
Integrating Logic Synthesis, Technology Mapping, and Retiming 
 

Alan Mishchenko    Satrajit Chatterjee    Robert Brayton 
Department of EECS 

University of California, Berkeley 
Berkeley, CA 94720 

{alanmi, satrajit, brayton}@eecs.berkeley.edu 

Peichen Pan 
Magma Design Automation 

12100 Wilshire Blvd., Ste 480 
 Los Angeles, CA 90025 

peichen@magma-da.com 

ABSTRACT 
This paper presents a synthesis method that combines logic synthesis, 
technology mapping, and retiming into a single integrated flow. The 
proposed integrated method is applicable to both standard cell and 
FPGA designs. An efficient implementation is proposed using 
sequential And-Inverter Graphs. Experiments on a variety of industrial 
circuits from the IWLS 2005 benchmark set show an average 
reduction of the clock period of 25%, compared to the traditional 
mapping without retiming, and by 20%, compared to traditional 
mapping followed by retiming applied as a post-processing step.   

1 INTRODUCTION 
In recent years, the development of logic synthesis algorithms has 

reached a point of convergence, leading to the integration of different 
aspects of the synthesis process. This tendency is motivated by the 
shrinking of DSM technologies, which forces more of the synthesis 
aspects to be considered as interrelated and computed simultaneously. 
Some recent examples of this convergence can be found in the 
research work on integrating:  

1. Tech-independent synthesis and mapping [21][7][20] 
2. Mapping and retiming [28][32][11][12] 
3. Retiming and placement [3][9] 
4. Re-synthesis and retiming [3][33]  
5. Tech-independent synthesis and placement [6][19][16] 
6. Re-wiring and placement [8] 
7. Clock skewing and placement [17] 
Integrated methods explore several solution spaces at once; a 

solution found by an exact algorithm for an integrated approach is 
always better than one where an optimum solution is found in one 
space and fixed before optimizing it in the next space, and so on. 
Generally, the same applies to heuristic algorithms as well. 

To illustrate the use of integration, consider logic synthesis and 
technology mapping. If these steps are not integrated, the network is 
first optimized by technology-independent logic synthesis. The 
resulting network is then given to delay-optimal technology mapping 
resulting in the best delay for the given logic structure. However, the 
decisions made during tech-independent synthesis are independent 
from technology mapping and so logic structures leading to a good 
mapping are often lost.  

In order to integrate logic synthesis and technology mapping, it was 
proposed [21][7] to collect logic structures seen during logic 
transformations in technology-independent logic synthesis and 
simultaneously subject all of them to mapping. As a result, the choice 
of the best logic structure is made during mapping, when more 
accurate timing information is available.  

The contribution of this paper is three-fold: 
(1) Integration. Although double integrations, such as 

synthesis/mapping and mapping/retiming, have been studied, this 
paper is the first to develop a triple integration, where the three 
optimization spaces (synthesis/mapping/retiming) are explored 
simultaneously. The approach, called sequential integration, is exact 

because it finds the minimum delay among all possible synthesized, 
mapped, and retimed networks. In fact, it finds the global delay 
optimum solution by a sequence of simple local steps. 

(2) Applicability. In the literature, there has been work on 
integrating synthesis and mapping for standard cells [21] and on 
integrating mapping and retiming for FPGAs [32]. By unifying with 
the technology mapping step, we show that the triple integration is 
possible, and, with minor variations, is applicable to both standard 
cells and FPGAs.  

(3) Efficiency. One difficulty of integrated methods is that the 
combined optimization space is much larger than any individual one, 
typically leading to an increase in runtime. The third contribution is in 
demonstrating that searching the combined space of 
synthesis/mapping/retiming can be implemented efficiently using 
And-Inverter Graphs (AIGs) and the related cost functions. The 
experiments confirm that our implementation for both standard cells 
and FPGAs is highly scalable, processing industrial circuits with 
100K+ gates in about one minute on a typical computer.  

