, such as pattern generation that is 
applied in many VLSI optimization areas. 

Table 3: Individual technique evaluation 

 CutMap DAOmap Comparison 
Bench 
marks 

LUT 
No. 

Run 
Time (s) 

LUT 
No. 

Run 
Time (s) 

LUT 
(Reduce) 

Run Time 
(Improve)

alu4  1233 17 1065 2 -13.6% 8.5 
apex2  1578 78 1352 2 -14.3% 39.0 
apex4  1153 59 931 2 -19.3% 29.5 
bigkey  1465 8 1245 2 -15.0% 4.0 
clma  6345 888 5405 25 -14.8% 35.5 
des  1075 6 965 2 -10.2% 3.0 
diffeq  990 14 817 2 -17.5% 7.0 
dsip  908 4 686 1 -24.4% 4.0 
elliptic  2556 102 1965 8 -23.1% 12.8 
ex1010  4181 395 3567 14 -14.7% 28.2 
ex5p  870 125 778 2 -10.6% 62.5 
frisc  2398 242 1999 8 -16.6% 30.3 
misex3  1141 33 980 2 -14.1% 16.5 
pdc  3757 288 3222 15 -14.2% 19.2 
s298  1649 941 1257 7 -23.8% 134.4 
s38417  4437 248 3819 16 -13.9% 15.5 
s38584  3757 27 2982 79 -20.6% 0.3 
seq  1414 34 1188 2 -16.0% 17.0 
spla  3278 154 2734 13 -16.6% 11.8 
tseng 759 5 706 1 -7.0% 5.0 
Ave.     -16.02% 24.2X 

Table 1: LUT number and run-time comparisons of DAOmap vs. 
CutMap using 5-LUT on the 20 largest MCNC benchmarks  

Techniques % dropped 
Cut Enumeration   
Min-cost propagation 4.35% 
Global cost adjustment 2.68% 
Cut Selection   
Input sharing  4.55% 
Iterative cut selection (ICS) 2.04% 
Slack distribution 0.86% 
Cut probing 0.25% 
Cost Function 0.27% 

 CutMap DAOmap Comparison 
Bench 
marks LUT No.

Run  
Time (s) LUT No. 

Run 
Time (s) 

LUT 
(Reduce)

Run Time 
(Improve)

big1 9928 301 9169 93 -7.6% 3.2 
big2 - >10H. 14625 708 - - 
big3 10005 28926 9031 106 -9.7% 272.9 
big4 11800 583 9364 156 -20.6% 3.7 
big5 - >10H. 32230 3377 - - 
big6 39000 14437 32028 402 -17.9% 35.9 
Ave.     -13.98% 78.9X 
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Next, we study how ICS influences mapping results alone. Figure 
6 shows the details. For mapping with a single iteration only (the 
base case), we first go through the netlist and set all the nodes 
whose fanout numbers are greater than 3, as tentative LUT roots 
(like a manual profiling used in [19]). Then we go through the 
single iteration of the cut selection procedure. There is no other 
profiling information involved. For other iteration numbers, the 
full-blown ICS procedure is activated. The interesting observation 
is that when the iteration number is more than 3, ICS actually 
starts to hurt the final mapping results slightly. We believe this is 
because that the profiling procedure accumulatively stores 
information through the iterations, and this eventually exceeds 
what the current iteration can take advantage of. In other words, 
the intelligence learned previously starts to become vague. The 
iteration number of 3 offers the best result, and it is used in all of 
the DAOmap results.  

 
Figure 6: Area improvement along mapping iterations 

 

We would like to emphasize that we also evaluate the individual 
techniques using the industrial benchmarks. Similar conclusions 
are drawn as those shown in Table 3. This indicates that our area 
optimization techniques are general enough to target circuits with 
different sizes and various characteristics. 

6. CONCLUSION 
In this paper we presented a technology mapping algorithm, 
DAOmap, for FPGA architectures to minimize chip area under 
timing constraints. Our approach closely monitored various node 
duplication scenarios during both the cut-enumeration stage and 
the cut-selection stage. We designed novel heuristics that captured 
the mapping cost accurately with consideration of both local and 
global optimization information. Our work frame offered more 
flexibility and excellent efficiency for FPGA area optimization 
and guaranteed optimal mapping depth under the unit delay model. 
We evaluated these novel techniques in a systematic way and 
provided insights on the most important factors for technology 
mapping under the cut-enumeration paradigm. Experimental 
results showed that DAOmap produced significant quality and 
run-time improvements. Compared to the state-of-the-art depth-
optimal, area minimization mapping algorithm CutMap, DAOmap 
is 16.02% better on area and runs 24.2X faster on average when 
both algorithms mapped to FPGAs using 5-LUT. Our future work 
will add cut-pruning techniques for larger K values and evaluate 
how much this will influence mapping results and run-time. 
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