
Integrating Logic Synthesis, Technology Mapping, and Retiming

Alan Mishchenko Satrajit Chatterjee Robert Brayton
Department of EECS

University of California, Berkeley
Berkeley, CA 94720

{alanmi, satrajit, brayton}@eecs.berkeley.edu

Peichen Pan
Magma Design Automation

12100 Wilshire Blvd., Ste 480
 Los Angeles, CA 90025

peichen@magma-da.com

ABSTRACT
This paper presents a synthesis method that combines logic synthesis,
technology mapping, and retiming into a single integrated flow. The
proposed integrated method is applicable to both standard cell and
FPGA designs. An efficient implementation is proposed using
sequential And-Inverter Graphs. Experiments on a variety of industrial
circuits from the IWLS 2005 benchmark set show an average
reduction of the clock period of 25%, compared to the traditional
mapping without retiming, and by 20%, compared to traditional
mapping followed by retiming applied as a post-processing step.

1 INTRODUCTION
In recent years, the development of logic synthesis algorithms has

reached a point of convergence, leading to the integration of different
aspects of the synthesis process. This tendency is motivated by the
shrinking of DSM technologies, which forces more of the synthesis
aspects to be considered as interrelated and computed simultaneously.
Some recent examples of this convergence can be found in the
research work on integrating:

1. Tech-independent synthesis and mapping [21][7][20]
2. Mapping and retiming [28][32][11][12]
3. Retiming and placement [3][9]
4. Re-synthesis and retiming [3][33]
5. Tech-independent synthesis and placement [6][19][16]
6. Re-wiring and placement [8]
7. Clock skewing and placement [17]
Integrated methods explore several solution spaces at once; a

solution found by an exact algorithm for an integrated approach is
always better than one where an optimum solution is found in one
space and fixed before optimizing it in the next space, and so on.
Generally, the same applies to heuristic algorithms as well.

To illustrate the use of integration, consider logic synthesis and
technology mapping. If these steps are not integrated, the network is
first optimized by technology-independent logic synthesis. The
resulting network is then given to delay-optimal technology mapping
resulting in the best delay for the given logic structure. However, the
decisions made during tech-independent synthesis are independent
from technology mapping and so logic structures leading to a good
mapping are often lost.

In order to integrate logic synthesis and technology mapping, it was
proposed [21][7] to collect logic structures seen during logic
transformations in technology-independent logic synthesis and
simultaneously subject all of them to mapping. As a result, the choice
of the best logic structure is made during mapping, when more
accurate timing information is available.

The contribution of this paper is three-fold:
(1) Integration. Although double integrations, such as

synthesis/mapping and mapping/retiming, have been studied, this
paper is the first to develop a triple integration, where the three
optimization spaces (synthesis/mapping/retiming) are explored
simultaneously. The approach, called sequential integration, is exact

because it finds the minimum delay among all possible synthesized,
mapped, and retimed networks. In fact, it finds the global delay
optimum solution by a sequence of simple local steps.

(2) Applicability. In the literature, there has been work on
integrating synthesis and mapping for standard cells [21] and on
integrating mapping and retiming for FPGAs [32]. By unifying with
the technology mapping step, we show that the triple integration is
possible, and, with minor variations, is applicable to both standard
cells and FPGAs.

(3) Efficiency. One difficulty of integrated methods is that the
combined optimization space is much larger than any individual one,
typically leading to an increase in runtime. The third contribution is in
demonstrating that searching the combined space of
synthesis/mapping/retiming can be implemented efficiently using
And-Inverter Graphs (AIGs) and the related cost functions. The
experiments confirm that our implementation for both standard cells
and FPGAs is highly scalable, processing industrial circuits with
100K+ gates in about one minute on a typical computer.

In the presentation and our current implementation, we limit
ourselves to designs with single clock domain and edge-triggered D-
flip-flops (possibly with initial states). However, we shall point out
that the framework can be extended to handle designs with multiple
clock domains and explicit set/reset logic.

The rest of the paper is organized as follows. Section 2 describes the
background. Section 3 presents the integration procedures. Section 4
discusses the role of AIGs for efficient implementation. Section 5
shows experimental results. Section 6 concludes the paper and outlines
future work.

2 BACKGROUND
A Boolean network is a directed acyclic graph (DAG) with nodes

corresponding to logic gates and directed edges corresponding to the
wires. AIG is a Boolean network composed of two-input ANDs and
inverters. The terms network, Boolean network, design, and circuit are
used interchangeably.