In the presentation and our current implementation, we limit 
ourselves to designs with single clock domain and edge-triggered D-
flip-flops (possibly with initial states). However, we shall point out 
that the framework can be extended to handle designs with multiple 
clock domains and explicit set/reset logic.  

The rest of the paper is organized as follows. Section 2 describes the 
background. Section 3 presents the integration procedures. Section 4 
discusses the role of AIGs for efficient implementation. Section 5 
shows experimental results. Section 6 concludes the paper and outlines 
future work. 

2 BACKGROUND 
A Boolean network is a directed acyclic graph (DAG) with nodes 

corresponding to logic gates and directed edges corresponding to the 
wires. AIG is a Boolean network composed of two-input ANDs and 
inverters. The terms network, Boolean network, design, and circuit are 
used interchangeably. 

Each node has a unique integer number called the node ID. A node 
has zero or more fanins, i.e. nodes that are driving this node, and zero 
or more fanouts, i.e. nodes driven by this node. The primary inputs 
(PIs) of the network are nodes without fanins in the current network. 
The primary outputs (POs) are a subset of nodes of the network. If the 
network is sequential, the memory elements are assumed to be D-flip-
flops with initial states. Terms memory elements, flop-flops, and 
registers are used interchangeably in this paper.  

A cut C of node n is a set of nodes of the network, called leaves, 
such that each path from a PI to n passes through at least one leaf. A 
trivial cut of the node is the cut composed of the node itself. A cut is 
K-feasible if it has K leaves or less.  

A transitive fanin (fanout) cone of node n is a subset of all nodes of 
the network reachable through the fanin (fanout) edges from the given 
node. The level of a node is the length of the longest path from any PI 
to the node. The node itself is counted towards the path length but the 
PIs are not.  



For standard cells, we use a load independent delay model for our 
experiments since we target a gain-based flow where sizing and 
buffering are done after mapping in conjunction with physical 
synthesis.  

The area and delay of an FPGA mapping is measured by the number 
of LUTs and the number of LUT levels respectively. The delay of a 
standard cell mapping is computed using pin-to-pin delays of gates 
assigned to implement a cut. The load-independent timing model is 
assumed throughout the paper.  

3 INTEGRATION  
We view technology mapping as the core procedure and show how 

retiming and combinational logic synthesis fit in with this. Section 3.1 
summarizes the mapping procedure. Section 3.2 shows how to 
combine mapping and retiming. Section 3.3 completes the description 
by combining the above steps with combinational logic 
transformations. 

3.1 Technology mapping 
In this section, we briefly describe each step of the Boolean 

mapping procedure and refer the reader to [7][28][29] for details.  
• Preparing the circuit for mapping 
The preparation is done by deriving a balanced AIG. For this, the 

SOP representations of the node functions are factored [4]. The AND 
and OR gates of the factored forms are converted into two-input 
ANDs and inverters and added to the AIG manager while performing 
one level structural hashing [15]. The resulting AIG is balanced by 
applying the associative transform, a(bc) = (ab)c, to reduce the 
number of AIG levels. Balancing can be done optimally in a linear 
topological sweep from the inputs. 
• Computing K-feasible cuts 
The cut computation [32][13] starts at the PIs and proceeds in the 

topological order to the POs. For a PI, the set of cuts contains only the 
trivial cut. For an internal node n with two fanins, a and b, the cuts 
Φ(n) are computed by merging the cuts of a and b: 

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k}. 
Informally, merging two sets of cuts adds the trivial cut of the node to 
the set of pair-wise unions of cuts belonging to the fanins, while 
keeping only K-feasible cuts. A modification for networks with 
structural choices is discussed in Section 3.3.2. 

