TABLE OF CONTENTS

Page
CHAPTER
1. TAYLOR DECOMPOSITION SYSTEM MANUAL 1
1.1 Taylor Decomposition System Data Structure 3

1.2
1.3
1.4

1.1.1 TDS interface with high level synthesistools 6

1.1.2 Transforming Internal Data Structures 8
TDS ENVIrONMENto i e 8
ALIASES . . 10
COMMANASttt 11
1.4.1 Variable Ordering e 11
1.4.2 Optimizationo i et 12
143 Gautand QUartusttt it ia e 14
144 RegiSterS . ..o 17
145 PreCiSSIONot e e e 20
1.4.6 Linearizationo it e 25
1.4.7 DeCompOSItiONt e e 26
1.4.8 TEDtoDFG Transformationscccmmmeeonn.. 27
1.4.9 Replacing constant multiplication with shifters 29

CHAPTER 1

TAYLOR DECOMPOSITION SYSTEM MANUAL

Taylor
Compiled at:
Tds 0> help
— balance

bbldown
bblup
bottom
bottomdcse
bottomscse
candidate
cluster
clusterexe
clusterinfo
compute
cost

dcse
decompose
dfactor
dfg2ntl
dfg2ted
dfgarea

dfgevalconst

dfgflatten
dfgschedule
dfgstrash
erase
eval
exchange
extract
fixorder
flip

info
jumpAbove
jumpBelow
Icse
linearize
listvars

Decomposition System
15:56:30(GMT) ,

Sep 9 2012

Balance the DFG or Netlist to minimize latency.
Move down the given variable one position.

Move up the given variable one position.

Move the given variable just above node ONE.
[CSE Dynamic] Move candidates just above node Ol
[CSE Static] Move candidates just above node ON
Show the candidates expression for CSE.

Create partitions from multiple output TEDs.
Execute a command on a TED paritions.

Print out information from the clusters
Annotate required bitwidth for
Print out the cost associated to
[CSE Dynamic] Extract all
Decompose the TED in its Normal
Dynamic factorization.

Generate a Netlist from the DFG.
Generate a TED from the DFG.
Balance the DFG to minimize the area.
Evaluates explicit DFG constants

Smooths out all DFG outputs used as DFG inputs
Perform the scheduling of the DFG.
Perform a structural hash of the DFG.
Erase a primary output from the TED.
Evaluate a TED node.

Exchange the position of two variables.
Extract primary outputs from the TED or
Fix the order broken by aretime operation.
Flip the order of a linearized variable.

this TED.

Factor Form.

Print out TED information: statistic , etc.
Move a variable above another one.

Move a variable below another one.

CSE for linearized TED.

Transform a non linear TED into a linear one.
List all variables according to its ordering.

exact computation|.

candidates available.

Netlist.

load

ntl2ted Extract from a Netlist all TEDs.

optimize Minimize DFG bitwidth subject to an error bound.

poly Construct a TED from a polynomial expression.

print Print out TED information: statistic , etc.

printenv Print the environment variables.

printntl Print out statistics of the Netlist.

purge Purge the TED, DFG and/or Netlist.

pushshifter Perform a structural hash of the DFG.

quartus Generate, compile and report Quartus project.

read Read a script, a CDFG, a TED or a DFG.

recluster Reclusters paritions according to an objective.

reloc Relocate the given variable to the desired posi

remapshift Remap multipliers and additions by shifters.

reorder Reorder the variables in the TED (Préixed cost)

reorder x Reorder the variables in the TED. (Userost)

retime Performs (forward/backward) retiming in TED.

save Save the environment.

scse [CSE Static] Extract candidates , one at tame.

set Set the variable bitwidth and other options.

setenv Set a environment variable.

shifter Replace edge weight by constant nodes.

show Show the TED, DFG or Netlist graph.

sift Heuristically optimize the level of the variable.

sub Substitute an arithmetic expression by a variab

ted2dfg Generate a DFG from the TED.

top Move the given variable to the root.

tr Construct a TED from predefined DSP transforms.

vars Preset the order of variables.

verify Verifies that two TED outputs are the same.

write Write the existing NTUDFG|TED into a file.
GENERAL

I[bin] System call to execute bin.

hlelp] Print this help.

e[xit] Exit the shell.

gluit] Quit the shell.

history Print all executed commands with execution time

time Show elapsedtime for the last command executed|

man Print the manual of the given command.