Each node has a unique integer number called the node ID. A node
has zero or more fanins, i.e. nodes that are driving this node, and zero
or more fanouts, i.e. nodes driven by this node. The primary inputs
(PIs) of the network are nodes without fanins in the current network.
The primary outputs (POs) are a subset of nodes of the network. If the
network is sequential, the memory elements are assumed to be D-flip-
flops with initial states. Terms memory elements, flop-flops, and
registers are used interchangeably in this paper.

A cut C of node n is a set of nodes of the network, called leaves,
such that each path from a PI to n passes through at least one leaf. A
trivial cut of the node is the cut composed of the node itself. A cut is
K-feasible if it has K leaves or less.

A transitive fanin (fanout) cone of node n is a subset of all nodes of
the network reachable through the fanin (fanout) edges from the given
node. The level of a node is the length of the longest path from any PI
to the node. The node itself is counted towards the path length but the
PIs are not.

For standard cells, we use a load independent delay model for our
experiments since we target a gain-based flow where sizing and
buffering are done after mapping in conjunction with physical
synthesis.

The area and delay of an FPGA mapping is measured by the number
of LUTs and the number of LUT levels respectively. The delay of a
standard cell mapping is computed using pin-to-pin delays of gates
assigned to implement a cut. The load-independent timing model is
assumed throughout the paper.

3 INTEGRATION
We view technology mapping as the core procedure and show how

retiming and combinational logic synthesis fit in with this. Section 3.1
summarizes the mapping procedure. Section 3.2 shows how to
combine mapping and retiming. Section 3.3 completes the description
by combining the above steps with combinational logic
transformations.

3.1 Technology mapping
In this section, we briefly describe each step of the Boolean

mapping procedure and refer the reader to [7][28][29] for details.
• Preparing the circuit for mapping
The preparation is done by deriving a balanced AIG. For this, the

SOP representations of the node functions are factored [4]. The AND
and OR gates of the factored forms are converted into two-input
ANDs and inverters and added to the AIG manager while performing
one level structural hashing [15]. The resulting AIG is balanced by
applying the associative transform, a(bc) = (ab)c, to reduce the
number of AIG levels. Balancing can be done optimally in a linear
topological sweep from the inputs.
• Computing K-feasible cuts
The cut computation [32][13] starts at the PIs and proceeds in the

topological order to the POs. For a PI, the set of cuts contains only the
trivial cut. For an internal node n with two fanins, a and b, the cuts
Φ(n) are computed by merging the cuts of a and b:

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k}.
Informally, merging two sets of cuts adds the trivial cut of the node to
the set of pair-wise unions of cuts belonging to the fanins, while
keeping only K-feasible cuts. A modification for networks with
structural choices is discussed in Section 3.3.2.

In addition, sequential cuts, extending over the register boundary,
can be computed and used to improve the quality of mapping for the
sequential circuits. This is used in our integrated flow. We omit the
details of this iterative computation of the sequential cuts due to page
limitations, and refer the reader to [32].
• Computing Boolean functions of cuts
This step is needed only for standard cell mapping. For each cut, the

root node’s function is found in terms of the cut variables. In FPGA
mapping, we only need to do this once for the best cuts, which are
used to produce the final netlist after mapping.
• Matching cuts with LUTs or gates
In FPGA mapping, matching is performed by associating K-feasible

cuts with K-input LUTs, which will implement it. For standard-cells,
Boolean matching is more complex and involves associating each cut
with a gate (or sets of gates), which can implement the Boolean
function of the cut, allowing possible permutation and
complementation of the inputs of the gate.
• Assigning delay-optimal matches at each node
In a topological order from the PIs, the match having the smallest

delay is assigned to each node. This is the basic DAG-mapping step,
which leads to the optimum-delay matching for both FPGAs [10] and
standard cells [22]. When standard cells are used, mapping both
phases of the nodes helps reduce the delay when making a phase
assignment of the fanins of the gates [7].

• Recovering area using heuristics
The best area match (that preserves the minimum delay) at each

node of the network is updated several times, resulting in a new
mapping with smaller area [28][29].
• Choosing the final mapping
This is done in reverse topological order; first, we start the mapping

with those LUTs or gates that are needed to implement the best cuts of
the POs. Then, we visit the leaves of these cuts and add their
implementation to the mapping, continuing recursively to the PIs. The
procedure to derive the final mapping for sequential circuits is the
same.