In addition, sequential cuts, extending over the register boundary, 
can be computed and used to improve the quality of mapping for the 
sequential circuits. This is used in our integrated flow. We omit the 
details of this iterative computation of the sequential cuts due to page 
limitations, and refer the reader to [32].  
• Computing Boolean functions of cuts 
This step is needed only for standard cell mapping. For each cut, the 

root node’s function is found in terms of the cut variables. In FPGA 
mapping, we only need to do this once for the best cuts, which are 
used to produce the final netlist after mapping. 
• Matching cuts with LUTs or gates 
In FPGA mapping, matching is performed by associating K-feasible 

cuts with K-input LUTs, which will implement it. For standard-cells, 
Boolean matching is more complex and involves associating each cut 
with a gate (or sets of gates), which can implement the Boolean 
function of the cut, allowing possible permutation and 
complementation of the inputs of the gate. 
• Assigning delay-optimal matches at each node 
In a topological order from the PIs, the match having the smallest 

delay is assigned to each node. This is the basic DAG-mapping step, 
which leads to the optimum-delay matching for both FPGAs [10] and 
standard cells [22]. When standard cells are used, mapping both 
phases of the nodes helps reduce the delay when making a phase 
assignment of the fanins of the gates [7]. 

 

• Recovering area using heuristics  
The best area match (that preserves the minimum delay) at each 

node of the network is updated several times, resulting in a new 
mapping with smaller area [28][29]. 
• Choosing the final mapping 
This is done in reverse topological order; first, we start the mapping 

with those LUTs or gates that are needed to implement the best cuts of 
the POs. Then, we visit the leaves of these cuts and add their 
implementation to the mapping, continuing recursively to the PIs. The 
procedure to derive the final mapping for sequential circuits is the 
same. 

3.2 Combining mapping with retiming 
Mapping for standard cells and FPGAs can be extended to 

sequential circuits by considering registers as labels (or weights) on 
the edges connecting logic nodes; the DAG becomes a cyclic circuit 
with labels. The overall mapping procedure for cyclic circuits (called 
sequential mapping) is similar to the traditional combinational 
mapping with a few modifications: (1) the concept of arrival times is 
extended to account for register labels on the edges; (2) computation 
of the arrival times is done by iterating over the circuit, and; (3) the 
resulting mapping has a retiming associated with it, which when 
performed on the mapped circuit, leads to the minimum clock period 
over all possible mappings and retimings. Below, we describe these 
modifications in detail. 

Similar to the case for combinational mapping, computing and 
matching the cuts is done only once, at the beginning of mapping. 
However, the computation of sequential arrival times may be repeated 
for different clock periods as well as during area recovery. 

3.2.1 Sequential arrival times 
The sequential delay of a (possibly cyclic) path p is computed 

as: ( ) ( ) ( )
n p e p

l p d n t eφ
∈ ∈

= −∑ ∑ , where d(n) represents the delay for a 

node n and t(e) represents the number of registers on the edge e. Thus 
the sequential delay is the difference between the sum of delays of 
nodes on the path and the clock period, φ, times the total number of 
registers on the path. The reason is that each register delays the signal 
at the end of the path by one clock cycle. Similar to the combinational 
case, the sequential arrival time (or l-value in the terminology of [32]) 
at node n is the maximum of the arrival times of all (possibly cyclic) 
paths originating at a PI and ending at node n: 

( )
( ) ( )max

p PATH PI n
l n l p

∈ →
= . 

As in the combinational case, the clock period φ is infeasible if the 
arrival time at a PO exceeds φ at any time during the iterative 
computation.  

3.2.2 Iterative computation of sequential arrival times 
These are computed for all nodes in the circuit G iteratively, as 

shown in Figure 1 [31][32]. The arrival times of the PI nodes are set to 
0 and those of the internal nodes and the POs are initialized to -∞. In 
each iteration, nodes are visited in some order and their new arrival 
times are computed as: 

matches( ) fanin ( )
( ) min max { ( ) }new u n u nM n u M

l n l u t dφ→ →∈ ∈
= − +  

where tu→n is the number of registers on the fanin edge and du→n is the 
pin-to-pin delay of a match for that node. Thus, for each node, we 
consider all possible matches and choose the one which yields the 
smallest new arrival time. Since the sequential cuts are pre-computed 
at the begining of mapping and stored, this computation is fast.  

The arrival time of the node is updated if the new value is larger 
than the old value. Thus the arrival time at a node increases 
monotonically during the computation. If ever the arrival time at any 
PO exceeds φ, the iteration is stopped and the clock period is declared 
infeasible. Otherwise, the arrival times will converge and the clock 
period is feasible.  