Use <TAB> for command completion. i.e. type HTAB> for flip .

Load the environment.

tion .

S.

TDS system manual, by Daniel Gomez-Prado 2

1.1 Taylor Decomposition System Data Structure
The Taylor Decomposition System (TDS) is composed of a éhelgjrating three data
structures as seen in figure 1.1, the Taylor Expansion Diagf&D), the Data Flow Graph

(DFG) and Netlist (NTL).

1. TED captures the functionality of an algebraic data path@erforms optimizations

on the behavioral level.
2. DFG provides a mechanism to visualize the data-path beipgmented by TED.

3. NTL provides a mechanism to communicate with a high leyedlgesis tool (GAUT).

VHDL Regression Tests
C/C++} ‘ SaLE Save/Store sessions
CDFG TED DFG
write] read write] read writeI read
| I |
dfg2ted
.............. A ntl2ted
A Netlist
3> Manager Manager ted2dfg Manager
-l% :tC|:
e |
g

e dfg2ntl

DD EDED

Figure 1.1. Taylor Decomposition System'’s internal data structures.

TDS system manual, by Daniel Gomez-Prado 3

The TED manager is the main data structure containing theseal TED graph. Most

of the algorithms described related to TED are implementigdinvthe TED manager by

visitor classes as shown in Figure 1.2.

IS Functor:

Ted Manager

P e e T e S

7

MW BFS iterator, DFS iterator
|

Mux

Area

Nodes Cost
Edges

delay

Reorder pusmsws

1 i node | Kkids

[Annealing

Sift
Exhausive

1
1
1
1
1
1
Strategy :
1
1
1
1
1
\

node

kids

Ted Container

i
—— e ——— —— o = = = o = =
i

varl paaem e

var2

e e o e e e o o

—— e e e e e e e e = =

1
1
1
1
1
1
1
)

[Primary Inputs]

Linearization
Retiming
Binary
Constant
Variable
Grouping

Figure 1.2. Taylor Expansion Diagram’s internal data strcuture.

Figure 1.3 provides an additional view of how the differeatadstructures in TDS are

integrated. The NTL data structure is used to import and expaontrol Data Flow Graphs

(CDFG) generated by high level synthesis tool. The TDS sydias been interfaced to

GAUT (which can be obtained for free at http://hls-labstirgv-ubs.fr/) as its primary high

level synthesis engine. Additionally, the TDS system aiggp®rts importing and exporting

control data flow graphs in eXtendded Markup Language (XMitjrfat. The high level

synthesis tool parses C/C++ designs, compiles them, asldtieshem into CDFG or XML

formats which can then used by TDS to perform different ofations. In the TDS system

TDS system manual, by Daniel Gomez-Prado

optimizations are encoded into scripts which can be exdagdile batch or command by

command through the shell console.

C, Behavioral HDL \ Matrix transforms,
' Polynomials
E /I’ED-based Transformations \
1
DFG extraction : TDS network [Variable ordering]
1
1
| H [TED linearization]
1
2| i Structural Functional [Common subexpression]
a I i elements TED elimination (CSE)
.g | E [TED factorization]
5 | Optimized | Structural & decomposition
! DEG ! DFG [Constant multiplication]
! k & shifter generation /
i
1
Architectural synthesis ! TDS network
GAUT ! DFG-based Transformations
E [Static timing analysis]
I . .
i Design Design [Resource constraints]
RTL VHDL ' constraints objectives
. [Latency optimization]
i
1
GAUT Flow TDS Flow Behavioral Transformations

Figure 1.3. Taylor Decomposition System flow.