3.2 Combining mapping with retiming
Mapping for standard cells and FPGAs can be extended to

sequential circuits by considering registers as labels (or weights) on
the edges connecting logic nodes; the DAG becomes a cyclic circuit
with labels. The overall mapping procedure for cyclic circuits (called
sequential mapping) is similar to the traditional combinational
mapping with a few modifications: (1) the concept of arrival times is
extended to account for register labels on the edges; (2) computation
of the arrival times is done by iterating over the circuit, and; (3) the
resulting mapping has a retiming associated with it, which when
performed on the mapped circuit, leads to the minimum clock period
over all possible mappings and retimings. Below, we describe these
modifications in detail.

Similar to the case for combinational mapping, computing and
matching the cuts is done only once, at the beginning of mapping.
However, the computation of sequential arrival times may be repeated
for different clock periods as well as during area recovery.

3.2.1 Sequential arrival times
The sequential delay of a (possibly cyclic) path p is computed

as: () () ()
n p e p

l p d n t eφ
∈ ∈

= −∑ ∑ , where d(n) represents the delay for a

node n and t(e) represents the number of registers on the edge e. Thus
the sequential delay is the difference between the sum of delays of
nodes on the path and the clock period, φ, times the total number of
registers on the path. The reason is that each register delays the signal
at the end of the path by one clock cycle. Similar to the combinational
case, the sequential arrival time (or l-value in the terminology of [32])
at node n is the maximum of the arrival times of all (possibly cyclic)
paths originating at a PI and ending at node n:

()
() ()max

p PATH PI n
l n l p

∈ →
= .

As in the combinational case, the clock period φ is infeasible if the
arrival time at a PO exceeds φ at any time during the iterative
computation.

3.2.2 Iterative computation of sequential arrival times
These are computed for all nodes in the circuit G iteratively, as

shown in Figure 1 [31][32]. The arrival times of the PI nodes are set to
0 and those of the internal nodes and the POs are initialized to -∞. In
each iteration, nodes are visited in some order and their new arrival
times are computed as:

matches() fanin ()
() min max { () }new u n u nM n u M

l n l u t dφ→ →∈ ∈
= − +

where tu→n is the number of registers on the fanin edge and du→n is the
pin-to-pin delay of a match for that node. Thus, for each node, we
consider all possible matches and choose the one which yields the
smallest new arrival time. Since the sequential cuts are pre-computed
at the begining of mapping and stored, this computation is fast.

The arrival time of the node is updated if the new value is larger
than the old value. Thus the arrival time at a node increases
monotonically during the computation. If ever the arrival time at any
PO exceeds φ, the iteration is stopped and the clock period is declared
infeasible. Otherwise, the arrival times will converge and the clock
period is feasible.

status SequentialArrivalTimes (circuit G, clock period φ)
 for each node n in G do
 if n is a PI then l(n) = 0 else l(n) = -∞
 do {
 for each non-PI node n in G do

matches() fanin()

() min max { () }new u n u nM n u M
l n l u t dφ→ →∈ ∈

= − +

 () max{ (), ()}newl n l n l n=
 if n is a PO and ()l n φ>
 return INFEASIBLE
 } while (the arrival times of some nodes have changed)
 return FEASIBLE

Figure 1. Iterative computation of sequential arrival times.
To find an optimum clock period, a binary search is performed

starting from a lower bound (set to 0) and an upper bound (set to the
delay of the longest combinational path). In each step of the binary
search, the iterative procedure in Figure 1 is repeated until a
convergence criterion is met. We emphasize that when the sequential
arrival times are computed, in essence, mapping and synthesis are
done at the same time since we have all cuts and all matches (obtained
using choice nodes) pre-computed, and we find the overall best match
according to the sequential arrival time computation.

3.2.3 Retiming associated with the final mapping
When the optimum clock period, φopt, is known, a mapping is

selected as described in Section 3.1. For each node n included in the
mapping, having sequential arrival time lopt(n) computed for φopt , the
final retiming is computed using the formula [32]:

()

0, if is a PI or PO
()

1, otherwise
opt

opt
l n

n
r n

φ

= −

If the mapped circuit is retimed using this formula, the resulting clock
period can be slower than the optimum clock cycle φopt by at most the
delay of a gate [34]. When the unit delay model is used in the fixed-
LUT-size FPGA mapping, this retiming gives the optimum clock
period.