 



status SequentialArrivalTimes ( circuit G, clock period φ )   
   for each node n in G do 
         if n is a PI then l(n) = 0 else l(n) = -∞ 
   do { 
         for each non-PI node n in G do  

                
matches( ) fanin( )

( ) min max { ( ) }new u n u nM n u M
l n l u t dφ→ →∈ ∈

= − +  

                ( ) max{ ( ), ( )}newl n l n l n=  
         if n is a PO and ( )l n φ>  
               return INFEASIBLE 
   } while (the arrival times of some nodes have changed) 
   return FEASIBLE 

Figure 1. Iterative computation of sequential arrival times. 
To find an optimum clock period, a binary search is performed 

starting from a lower bound (set to 0) and an upper bound (set to the 
delay of the longest combinational path). In each step of the binary 
search, the iterative procedure in Figure 1 is repeated until a 
convergence criterion is met. We emphasize that when the sequential 
arrival times are computed, in essence, mapping and synthesis are 
done at the same time since we have all cuts and all matches (obtained 
using choice nodes) pre-computed, and we find the overall best match 
according to the sequential arrival time computation. 

3.2.3 Retiming associated with the final mapping 
When the optimum clock period, φopt, is known, a mapping is 

selected as described in Section 3.1. For each node n included in the 
mapping, having sequential arrival time lopt(n) computed for φopt , the 
final retiming is computed using the formula [32]: 

( )

0, if  is a PI or PO
( )

1, otherwise    
opt

opt
l n

n
r n

φ


=   − 
 

 

If the mapped circuit is retimed using this formula, the resulting clock 
period can be slower than the optimum clock cycle φopt  by at most the 
delay of a gate [34]. When the unit delay model is used in the fixed-
LUT-size FPGA mapping, this retiming gives the optimum clock 
period.  

Example. The network in Figure 2 illustrates the computation of the 
sequential arrival times for the clock periods of 1 and 2 shown in the 
tables. The combinational delay of an internal node is 1. The longest 
combinational path (a, c, b) has delay 3. Initially, the arrival times of 
the PIs, i and j, are set to 0, and arrival times of the internal nodes, a, 
b, and c, are set to -∞. The clock period of 1 is infeasible because the 
arrival times of the PO node c exceeds the clock period after the first 
iteration. The clock period of 2 is feasible because the arrival times 
converge after two iterations. The associated retiming is r(a) = r(c) = 
0, r(b) = 1. Indeed, if the register on the edge (b, c) is retimed 
backward over node b, the longest combinational path has delay 2. 

φ = 1  φ = 2 
Iter a b c  Iter a b c

0 -∞ -∞ -∞  0 -∞ -∞ -∞
1 1 1 2  1 1 1 2
2 2 3 3  2 1 3 2
3 3 4 4  3 1 3 2

Figure 2. Example of sequential arrival time computation. 

3.3 Combining mapping with synthesis 
The search space of combinational logic synthesis is added to those 

of mapping and retiming, by deriving and storing multiple circuit 
structures, produced during logic optimization, instead of considering 
only one circuit produced at the end. 

Accumulating different logic structures implementing the same 
function is useful for two reasons. First, technology-independent 

synthesis is heuristic and produces a network that is not optimal. 
When this network is mapped, the mapper may fail to find a good set 
of matches, which might exist for an intermediate network in the flow. 
Second, synthesis operations usually apply to the network as a whole. 
Optimization for delay may significantly increase area, since the 
whole network, and not just the critical path, is optimized for delay. 
By combining a delay-optimized network with an area-optimized one, 
the mapper gets the best of both; on the critical path, logic structures 
from the delay-optimized network will be used, whereas off the 
critical path, the mapper may choose structures from the area-
optimized network. Similarly, multiple logic structures give additional 
freedom that can be exploited by retiming to find a shorter clock 
period. 