Although CDFGs can be read into TDS and plot into its NTL datacsure, there are
structural elements in the NTL that cannot be transformTiiED®, these structural elements
force a single design netlist to be represented by a set osTHEDRvhich the input of some
TEDs are the outputs of other TEDs. Figure 1.4(a) shows a {@ules GAUT, and figure
1.4(b) shows the NTL data structure with structural eleménported into TDS.

The optimized CDFG provided by TDS can afterwards given acthe high level
synthesis tool to finish the synthesis process and geneRxdgiater Transfer Level (RTL).
The final hardware cost after logic synthesis, map and rgutan be obtained withi the

TDS shell by compiling the design into an Altera project andring the Altera Quartus

TDS system manual, by Daniel Gomez-Prado 5

tool (which can be downloaded for free at http://www.alteoan/products/software/sfw-

index.jsp).

IE] GAUT 2.2.0 build 24/01/2008 - Lester Lab, UBS University, Lorien & x|

Va

x| B ‘ [bitwitth aware ‘ Lbrary: notech_16k L'E'S'T'E'R E = EII] Loy

Tangs Réd

‘/—I Primary output

Opened file :
CiC++ Compiier | Graph |
= E = S A R e e —| T
int main(int a, int b, int ¢, int d, int e, int f, int g, int h, int * F) {)
int t; Functional

operations
if (a+b>c+d) {

t = a+b;
}else {

t =c+d;
}

*F = t*d*f'g + t'e*h*c +¢*t*g'f+ t"d*f*h+ the*c*g
+t*d*e*g + t*f'c*h+ t*d*e*h;

{FF= t*(c+d)*(e+f)*(g+h);

return 0;

}

generate cdfg file
end of cdfg file ger
CiheauTz]t
End of sem:
Time used for compilation: 183 ms

Line: 1 Colum

Structural
element

Primary inputs
Example behavioral design in C Initial TDS network

() (b)

Figure 1.4.(a) GAUT system. (b) The control data flow graph imported ihix5.

1.1.1 TDS interface with high level synthesis tools
Besides importing and exporting CDFGs, the comamnds redavaite allow to store
and load the TED and DFG internal data structures. These emsnas shown in listings

1.1 and 1.2, recognize the input and output format baseckifildname extension.

TDS system manual, by Daniel Gomez-Prado 6

Listing 1.1. Import Facility

Tds 01> read —h

NAME
read — Read a script, a CDFG, a TED or a DFG.
SYNOPSIS
read inputfile .[c|cpp|scr|poly|mx|ted|cdfg|xml]
OPTIONS
—h, —help
Print this message.
input file
The file to read could be any of the following extensions:
— clcpp for c files
— poly|scr for script files
— mx for matrix files
— ted for ted data structure files
— cdfg for files generated from GAUT
— xml for files generated from GECO
[——no_dff]

disables register "DFF”" discovering when reading the cdfg
SEE ALSO
write , show, purge

Listing 1.2. Export Facility

Tds 0I> write —h
NAME
write — Write the existing NTUDFG|TED into ax.[cdfg|dfg|ted] file.
SYNOPSIS
write [cdfg options] outputfile .[cdfddfg|ted|scr]
OPTIONS
—h, —help
Print this message.
[cdfg options]
—d, —dfg
Uses the DFG data structure as starting point
—t, —ted
Uses the TED data structure as starting point
—n, —ntl
Uses the NTL data structure as starting point [DEFAULT BEHBR]
outputfile
The desired output file name. The extension defines the farm

—cC c language.

— cdfg current GAUT format.

— dfg internal DFG data structure.

— ted internal TED data structure.

— gappa GAPPA script for computing the accuracy of the DFG dattructure.
— xml XML format for the DFG data structure.