Example. The network in Figure 2 illustrates the computation of the
sequential arrival times for the clock periods of 1 and 2 shown in the
tables. The combinational delay of an internal node is 1. The longest
combinational path (a, c, b) has delay 3. Initially, the arrival times of
the PIs, i and j, are set to 0, and arrival times of the internal nodes, a,
b, and c, are set to -∞. The clock period of 1 is infeasible because the
arrival times of the PO node c exceeds the clock period after the first
iteration. The clock period of 2 is feasible because the arrival times
converge after two iterations. The associated retiming is r(a) = r(c) =
0, r(b) = 1. Indeed, if the register on the edge (b, c) is retimed
backward over node b, the longest combinational path has delay 2.

φ = 1 φ = 2
Iter a b c Iter a b c

0 -∞ -∞ -∞ 0 -∞ -∞ -∞
1 1 1 2 1 1 1 2
2 2 3 3 2 1 3 2
3 3 4 4 3 1 3 2

Figure 2. Example of sequential arrival time computation.

3.3 Combining mapping with synthesis
The search space of combinational logic synthesis is added to those

of mapping and retiming, by deriving and storing multiple circuit
structures, produced during logic optimization, instead of considering
only one circuit produced at the end.

Accumulating different logic structures implementing the same
function is useful for two reasons. First, technology-independent

synthesis is heuristic and produces a network that is not optimal.
When this network is mapped, the mapper may fail to find a good set
of matches, which might exist for an intermediate network in the flow.
Second, synthesis operations usually apply to the network as a whole.
Optimization for delay may significantly increase area, since the
whole network, and not just the critical path, is optimized for delay.
By combining a delay-optimized network with an area-optimized one,
the mapper gets the best of both; on the critical path, logic structures
from the delay-optimized network will be used, whereas off the
critical path, the mapper may choose structures from the area-
optimized network. Similarly, multiple logic structures give additional
freedom that can be exploited by retiming to find a shorter clock
period.

The accumulation of choices has two effects on our overall flow.
First it increases the number of matches at each node which can
improve the sequential arrival times. Second, when area is recovered
at the end, there are more options for this because there are more
matches at each node.

The next two subsections discuss efficient construction of the choice
network and extended cut computation to handle choices.

3.3.1 Constructing the choice network
The choice network is constructed from a collection of functionally

equivalent networks. Recent advances in equivalence checking are
used to identify functionally-equivalent, structurally-different internal
points in the networks [21][24].

The choice network is an AIG derived by combining the original
functionally equivalent networks, while collecting the internal nodes
in the equivalence classes according to their global function. We use
random simulation to identify potentially equivalent nodes, and then
use a SAT engine to verify equivalence and construct the equivalence
classes. To this end, we implemented a package called FRAIG
(Functionally Reduced And-Inverter Graphs) that exposes the APIs
comparable to those of a BDD package but internally uses simulation
and SAT [27].

Figure 3. Equivalent networks before choicing.

Figure 4. The choice network.

s

q r
a b

c

i j

φφ

Example. Figures 3 and 4 illustrate construction of a network with
choices. Networks 1 and 2 in Figure 3 show the subject graphs
obtained from two networks that are functionally equivalent but
structurally different. The nodes x1 and x2 in the two subject graphs are
functionally equivalent (up to complementation). They are combined
in an equivalence class in the choice network, and an arbitrary
member (x1 in this case) is set as the class representative. Node p does
not lead to a choice because p is structurally the same in both
networks. There is no choice corresponding to the output node o since
the procedure detects the maximal commonality between the two
networks.

A different way of generating choices is by iteratively applying the
Λ- and ∆-transformations [23]. Given an AIG, we use the associativity
of the AND operation to locally re-write the graph (the Λ-
transformation), i.e. whenever the structure (x1x2)x3 is seen in the AIG,
it is replaced by the equivalent structures (x2x3)x1 and (x1x3)x2. If this
process is done until no new AND nodes are created, it is equivalent to
identifying the maximal multi-input AND-gates in the AIG and adding
all possible tree decompositions of these gates. Similarly, the
distributivity of AND over OR provides another source of choices.

Using structural choices leads to a new way of thinking about logic
synthesis: rather than trying to come up with a good final netlist used
as an input to mapping, we accumulate choices by applying a
sequence of transformations, each of which leads to improvement in
some sense. The best combination of these choices is selected during
mapping, retiming, or combined mapping/retiming, leading to the
triple integration of synthesis/mapping/retiming.