The accumulation of choices has two effects on our overall flow. 
First it increases the number of matches at each node which can 
improve the sequential arrival times. Second, when area is recovered 
at the end, there are more options for this because there are more 
matches at each node. 

The next two subsections discuss efficient construction of the choice 
network and extended cut computation to handle choices. 

3.3.1 Constructing the choice network 
The choice network is constructed from a collection of functionally 

equivalent networks. Recent advances in equivalence checking are 
used to identify functionally-equivalent, structurally-different internal 
points in the networks [21][24].  

The choice network is an AIG derived by combining the original 
functionally equivalent networks, while collecting the internal nodes 
in the equivalence classes according to their global function. We use 
random simulation to identify potentially equivalent nodes, and then 
use a SAT engine to verify equivalence and construct the equivalence 
classes. To this end, we implemented a package called FRAIG 
(Functionally Reduced And-Inverter Graphs) that exposes the APIs 
comparable to those of a BDD package but internally uses simulation 
and SAT [27].  

 

 
Figure 3. Equivalent networks before choicing. 

 
Figure 4. The choice network. 
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Example. Figures 3 and 4 illustrate construction of a network with 
choices. Networks 1 and 2 in Figure 3 show the subject graphs 
obtained from two networks that are functionally equivalent but 
structurally different. The nodes x1 and x2 in the two subject graphs are 
functionally equivalent (up to complementation). They are combined 
in an equivalence class in the choice network, and an arbitrary 
member (x1 in this case) is set as the class representative. Node p does 
not lead to a choice because p is structurally the same in both 
networks. There is no choice corresponding to the output node o since 
the procedure detects the maximal commonality between the two 
networks. 

A different way of generating choices is by iteratively applying the 
Λ- and ∆-transformations [23]. Given an AIG, we use the associativity 
of the AND operation to locally re-write the graph (the Λ-
transformation), i.e. whenever the structure (x1x2)x3 is seen in the AIG, 
it is replaced by the equivalent structures (x2x3)x1 and (x1x3)x2. If this 
process is done until no new AND nodes are created, it is equivalent to 
identifying the maximal multi-input AND-gates in the AIG and adding 
all possible tree decompositions of these gates. Similarly, the 
distributivity of AND over OR provides another source of choices. 

Using structural choices leads to a new way of thinking about logic 
synthesis: rather than trying to come up with a good final netlist used 
as an input to mapping, we accumulate choices by applying a 
sequence of transformations, each of which leads to improvement in 
some sense. The best combination of these choices is selected during 
mapping, retiming, or combined mapping/retiming, leading to the 
triple integration of synthesis/mapping/retiming.  

3.3.2 Cut enumeration with choices  
The cut-based structural FPGA mapping procedure can be extended 

naturally to handle equivalence classes of nodes. Given a node n, let N 
denote its equivalence class. Let Φ(N) denote the set of cuts of the 
equivalence class N. Then, Φ(N) = ( )

n N

n
∈

Φ∪ , where, if a and b are the 

two inputs of n belonging to equivalence classes A and B, respectively, 
then 

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}. 
This expression for Φ(n) is a slight modification of the one used in 

Section 3 to compute the cuts without choices. The cuts of n are 
obtained from the cuts of the equivalence classes of its fanins (instead 
of the cuts of its fanins). In the absence of choices (which corresponds 
to the situation when each equivalence class has only one node) this 
computation is the same as the one presented in Section 3. As before, 
the cut enumeration is done in one topological pass from the PIs to the 
POs in combinational designs and multiple passes in sequential 
designs. 

Example. Consider the computation of the 3-feasible cuts of the 
equivalence class {o} in Figure 4. Let X represent the equivalence 
class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) = {{x1}, {x2}, {q, r}, {p, 
s}, {q, p, e}, {p, d, r}, {p, d, e}, {b, c, s}}. We have Φ({o}) = Φ(o) = 
{{o}} ∪ {u ∪ v | u ∈ Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.  

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get Φ({o}) = 
{{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}. Observe that the set of cuts 
of o involves nodes from the two choices x1 and x2, i.e. o may be 
implemented using either of the two structures. 