— scr|poly generates a script file from the commartdstory .
NOTE
By default the file format determines the data structure nfiravhich
the file will be writed: cdfg>NTL, dfg—DFG, ted—>TED
EXAMPLE
write poly2.cdfg
writes the NTL in a cdfg file format
write —ted polyl.cdfg
converts the TED into NTL and then writes its into a cdfgléi
write polyl.dfg
. writes the DFG in file polyl.dfg
SEE ALSO
read, purge

TDS system manual, by Daniel Gomez-Prado

1.1.2 Transforming Internal Data Structures

The transformationstl2ted, dfg2ted, dfg2ntlare a one to one transformation. This is
not the case with theed2dfg transform which might generate different DFG graphs from
the same TED, depending on how the TED is traversed. Thispidel on theed2dfg
command shown in figure 1.3 by options —normal and —factor

Listing 1.3. Transforming TED into DFG

Tds 01> ted2dfg —h

NAME
ted2dfg — Generate a DFG from the TED.
SYNOPSIS
ted2dfg [method]
OPTIONS
—h, —help
Print this message.
[method]
—I, —latency F—cluster, —clusterA ,—clusterD] —level]
Generate a DFG by balancing all operations on it
Sub option:—clusterA
Generate the DFG using only TEDs in clusterA.
Sub option:—clusterD
Generate the DFG using only TEDs in clusterD.
Sub option:—cluster
Generate the DFG using TEDs in both clusterA and clusterD.
Sub option:—Ilevel
Maintain the delay level of extracted boxes in the Netlist.
—n, —normal —cluster, —clusterA , —clusterD]
Generate a one to one translation of the DFG through a TED NF&versal [DEFAULT BEHAVIOR].
—f, —factor , —flatten [—show]

Flatten the DFG by factorizing common terms in the TED graph.
Sub option:—show
Treat each factor found as a pseudo output in the DFG graph.
DETAILS
Most of the times this construction is made implicit. For itmsice when
an operation in a DFG is requested(i.ehow —d)and no DFG exist yet
an implicit conversion occurs. If a DFG already exist thisnomoand will
overwrite it.
EXAMPLE
poly X = a—b+c
poly Y = a+b-c

poly F = X+Y

dfg2ted —normal

show —dfg

echo produces a DFG with outputs X,Y and F
purge —dfg

dfg2ted —factor

show —dfg

echo polynomials X and Y disappear in the DFG as evaluation Faf

echo the resulting polynomial F =+&, has no record of X or Y
SEE ALSO

ted2ntl, ntl2ted, dfg2ted, dfg2ntl

1.2 TDS Environment

There is a set of environments in TDS that can be customizée. complete list of
environments is stored on a file named tds.env and showrtimgli.4.

The current list of environment settings can be obtainedd® With the command print

environment;

Tds 0> printenv

TDS system manual, by Daniel Gomez-Prado 8

Listing 1.4. TDS Environment

H* H*

Environment file generated by TDS. #
http ://incascout.ecs.umass.edu/main #

a3

Environment variable

|

Value

bitwidth_fixedpoint
bitwidth_integer
cdfg-bin_path
constas.vars
constcdfg-eval
constprefix
defaultdesignname
delayADD
delayLSH
delayMPY
delayREG
delayRSH
delaySUB
dot_bin
fpga.device
fpga-family
gautallocatestrategy
gaut.bin_path
gautcadency
gautclock
gaut.costextension
gautgantt.generation
gautlib_path
gautmem
gautmem.generation
gautoptimize.operator
gautregisterstrategy
gautschedulestrategy
gaut-soclib_.generation
gaut-tech.lib
gaut.tech-lib_vhd
gauttech_.vhd
negativeprefix
ps-bin
quartusbhin_path
rADD
rMPY
rSUB
reordertype
show_bigfont
show.directory
show_level