3.3.2 Cut enumeration with choices
The cut-based structural FPGA mapping procedure can be extended

naturally to handle equivalence classes of nodes. Given a node n, let N
denote its equivalence class. Let Φ(N) denote the set of cuts of the
equivalence class N. Then, Φ(N) = ()

n N

n
∈

Φ∪ , where, if a and b are the

two inputs of n belonging to equivalence classes A and B, respectively,
then

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}.
This expression for Φ(n) is a slight modification of the one used in

Section 3 to compute the cuts without choices. The cuts of n are
obtained from the cuts of the equivalence classes of its fanins (instead
of the cuts of its fanins). In the absence of choices (which corresponds
to the situation when each equivalence class has only one node) this
computation is the same as the one presented in Section 3. As before,
the cut enumeration is done in one topological pass from the PIs to the
POs in combinational designs and multiple passes in sequential
designs.

Example. Consider the computation of the 3-feasible cuts of the
equivalence class {o} in Figure 4. Let X represent the equivalence
class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) = {{x1}, {x2}, {q, r}, {p,
s}, {q, p, e}, {p, d, r}, {p, d, e}, {b, c, s}}. We have Φ({o}) = Φ(o) =
{{o}} ∪ {u ∪ v | u ∈ Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get Φ({o}) =
{{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}. Observe that the set of cuts
of o involves nodes from the two choices x1 and x2, i.e. o may be
implemented using either of the two structures.

The subsequent steps of the mapping process (computing delay-
optimum mapping and performing area recovery) remain unchanged,
except that mapping at each node is done using the additional cuts.
These cuts as well as the additional cuts overlapping with the gate
boundary (sequential cuts) represent orthogonal ways to improve the
quality of mapping.

3.4 Overall picture of sequential integration
Figure 5 illustrates the overall flow, emphasizing where the various

computations enter the picture. Computation begins by accumulating

functionally equivalent networks, which are processed by the FRAIG
manager, resulting in the choice network. Next, the cuts are computed
for each node, and matches are found for each cut. Then a binary
search is performed to find the best achievable clock period. If the
result is not okay, additional synthesis can be applied, resulting in
more and better choices, which may further improve the clock period.
Once the target clock period is found, the associated retiming is
performed, and the final network, after area recovery, is produced.
Note that steps denoted cuts and matches and seq arrival times involve
iteration over the sequential AIG until convergence.

Figure 5. High-level view of the integration flow.

4 IMPLEMENTATION DETAILS
AIGs have been used successfully in a number of logic synthesis

and verification projects [21][34]. To implement the integrated flow,
the combinational AIGs are generalized to handle sequential
transformations as shown in [1]. In the resulting sequential AIGs, each
edge has four attributes: (1) a node ID; (2) a complemented attribute;
(3) the number of registers; and (4) the vector of initial states of the
registers. Using sequential AIGs leads to an efficient implementation
for the following reasons:
• During the cut computation only two cut sets are merged at each

two-input AND node. Storing register numbers together with
node IDs on the edges allows for a convenient manipulation (e.g.
hashing) of the leaves of sequential cuts.

• The iterative arrival time computation is fast using the AIG
because this representation is uniform and compact.

• Retiming of a sequential AIG is simple because the register
numbers and initial values are stored on the graph edges.

• Computation of the initial state in backward retiming is reduced
to a SAT problem, which “records” the sequence of backward
register movements during retiming. (Computation of initial state
for forward retiming is easy.) Retiming of networks with
arbitrary gates and logic nodes is reduced to retiming of a
sequential AIG constructed to reflect the structure of the given
network.

5 EXPERIMENTAL RESULTS
The integrated flow was implemented in the sequential logic

synthesis and verification system ABC [2]. The ABC commands smap
and sfpga perform the integrated optimization for standard cells and
FGPAs, respectively. The implementation was tested on the designs
included in the IWLS `05 benchmark set [18]. Table 1 shows the
results of FPGA mapping into 5-input LUTs. Table 2 shows the results
of standard-cell mapping using the library, mcnc.genlib, from the
standard distribution of SIS. The netlists after mapping were verified
using a bounded SAT-based sequential equivalence checker in ABC.

The following notation is used in the tables. The first column lists
the benchmarks. The next five columns show the number of primary
inputs (PI), primary outputs (PO), registers (Register), AIG nodes
(AND2), and maximum number of logic levels of the AIG (Lev). The