The subsequent steps of the mapping process (computing delay-
optimum mapping and performing area recovery) remain unchanged, 
except that mapping at each node is done using the additional cuts. 
These cuts as well as the additional cuts overlapping with the gate 
boundary (sequential cuts) represent orthogonal ways to improve the 
quality of mapping. 

3.4 Overall picture of sequential integration 
Figure 5 illustrates the overall flow, emphasizing where the various 

computations enter the picture. Computation begins by accumulating 

functionally equivalent networks, which are processed by the FRAIG 
manager, resulting in the choice network. Next, the cuts are computed 
for each node, and matches are found for each cut. Then a binary 
search is performed to find the best achievable clock period. If the 
result is not okay, additional synthesis can be applied, resulting in 
more and better choices, which may further improve the clock period. 
Once the target clock period is found, the associated retiming is 
performed, and the final network, after area recovery, is produced. 
Note that steps denoted cuts and matches and seq arrival times involve 
iteration over the sequential AIG until convergence. 

 
Figure 5. High-level view of the integration flow. 

4 IMPLEMENTATION DETAILS 
AIGs have been used successfully in a number of logic synthesis 

and verification projects [21][34]. To implement the integrated flow, 
the combinational AIGs are generalized to handle sequential 
transformations as shown in [1]. In the resulting sequential AIGs, each 
edge has four attributes: (1) a node ID; (2) a complemented attribute; 
(3) the number of registers; and (4) the vector of initial states of the 
registers. Using sequential AIGs leads to an efficient implementation 
for the following reasons: 
• During the cut computation only two cut sets are merged at each 

two-input AND node. Storing register numbers together with 
node IDs on the edges allows for a convenient manipulation (e.g. 
hashing) of the leaves of sequential cuts.  

• The iterative arrival time computation is fast using the AIG 
because this representation is uniform and compact. 

• Retiming of a sequential AIG is simple because the register 
numbers and initial values are stored on the graph edges.  

• Computation of the initial state in backward retiming is reduced 
to a SAT problem, which “records” the sequence of backward 
register movements during retiming. (Computation of initial state 
for forward retiming is easy.) Retiming of networks with 
arbitrary gates and logic nodes is reduced to retiming of a 
sequential AIG constructed to reflect the structure of the given 
network. 

5 EXPERIMENTAL RESULTS 
The integrated flow was implemented in the sequential logic 

synthesis and verification system ABC [2]. The ABC commands smap 
and sfpga perform the integrated optimization for standard cells and 
FGPAs, respectively. The implementation was tested on the designs 
included in the IWLS `05 benchmark set [18]. Table 1 shows the 
results of FPGA mapping into 5-input LUTs. Table 2 shows the results 
of standard-cell mapping using the library, mcnc.genlib, from the 
standard distribution of SIS. The netlists after mapping were verified 
using a bounded SAT-based sequential equivalence checker in ABC. 

The following notation is used in the tables. The first column lists 
the benchmarks. The next five columns show the number of primary 
inputs (PI), primary outputs (PO), registers (Register), AIG nodes 
(AND2), and maximum number of logic levels of the AIG (Lev). The 
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number of gates and logic levels is given for an AIG after structural 
hashing and algebraic balancing for minimum delay, as described in 
Section 3.1. The next five columns show the clock periods after 
optimization with different options:  
• M – combinational mapping only 
• MC – combinational mapping with structural choices (integrated 

synthesis/mapping) 
• M+R – combinational mapping followed by retiming 
• MR – sequential mapping (integrated mapping/retiming) 
• MC+R – integrated synthesis/mapping followed by retiming 
• MCR – sequential mapping with structural choices proposed in 

this paper (integrated synthesis/mapping/retiming) 
The last two columns in the tables show the runtime, in seconds, of 

the two most time-consuming steps in the fully integrated 
computation. Column “Cut” gives the runtime of the exhaustive 
computation of 5-feasible sequential cuts. Column “Iter” gives the 
total runtime of the binary search for the optimum clock period. This 
runtime is dominated by iterative computation of the sequential arrival 
times. The runtimes are reported on a 1.6GHz laptop. The memory 
requirements, not listed in the tables, were dominated by the 
sequential cuts and were less than 500MB for the largest circuits 
considered. 