show.verbose

4,28

32

/home/daniel /Gaut/GAUI2.4.2/GautC/cdfgcompiler/bin/
false

false

const

tds2ntl

1

1
2
1
1
1
dot

AUTO

"Stratix 17

—distributedth_lb

/home/daniel /Gaut/GAUI2_.4_.2/GautC/bin/
200

10

.gcost

false

/home/daniel /Gaut/GAUI2.4.2/GautC/lib/
10

false

true

0

force_no.pipeline

false

notech16b.lib

notechlib.vhd

notech.vhd

Other possible values|

R R S i

gautschedulestrategy
gautallocatestrategy

gautregisterstrategy

ps.bin
reordectype

moins
evince
0
0
0
proper
false
./ dotfiles
true
false
{", "force_no_pipeline”, "force_no_mobility”, "no_more.stage”, ™}
{"—distributedth_Ib”, "—distributedreuseth”, "—distributedreusepr_ub”,
"—distributedreusepr”, "—global_pr_lb”, "—global_pr_ub”}
{0, 17, "2", "3"
0 MABM [default]
1 MLEA
2 Left edge
3 None
{"evince”, "gv", "gsview32.exe’}
{"proper”, "swap”, "reloc”}

TDS system manual, by Daniel Gomez-Prado

Similarly, a particular setting can be modified with the coama set environment:

Tds 02> setenv reordertype = proper

The current environment can be saved:

Tds 03> save [optional filename argument, default is tds.env]

or load and re-load:

Tds 04> load [optional filename argument, default is tds.env]

The environment variables have a direct impact on how @iffecommands work, for
instance the environment variable capsefix determines the string expected by the CDFG
parser to identify a constant value, if this value is modifedidconstants read from the

CDFG file will fail to be identify and will be treated as variab.

1.3 ALIASES

Additional to the commands provided by TDS, one can useeditsrefer to a particu-
lar command or to a group of commands. The list of aliasesldim@ustored in a file named
tds.aliases with the format shown in listing 1.5. This filaioaded by TDS on startup,
so any modification on this file requires restarting the TDSew. It is worth noting that
this alias commands do not accept arguments, thereforelpaae be invoked on these
alias-commands.

Listing 1.5. Alias Commands

HHt
#reserved word alias name sepdolon separated commands#

alias flatten ted2dfg —n; dfgflatten; dfg2ted
alias stats print —s

alias shifter* shifter —ted; remapshift

alias gautn cost —n

alias gautd cost —d

alias gautt cost —t

TDS system manual, by Daniel Gomez-Prado 10

1.4 Commands
1.4.1 Variable Ordering

Moving an individual variable in the TED data structure candthieved by the fol-
lowing commandsbblup, bbldown, bottom, top, flip, reloc. While reordering the TED
to optimize a specific metric is achieved by the commandsierand reorder*. All these
commands except lrgorder* are subject to three reordering algorithms as shown in list-
ing 1.6.

Listing 1.6. Alias Commands

[reorder algorithm]

—p, —proper
The proper algorithm toreorder the TED as described in the paper
http ://doi.ieeecomputersociety.org/10.1109/HLDVT(®01431235 [DEFAULT BEHAVIOR].

—reloc (TO BE DEPRECATED IN A FUTURE RELEASE)
Reconstructs the TED with the desired order of variables.isThs
slow, but serves as golden reference.

—swap (TO BE DEPRECATED IN A FUTURE RELEASE)
A Hybrid implementation, that restructures the TED with the desired
orden, but internally uses reconstructs and operations be bottom
graph.

In this particular setting the default algorithm is the syapt this setting can always
be changed on the environment settings of the TDS. The rdastimese many implemen-
tations is best understood with the following recap:

Brief history: There have been 4 different implementations of the TED pgeka

1. The first one used internally the ccud package and wa®dtart 2002 and never

finished.

2. The second one was a re-write of the package called TEDG# 22005, and imple-

mented the construction of the TED and variable ordering.

3. The third version named TEDify was an optimized versiornhef second package

built from scratch to cope with memory problems and efficje@06 - 2007.

4. The forth version was also started in 2006 and was named TbB&development
of the third and forth version overlapped in time, and beeanther people started

working on the forth version, the TEDify was abandon andlgeathms ported into

TDS system manual, by Daniel Gomez-Prado 11

TDS. Since 2008 substantial changes and improvements leaverbade to the TDS

package.