Initial
network

Synthesis
script

FRAIG
manager

Choice
network

Cuts and
matches

Seq. arrival
times

Reduce
φ

Increase
φ

POs seq.
arrival < φ

Final
network

Area
recovery

Final
retiming

Mapping and retiming Initial
φ Yes

No
Not okay

Okay
Initial
state

Synthesis

number of gates and logic levels is given for an AIG after structural
hashing and algebraic balancing for minimum delay, as described in
Section 3.1. The next five columns show the clock periods after
optimization with different options:
• M – combinational mapping only
• MC – combinational mapping with structural choices (integrated

synthesis/mapping)
• M+R – combinational mapping followed by retiming
• MR – sequential mapping (integrated mapping/retiming)
• MC+R – integrated synthesis/mapping followed by retiming
• MCR – sequential mapping with structural choices proposed in

this paper (integrated synthesis/mapping/retiming)
The last two columns in the tables show the runtime, in seconds, of

the two most time-consuming steps in the fully integrated
computation. Column “Cut” gives the runtime of the exhaustive
computation of 5-feasible sequential cuts. Column “Iter” gives the
total runtime of the binary search for the optimum clock period. This
runtime is dominated by iterative computation of the sequential arrival
times. The runtimes are reported on a 1.6GHz laptop. The memory
requirements, not listed in the tables, were dominated by the
sequential cuts and were less than 500MB for the largest circuits
considered.

We also experimented with the ISCAS benchmarks and obtained
very close agreement with the results reported in Table 2 on the
average improvements in the clock period for both standard cells and
FPGAs. The details for individual benchmarks are omitted due to the
page limitation.

To summarize, the experiments show that the proposed approach
often substantially reduces the optimum clock period over separate or
partially-integrated approaches. The improvements achieved by the
integrated optimizations (MR and MCR) are substantially better than
those found by the consecutive application of the individual
optimizations. The runtimes confirm the scalability of the proposed
integrated flow.

6 CONCLUSIONS AND FUTURE WORK
This paper presents an approach synergistically integrating

combinational logic synthesis, technology mapping, and retiming. The
clock period found is provably the smallest one in the combined
solution space of the above transformations. It gives good results
because the multi-dimensional search space contains deeper minima
than the projection of this space on any specific dimension. The
approach is highly scalable because global minimization is achieved
by a sequence of simple local transformations. The proposed
implementation, based on sequential AIGs, scales to large circuits and
results in an average reduction of about 25% in clock period for both
standard cells and FPGAs.

Future work will focus on the following improvements:
• Register minimization after retiming. Our current proof-of-

concept implementation does not attempt to produce the final
retiming with the minimum number of registers. Besides sharing
registers across fanins and fanouts, the number of registers can be
reduced by either an exact linear program [31], or simpler
heuristics that move registers to better positions using local
sequential slacks.

• Area recovery for sequential circuits. Area recovery for
combinational circuits proceeds from inputs to outputs. The
required times do not change and, therefore, need not be
recomputed. However, for a cyclic circuit, both sequential arrival
and required times have to be recomputed whenever a node’s
timing is changed during area recovering. An efficient method for
updating this information is required.

• Convergence speed of iterative procedures. Sequential arrival
time computation in Figure 2 often iterates over the circuit many
times before converging or proving a clock period infeasible.

Also, the arrival times are recomputed from scratch whenever a
new clock period is assumed. These inefficiencies may be
addressed using Howard’s algorithm [14] to detect the critical
cycles and avoid re-computing the timing information for the
non-critical nodes.

• Generation of structural choices for sequential networks. Our
current procedures only generate choices from the un-retimed
version of the sequential circuit. We consider extending choice
generation to sequential networks by combining the
combinational choices derived for the original network and
networks with shifted register boundaries [26].

7 REFERENCES
[1] J. Baumgartner and A. Kuehlmann, “Min-area retiming on flexible circuit

structures”, Proc. ICCAD’01, pp. 176-182.
[2] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification. December 2005 Release.
http://www-cad.eecs.berkeley.edu/~alanmi/abc

[3] S. Bommu, N. O’Neill, and M. Ciesielski. “Retiming-based factorization
for sequential logic optimization”, ACM TODAES, Vol. 5(3), July 2000,
pp. 373-398.

[4] R. K. Brayton and C. McMullen, “The decomposition and factorization of
Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[5] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, “Multilevel optimization
for large-scale circuit placement”. Proc. ICCAD ’00, pp. 171-176.

[6] S. Chatterjee and R. Brayton, “A new incremental placement algorithm
and its application to congestion-aware divisor extraction”, Proc. ICCAD
’04, pp. 541-548.

[7] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, Proc. ICCAD '05, pp.
519-526.

[8] P. Chong, Y. Jiang, S. Khatri, F. Mo, S. Sinha, and R. Brayton, “Don't
care wires in logical/physical design”, Proc.IWLS’00, pp.1-9.

[9] P. Chong and R. Brayton, “Characterization of feasible retimings”, Proc.
IWLS ‘01, pp. 1-6.