We also experimented with the ISCAS benchmarks and obtained 
very close agreement with the results reported in Table 2 on the 
average improvements in the clock period for both standard cells and 
FPGAs. The details for individual benchmarks are omitted due to the 
page limitation. 

To summarize, the experiments show that the proposed approach 
often substantially reduces the optimum clock period over separate or 
partially-integrated approaches. The improvements achieved by the 
integrated optimizations (MR and MCR) are substantially better than 
those found by the consecutive application of the individual 
optimizations. The runtimes confirm the scalability of the proposed 
integrated flow. 

6 CONCLUSIONS AND FUTURE WORK 
This paper presents an approach synergistically integrating 

combinational logic synthesis, technology mapping, and retiming. The 
clock period found is provably the smallest one in the combined 
solution space of the above transformations. It gives good results 
because the multi-dimensional search space contains deeper minima 
than the projection of this space on any specific dimension. The 
approach is highly scalable because global minimization is achieved 
by a sequence of simple local transformations. The proposed 
implementation, based on sequential AIGs, scales to large circuits and 
results in an average reduction of about 25% in clock period for both 
standard cells and FPGAs. 

Future work will focus on the following improvements: 
• Register minimization after retiming. Our current proof-of-

concept implementation does not attempt to produce the final 
retiming with the minimum number of registers. Besides sharing 
registers across fanins and fanouts, the number of registers can be 
reduced by either an exact linear program [31], or simpler 
heuristics that move registers to better positions using local 
sequential slacks.  

• Area recovery for sequential circuits. Area recovery for 
combinational circuits proceeds from inputs to outputs. The 
required times do not change and, therefore, need not be 
recomputed. However, for a cyclic circuit, both sequential arrival 
and required times have to be recomputed whenever a node’s 
timing is changed during area recovering. An efficient method for 
updating this information is required.  

• Convergence speed of iterative procedures. Sequential arrival 
time computation in Figure 2 often iterates over the circuit many 
times before converging or proving a clock period infeasible. 

Also, the arrival times are recomputed from scratch whenever a 
new clock period is assumed. These inefficiencies may be 
addressed using Howard’s algorithm [14] to detect the critical 
cycles and avoid re-computing the timing information for the 
non-critical nodes. 

• Generation of structural choices for sequential networks. Our 
current procedures only generate choices from the un-retimed 
version of the sequential circuit. We consider extending choice 
generation to sequential networks by combining the 
combinational choices derived for the original network and 
networks with shifted register boundaries [26]. 
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Table 1. Integration of synthesis/mapping/retiming for FPGAs (k = 5). 

Network statistics Optimal clock period Runtime IWLS 2005 
benchmarks PI PO Register AND2 Lev M MC M+R MR MC+R MCR Cut, s Iter, s 

ac97_ctrl 84 48 2199 14261 11 3 3 3 2 3 2 2.56 1.69 
aes_core 259 129 530 21125 21 6 6 6 6 6 6 4.15 5.61 
des_area 240 64 128 4781 27 8 8 8 8 8 8 0.57 0.42 
des_perf 234 64 8808 76716 17 5 5 5 4 5 3 16.97 9.32 
ethernet 98 115 2235 19654 27 8 8 8 7 8 5 4.76 5.21 
i2c 19 14 128 1151 12 4 4 4 4 4 3 0.15 0.12 
mem_ctrl 115 152 1083 15191 28 9 8 9 8 8 6 1.32 1.85 
pci_bridge32 162 207 3359 22742 22 7 7 7 6 7 6 5.92 4.52 
pci_spoci_ctrl 25 13 60 1369 16 5 5 5 5 5 4 0.27 0.31 
sasc 16 12 117 772 8 3 2 3 2 2 2 0.12 0.05 
simple_spi 16 12 132 1031 10 3 3 3 3 3 3 0.22 0.15 
spi 47 45 229 3768 31 8 8 8 6 8 6 0.60 0.71 
ss_pcm 19 9 87 405 7 2 2 2 2 2 2 0.04 0.03 
systemcaes 260 129 670 12279 44 10 9 8 7 9 6 2.88 3.42 
systemcdes 132 65 190 2933 23 7 7 5 4 6 4 0.36 0.31 
tv80 14 32 359 9503 42 14 12 12 9 11 8 1.24 2.62 
usb_funct 128 121 1746 15670 23 7 7 7 6 6 5 2.45 3.96 
usb_phy 15 18 98 456 9 3 3 3 2 3 2 0.07 0.04 
vga_lcd 89 109 17079 126687 19 7 7 7 5 7 4 23.01 21.00 
wb_conmax 1130 1416 770 47535 18 7 7 7 5 7 5 3.53 2.32 
wb_dma 217 215 563 4044 22 8 8 8 6 8 6 0.46 0.40 
Ratio    1.00 0.96 0.97 0.82 0.95 0.74   