Coding the variable ordering algorithm is most likely oneglaf most troublesome parts to
write on the TED data structure. And although the properréigm built for TEDify has

been completely ported to TDS, new requirements on the tfatetgre (retiming, bitwith,

error) require new modification to this algorithm. Therefarquick and dirt implementa-
tion called swap has been left, this implementation diggany information other than
the variable name in a TED. The proper implementation peréa bit faster than the swap
and produces the same results, but currently it is being fieddio take into account the

register limitations imposed by retiming in TED.

1.4.2 Optimization

Ordering the TED to optimize a particular cost function isgible. The commands
reorder and reorder* permit to evaluate the variable ondedf a TED to a certain cost
function. For instance, each of the TEDs shown below comedpo the same TED but
with different orderings as to minimize the number of nodesnber of multipliers, latency,
etc. Searching for the best TED ordering for a particulat iosction is in the worst case
exponential in the number of nodes (an exhaustive searabt ifkbommended), therefore
one can specify other heuristics with the commaeadrder andreorder* as shown in

listing 1.7.

TDS system manual, by Daniel Gomez-Prado 12

Listing 1.7. Heuristic number of iterations

[iteration strategy]
—a, —annealing +—no.stride] —stride.backtrack] f—pJumpAbove]
[-—pJumpBelow] {—beta] F—alpha] F—ratio] [-—adjustment]
It minimizes the cost function by using the annealing algorithm
Sub option:—no_stride
Prevents (groups of a) multiple output TEDs to be treated adlividual TEDs
Sub option:—stride_.backtrack
Enables backtracking after annealing each single stride
Sub option:—probAnnealingJumpAbove;paja doublenumbetrbetweenO_and.1
Defines the probability that one variable will jump above ather one
Sub option:—probAnnealingJumpBelow —pajb doublenumbecrbetween0O_and.1
Defines the probability that one variable will jump below ather one

Sub option:—beta doublenumberbetweenO.and.1
Defines a scale factor for the initial temperature of the a@mahing algorithm
Sub option:—alpha doublenumbectbetweenO.and.1
Defines a scale factor for the new temperature of the anne@lialgorithm
Sub option:—ratio integer
Defines a scale factor for the number of levels
Sub option:—adjustment integer
Defines an adjustment to the initiakost of the annealing algorithm
—e, —exhaustive +—end] —no.stride]

Tries all possible orders by doing permutation, is O(N!)

Sub option:—end
Prevents the abortion of the permutation when 'ESC’ is predbs

Sub option:—no_stride
Prevents clustering multiple output TEDs

—s, —sift [—g, —group]

Moves each variable at dime through out the height of the TED

graph till its best position is found, is O(N"2)[DEFAULT BRYIOR].

Sub option:—g, —group
This option only affects the SIFT algorithm. If grouping isekected ,
the sifting is done preserving the relative grouping of allaniables
that were linearized. If not every single variable is moveégmardless
of its grouping.

The commandeorder can optimize one of the following cost functions (only onstco

function at a time) as shown in listing 1.8.

Listing 1.8. Cost functions for commaneorder

[cost functions]
Definitions:
ted-subexprcandidates of product terms in the TED with 2+ parents ceating to ONE

#
of nodes in the TED graph

ted_nodes =

tLatency = the latency computed from the TED graph

nMUL = # of multiplications in the DFG graph

nADD = # of additions in the DFG graph

nSUB = # of substractions in the DFG graph

rMPY = # of multipliers after scheduling the DFG

rADD = # of adders and subtractors after scheduling the DFG
dLatency = the latency of the DFG

gLatency = the latency of the Gaut implementation

Environment variables used tset the:
1) delay of the DFG operators:
delayADD [Default value = 1]
delaySUB [Default value = 1]
delayMPY [Default value =
delayREG [Default value =

