
Logic Debugging of Arithmetic Circuits 
Samaneh Ghandali, Cunxi Yu, Walter Brown, Duo Liu,  and Maciej Ciesielski  

VLSI CAD Laboratory, University of Massachusetts, Amherst 

Department of Electrical and Computer Engineering 
 

This work is supported in part by the National Science Foundation under  
NSF award No. CCF-1319496 and CCF-1419657 (REU) 

 
Department of Electrical and Computer Engineering – University of Massachusetts, Amherst 

Abstract 
This paper presents a novel diagnosis and logic debugging method for gate-level 
arithmetic circuits. It detects logic bugs in a synthesized circuit caused by using a 
wrong gate (“gate replacement” error) that change the functionality of the circuit. 
The method is based on modeling the circuit in an algebraic domain and 
computing its algebraic signature. The location and type of the bug is determined 
by comparing signatures computed in both directions, using forward (PI to PO) 
and backward (PO to PI) rewriting. It will also perform automatic correction for the 
detected bugs. The approach is demonstrated and tested on a set of integer 
combinational arithmetic circuits. 

Preliminaries 
We follow the arithmetic verification approach proposed in [1], with the circuit 
modeled as a network of basic logic gates (INV, AND, OR, XOR, etc.). Each gate 
is represented as a pseudo-Boolean polynomial, with Boolean variables X = 
{x1, ..., xn} and integer coefficients from Z2

n as follows: 
 
 
 
 
 
 
Input Signature: Sigin is a polynomial in primary input variables that uniquely 
represents an integer function computed by the circuit. Example (Figure 1): Sigin = 
(a0+2a1)(b0+2b1) for a 2-bit unsigned multiplier. 
 
Output Signature: Sigout of the circuit is defined as a polynomial in the primary 
output signals, which is uniquely determined by an n-bit encoding of the output. 
Example (Figure 1): Sigout = z0+2z1+4z2 for a 2-bit unsigned multiplier. 
 
Cut Signature: The cut is a set of signals that separates PIs from POs. The 
signature of a cut is a polynomial expression in signal variables of the cut that 
represents an integer number computed by the circuit. 

¬a =1− a
a∧b = a ⋅b
a∨b = a+ b− ab
a⊕ b = a+ b− 2ab

Conclusions 
This work describes an original idea of identifying and correcting bugs caused by gate 
replacement or signal inversion in gate-level arithmetic circuits. The goal was to provide 
a proof of concept for the method that can be extended to solving practical problems in 
arithmetic circuit verification and bug correction. The method can handle multiple bugs 
as long as the bugs are independent. Determining the best set of cuts to improve the 
efficiency of the method is the major goal of future work. 

Experimental Results 
The debugging algorithm was implemented in C#. The experiments were conducted on 
a PC with Intel 1.80-GHz Core i7 processor and 6 GB of memory under Windows 8. 
The results include two arithmetic designs: Wallace-tree Adder and CSA-Array 
Multiplier. The largest, a 128-bit multiplier, contains more than 1.3 million gates. 
Observations: 
1.  The number of bugs doesn’t increase the CPU time dramatically. 
2.  CPU time over number of gates is linear, even for non-linear circuits (multiplier).  

                 Correct 
 Buggy	


AND	
 OR	
 XOR	


AND	
 a+b-2ab	
 a+b-3ab	

OR	
 -a-b+2ab	
 -ab	


XOR	
 -a-b+3ab	
 ab	


TABLE I. Bug look-up table 

Bug Identification 
Our debugging method consists of: computing cut signatures by forward rewriting, 
backward rewriting, and comparing the two signatures for each cut to identify and 
fix the bugs. 
 
A. Forward rewriting (PI-PO) 
Forward (PI-PO) rewriting starts by dividing the initial polynomial, Sigin, by the 
polynomials describing logic gates connected to the PI signals. The goal is to 
replace the input variables associated with the PI gates with an expression 
involving the corresponding gate outputs. This process is applied iteratively to the 
signals of the subsequent cuts until it reaches the POs. 
 
B. Backward rewriting (PO-PI) 
Backward (PO-PI) rewriting is basically a reversed symbolic simulation [1]. 
Starting at the POs, the output signal of each gate is replaced by the algebraic 
expression in its inputs, until it reaches the PIs. 
 

18.32&
184.5&

1927&

23.5&
189.43&

2027&

30.78&
194.45&

2136&

32-bit& 64-bit& 128-bit&

Mul$plier�
1&Bug& 3&Bugs& 5&Bugs&

1.46%

3.4%

6.7%

1.56%

3.51%

6.92%

1.61%

3.58%

6.98%

32,bit% 64,bit% 128,bit%

Adder�
1%Bug% 3%Bugs% 5%Bugs%

Figure 3. CPU time (sec) 

0"

500"

1000"

1500"

2000"

0" 50" 100" 150"

CP
U
")
m
e"
(s
ec
)�

Number"of"gates� 10^3�

CSA=Mul)plier�

1"bug"

3"bugs"

5"bugs"

a1 a0b0b1

z1z2 z0

f0

f1

f2

f3

e d
c

g

Sigout = z0 + 2z1 + 4z2

Sigin = (a0 + 2a1)(b0 + 2b1)

Transform
      Sigout(f3) into  Sigin(f0)

Transform
      Sigout(f3) into  Sigin(f0)

Figure 1. Forward and backward rewriting               

a1 a0b0b1

z1z2 z0

f0

f1

f2

f3

e d
c

g

∆1

∆0

∆2

∆3

Figure 4. CPU time as a function of the number of gates 

C. Computing the signature difference 
A pair of algebraic expressions is generated for each cut of the circuit: one 
computed by the forward and the other by the backward rewriting. The expression 
of Δi (Figure 3) will be used to identify and to correct the bug. 

Figure 2. Buggy 2-bit multiplier              

[1]	
  M.	
  Ciesielski,	
  C.	
  Yu,	
  D.	
  Liu,	
  W.	
  Brown,	
  A.	
  Rossi.	
  "Verifica?on	
  of	
  Gate-­‐level	
  Arithme?c	
  Circuits	
  by	
  Func?on	
  Extrac?on"	
  	
  	
  Design	
  Automa?on	
  Conference	
  (DAC),	
  2015	
  52st	
  ACM/EDAC/IEEE.	
  

Table I shows the difference in the signatures 
between the cut with the correct gate and the 
cut with the wrong gate.  

Δ1 = 4(d + c− 2dc)− 4ec− 4ed + 4ecd

ISVLSI 2015 