[10] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs”,
IEEE Trans. CAD, vol. 13(1), January 1994, pp. 1-12.

[11] J. Cong and C. Wu, “An efficient algorithm for performance-optimal
FPGA technology mapping with retiming”, IEEE Trans. CAD, vol. 17(9),
Sep. 1998, pp. 738-748.

[12] J. Cong and C. Wu, “Optimal FPGA mapping and retiming with efficient
initial state computation”, IEEE Trans. CAD, vol. 18(11), Nov. 1999, pp.
1595-1607.

[13] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99, pp. 29-
35.

[14] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio and
mean algorithms”, ACM TODAES, Oct. 2004, Vol. 9(4), pp. 385-418.

[15] M. K. Ganai, A. Kuehlmann, “On-the-fly compression of logical circuits”,
Proc. IWLS ’00.

[16] W. Gosti, S. Khatri and A. Sangiovanni-Vincentelli. “Addressing the
timing closure problem by integrating logic optimization and placement”,
Proc. ICCAD‘01, pp. 224-231.

[17] A. P. Hurst, P. Chong, A. Kuehlmann, “Physical placement driven by
sequential timing analysis”. Proc. ICCAD '04, pp. 379-386.

[18] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[19] Y. Jiang and S. Sapatnekar. “An integrated algorithm for combined

placement and libraryless technology mapping,” Proc. ICCAD ’99, pp.
102-106.

[20] V. N. Kravets. Constructive multi-level synthesis by way of functional
properties. Ph.D. Thesis, University of Michigan, 2001.

[21] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification”,
IEEE TCAD, Vol. 21(12), Dec 2002, pp. 1377-1394.

[22] E. Y. Kukimoto, R. Brayton, P. Sawkar, “Delay-optimal technology
mapping by DAG covering”, Proc. DAC ’98, pp. 348-351.

[23] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, Vol.
16(8), 1997, pp. 813-833.

[24] F. Lu, L. Wang, K. Cheng, J. Moondanos, and Z. Hanna, “A signal
correlation guided ATPG solver and its applications for solving difficult
industrial cases," Proc. DAC `03, pp. 668-673.

[25] N. Maheshwari and S. Sapatnekar. “Efficient retiming of large circuits”,
IEEE Trans VLSI, Vol. 6(1), March 1998, pp. 74-83.

[26] S. Malik, K.J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,
"Performance optimization of pipelined logic circuits using peripheral
retiming and resynthesis", IEEE Trans. CAD, Vol. 12(5), May 1993, pp.
568-578.

[27] A. Mishchenko, S.Chatterjee, R. Jiang, and R. Brayton, “FRAIGs: A
unifying representation for logic synthesis and verification”, ERL
Technical Report, EECS Dept., U. C. Berkeley, March 2005.

[28] A. Mishchenko, S. Chatterjee, R. Brayton, and M. Ciesielski, “An
integrated technology mapping environment”, Proc. IWLS ’05, pp. 383-
390.

[29] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs”, Proc. FPGA ’06 (to
appear).

[30] P. Pan and C. L. Liu, “Optimum clock period FPGA technology mapping
for sequential circuits”, Proc. DAC ‘96, pp. 720-725.

[31] P. Pan, “Continuous retiming: Algorithms and applications. Proc. ICCD
‘97, pp. 116-121.

[32] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs”, Proc. FPGA ’98, pp. 35-42.

[33] P. Pan, “Performance-driven integration of retiming and resynthesis”,
Proc. DAC ’99, pp. 243-246.

[34] M. Papaefthymiou, “Understanding retiming through maximum average-
delay cycles”, Math. Syst. Theory, No. 27, 1994, pp. 65-84.

[35] J. S. Zhang et al, “Simulation and satisfiability in logic synthesis”, Proc.
IWLS ’05, pp. 161-168.

Table 1. Integration of synthesis/mapping/retiming for FPGAs (k = 5).