2) maximum number of resources used by the DFG scheduler:
rMPY [Default value = 4294967295]
rADD [Default value = 4294967295]
rSUB [Default value = 4294967295]
—node
Minimizes the function "1&ted_.nodes— ted_subexpccandidates”
—tl, —tLatency
Minimizes the TED latency, its critical path, subject to theesources specified in the environment variables
—nm, —MUL {legacy —-m, —mul}
Minimizes the function "1&nMUL — ted-subexprcandidates” [DEFAULT BEHAVIOR]

—op

Minimizes the function "1&(nMUL + nADD + nSUB)— ted-subexprcandidates”
—opscheduled

Minimizes nMUL, followed by(nADD+nSUB), dfg latency , rMPY rADD
—dl,——dLatency {legacy —latency}

Minimizes the DFG latency subject to the resources specdfien the environment variables
—bitwidth

Minimizes the bitwidth of the HW implementation subject tonlimited latency|resources
—gm, —gMUX {legacy —gmux}

Minimizes the Gaut mux count in the Gaut implementation(leamux is considered 2 to 1)
—gl, —glLatency {legacy —glatency}

Minimizes the Gaut latency in the Gaut implementation
—gr, —gREG {legacy —garch}

Minimizes the Gaut register count in the Gaut implementatio
—gappa

Minimizes the upper tighter bound found trough Gappa

TDS system manual, by Daniel Gomez-Prado 13

1.4.3 Gaut and Quartus
For example, the estimated latency and area of implemepbhgomial ' = fbh +
a + cb + gfb+ edb without TED optimization in GAUT is 100ns and 91 units. In é&da
the frequency obtained is 167Mhz with 287 ALUs. See listir@yfr the commands used.
Listing 1.9. DesignF' = fbh + a + c¢b + g fb + edb without optimization

Tds 01> poly F=fxbxh+a+ckb+g«fxb+exdxb

Tds 02> cost

Cadency is 200

OP delays: ADD=1 SUB=1 MPY=2

resources: ADD=4294967295 MPY=4294967295

| TED |

| node | edgeO | edgeN | factor | width |

| 9 | 4| 4| 0 | ol
T |
| DFG | Schedule |
I | |
I I |
| nMUL | nADD | nSUB | Latency | rMPY | rADD |
| 4| 4| 0 | 6 | 2 | L
I |
| Gaut |
! |
I |
| Muxes | Latency | Register | Area |
| 96 | 100 | 6 | 91 |

design name: ted

Tds 03> setenv gautcadency=100

Tds 04> cost

Cadency is 100

OP delays: ADD=1 SUB=1 MPY=2

resources: ADD=4294967295 MPY=4294967295

| TED |

| node | edgeO | edgeN | factor | width |

| 9 | 4| 4| 0 | ol
I |
| DFG | Schedule |
I | |
I I |
| nMUL | nADD | nSUB | Latency | rMPY | rADD |
| 4| 4| 0| 6 | 2 | L
T |
| Gaut |
| |
T |
| Muxes | Latency | Register | Area |
| 96 | 100 | 6 | 91 |

design name: ted

Tds 05> ted2dfg

Tds 06> dfg2ntl

Tds 07> cost —n

Cadency is 100

OP delays: ADD=1 SUB=1 MPY=2

resources: ADD=4294967295 MPY=4294967295

| TED | DFG Schedule | Gaut |
! |

\
\ \ 1 f |
| nodes | factors | bitwidth | nMUL | nADD | nSUB | latency | rMPY | rADD | Muxes | latency | Register | Area |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 100 | 5 | 91 |
design name: dfg2ntl
Tds 08> quartus —p
Tds 09> quartus —c
Info: Report file saved in "dfg2ntl.quartus.report”
Info: Loading report file "dfg.2ntl.quartus.report”

clock name | target freq | design freq

clk | 1000.0 MHz | 167.76 MHz

Resources | Synthesis| Fitter

Combinational ALUTs 263 287 |/ 12,480 (2 %)
— 7 input functions 0 0

— 6 input functions 70 71

\ \
| |
— 5 input functions | 115 | 114
| |
\ \

— 4 input functions 26 26
— <=3 input functions 52 76
Dedicated logic registers 90 90 / 12,480 (1 %)

Assignment to |: PARTITION.HIERARCHY = root_partition
There are 510 ADDs in the design
There are 510 SUBs in the design
There are 0 shifts in the design

TDS system manual, by Daniel Gomez-Prado 14

Optimizing the design using the commamedrder as shown in listing 1.10 gives an es-
timated latency of 70ns with an area of 348 units in GAUT, afrequency of 182.58Mhz
with 720 ALUs in Quartus.