Table 2. Integration of synthesis/mapping/retiming for standard cells (mcnc.genlib) 

Network statistics Optimum clock period Runtime IWLS 2005 
benchmarks PI PO Register AND2 Lev M MC M+R MR MC+R MCR Cut, s Iter, s 

ac97_ctrl 84 48 2199 14261 11 8.30 8.00 8.00 6.13 7.50 5.69 3.48 9.29 
aes_core 259 129 530 21125 21 17.30 17.00 17.76 17.19 17.22 16.80 5.81 24.67 
des_area 240 64 128 4781 27 22.00 22.00 22.13 23.25 22.13 22.77 0.80 1.02 
des_perf 234 64 8808 76716 17 14.80 13.60 14.80 11.81 12.19 10.83 22.90 30.25 
ethernet 98 115 2235 19654 27 21.30 19.70 20.39 20.34 19.33 14.06 5.87 20.59 
i2c 19 14 128 1151 12 10.00 10.00 10.13 8.00 10.13 7.50 0.21 0.76 
mem_ctrl 115 152 1083 15191 28 21.10 21.90 21.30 18.89 21.66 15.02 1.83 6.81 
pci_bridge32 162 207 3359 22742 22 17.70 17.10 16.31 15.03 16.12 15.23 7.46 17.56 
pci_spoci_ctrl 25 13 60 1369 16 12.10 11.00 12.34 10.94 10.97 8.91 0.35 1.48 
sasc 16 12 117 772 8 7.40 6.80 7.05 6.91 6.32 6.09 0.16 0.42 
simple_spi 16 12 132 1031 10 9.10 9.10 9.02 7.50 8.67 7.03 0.30 0.95 
spi 47 45 229 3768 31 21.80 19.70 17.85 17.00 15.60 16.00 0.80 3.12 
ss_pcm 19 9 87 405 7 6.60 6.30 5.91 4.50 5.71 4.13 0.07 0.23 
systemcaes 260 129 670 12279 44 28.10 25.20 26.34 24.57 24.65 22.78 3.99 12.85 
systemcdes 132 65 190 2933 23 19.90 19.20 15.81 13.56 15.24 13.56 0.50 2.06 
tv80 14 32 359 9503 42 33.90 31.80 31.13 26.72 29.58 24.96 1.74 11.65 
usb_funct 128 121 1746 15670 23 19.70 17.20 19.33 14.00 17.40 13.41 3.24 13.47 
usb_phy 15 18 98 456 9 7.10 6.80 7.11 6.50 6.87 5.25 0.10 0.35 
vga_lcd 89 109 17079 126687 19 15.50 14.60 15.59 11.63 14.53 9.52 30.17 126.76 
wb_conmax 1130 1416 770 47535 18 15.90 15.90 15.10 12.58 14.82 11.86 4.87 11.77 
wb_dma 217 215 563 4044 22 18.60 17.80 17.70 15.61 16.71 14.22 0.56 2.36 
Ratio     1.00 0.95 0.96 0.84 0.91 0.76  

 