Network statistics Optimal clock period Runtime IWLS 2005
benchmarks PI PO Register AND2 Lev M MC M+R MR MC+R MCR Cut, s Iter, s

ac97_ctrl 84 48 2199 14261 11 3 3 3 2 3 2 2.56 1.69
aes_core 259 129 530 21125 21 6 6 6 6 6 6 4.15 5.61
des_area 240 64 128 4781 27 8 8 8 8 8 8 0.57 0.42
des_perf 234 64 8808 76716 17 5 5 5 4 5 3 16.97 9.32
ethernet 98 115 2235 19654 27 8 8 8 7 8 5 4.76 5.21
i2c 19 14 128 1151 12 4 4 4 4 4 3 0.15 0.12
mem_ctrl 115 152 1083 15191 28 9 8 9 8 8 6 1.32 1.85
pci_bridge32 162 207 3359 22742 22 7 7 7 6 7 6 5.92 4.52
pci_spoci_ctrl 25 13 60 1369 16 5 5 5 5 5 4 0.27 0.31
sasc 16 12 117 772 8 3 2 3 2 2 2 0.12 0.05
simple_spi 16 12 132 1031 10 3 3 3 3 3 3 0.22 0.15
spi 47 45 229 3768 31 8 8 8 6 8 6 0.60 0.71
ss_pcm 19 9 87 405 7 2 2 2 2 2 2 0.04 0.03
systemcaes 260 129 670 12279 44 10 9 8 7 9 6 2.88 3.42
systemcdes 132 65 190 2933 23 7 7 5 4 6 4 0.36 0.31
tv80 14 32 359 9503 42 14 12 12 9 11 8 1.24 2.62
usb_funct 128 121 1746 15670 23 7 7 7 6 6 5 2.45 3.96
usb_phy 15 18 98 456 9 3 3 3 2 3 2 0.07 0.04
vga_lcd 89 109 17079 126687 19 7 7 7 5 7 4 23.01 21.00
wb_conmax 1130 1416 770 47535 18 7 7 7 5 7 5 3.53 2.32
wb_dma 217 215 563 4044 22 8 8 8 6 8 6 0.46 0.40
Ratio 1.00 0.96 0.97 0.82 0.95 0.74

Table 2. Integration of synthesis/mapping/retiming for standard cells (mcnc.genlib)

Network statistics Optimum clock period Runtime IWLS 2005
benchmarks PI PO Register AND2 Lev M MC M+R MR MC+R MCR Cut, s Iter, s

ac97_ctrl 84 48 2199 14261 11 8.30 8.00 8.00 6.13 7.50 5.69 3.48 9.29
aes_core 259 129 530 21125 21 17.30 17.00 17.76 17.19 17.22 16.80 5.81 24.67
des_area 240 64 128 4781 27 22.00 22.00 22.13 23.25 22.13 22.77 0.80 1.02
des_perf 234 64 8808 76716 17 14.80 13.60 14.80 11.81 12.19 10.83 22.90 30.25
ethernet 98 115 2235 19654 27 21.30 19.70 20.39 20.34 19.33 14.06 5.87 20.59
i2c 19 14 128 1151 12 10.00 10.00 10.13 8.00 10.13 7.50 0.21 0.76
mem_ctrl 115 152 1083 15191 28 21.10 21.90 21.30 18.89 21.66 15.02 1.83 6.81
pci_bridge32 162 207 3359 22742 22 17.70 17.10 16.31 15.03 16.12 15.23 7.46 17.56
pci_spoci_ctrl 25 13 60 1369 16 12.10 11.00 12.34 10.94 10.97 8.91 0.35 1.48
sasc 16 12 117 772 8 7.40 6.80 7.05 6.91 6.32 6.09 0.16 0.42
simple_spi 16 12 132 1031 10 9.10 9.10 9.02 7.50 8.67 7.03 0.30 0.95
spi 47 45 229 3768 31 21.80 19.70 17.85 17.00 15.60 16.00 0.80 3.12
ss_pcm 19 9 87 405 7 6.60 6.30 5.91 4.50 5.71 4.13 0.07 0.23
systemcaes 260 129 670 12279 44 28.10 25.20 26.34 24.57 24.65 22.78 3.99 12.85
systemcdes 132 65 190 2933 23 19.90 19.20 15.81 13.56 15.24 13.56 0.50 2.06
tv80 14 32 359 9503 42 33.90 31.80 31.13 26.72 29.58 24.96 1.74 11.65
usb_funct 128 121 1746 15670 23 19.70 17.20 19.33 14.00 17.40 13.41 3.24 13.47
usb_phy 15 18 98 456 9 7.10 6.80 7.11 6.50 6.87 5.25 0.10 0.35
vga_lcd 89 109 17079 126687 19 15.50 14.60 15.59 11.63 14.53 9.52 30.17 126.76
wb_conmax 1130 1416 770 47535 18 15.90 15.90 15.10 12.58 14.82 11.86 4.87 11.77
wb_dma 217 215 563 4044 22 18.60 17.80 17.70 15.61 16.71 14.22 0.56 2.36
Ratio 1.00 0.95 0.96 0.84 0.91 0.76