Listing 1.10. DesignF’ optimized with: reorder —annealing -gl

Tds 01> poly F=fxbxh+a+ckb+g«fxb+exdxb
Tds 02> setenv gautcadency=100

Tds 03> reorder —annealing—gl
strade=111111110

[
Tds 04> setenv gautcadency=80

Tds 05> reorder —annealing—gl

strade=111111110

[F=======================================] 100% Cos7#9.00

Tds 06> setenv gautcadency=70

Tds 07> reorder —annealing—gl

strade=111111110

[] 0% T=39.90 Window=49 Cost=70.00too strong constraints
] 14% T=33.91 Window=47 Cost=70.0Qtoo strong constraints
] 27% T=28.83 Window=45 Cost=70.0Qtoo strong constraints
] 38% T=24.50 Window=43 Cost=70.00too strong constraints
] 47% T=20.83 Window=41 Cost=70.0Qtoo strong constraints
] 83% T=6.68 Windovey Cost=70.00\too strong constraints
] 94% T=2.14 Wiow=13 Cost=70.00\too strong constraints
] 100%

100% Cos89.00

[
[
[
[
[
[

Tds 08> ted2dfg

Tds 09> balance —d

Tds 10> dfg2ntl

Tds 11> cost —n

Cadency is 70

OP delays: ADD=1 SUB=1 MPY=2

resources: ADD=4294967295 MPY=4294967295
| TED | DFG

| |
I

| Schedule | Gaut |
| ! |
I I I |
| nodes | factors | bitwidth | nMUL | nADD | nSUB | latency | rMPY | rADD | Muxes | latency | Register | Area |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 70 | 8 | 348 |
design name: dfg2ntl

Tds 12> quartus —p

Tds 13> quartus —c

Info: Report file saved in "dfg2ntl.quartus.report”

Info: Loading report file "dfg.2ntl.quartus.report”

clock name | target freq | design freq

clk | 1000.0 MHz | 182.58 MHz

Resources | Synthesis| Fitter

Combinational ALUTs 696 720 / 12,480 (6 %)
— 7 input functions 0 0

— 6 input functions 67 67

— 5 input functions 339 339

— <=3 input functions 190 212

\ \
\ \
| |
— 4 input functions | 100 | 102
\ \
Dedicated logic registers | 135 | 135 / 12,480 (1 %)

Assignment to |: PARTITION.HIERARCHY = root_partition
There are 510 ADDs in the design
There are 510 SUBs in the design
There are 0 shifts in the design

The commandeorder* differs from commandeorder in that it accept a list of cost
functions to be optimized. The least of cost functions stidid entered in such that the
least important cost function is given first, and the mostangnt cost function is given

last. The cost functions available are shown in listing 1.11

TDS system manual, by Daniel Gomez-Prado 15

Listing 1.11. Cost functions for comman@eorder*

[list of cost functions] {LICF ... MICF}

Where LICF and MICF stands for the Least/Most Important Costinction to optimize
—node

Minimizes the number of TED nodes
—tl, —tLatency

Minimizes the critical path computed in the TED graph
—edge

Minimizes the total number of TED edges
—edge0

Minimizes the number of additive TED edges
—edgeN

Minimizes the number of multiplicative TED edges
—nm, —nMUL

Minimizes the number of multiplications in the DFG
—na, —nADD

Minimizes the number of additions(and substractions)inetBFG
—rm, —IMPY

Minimizes the number of multipliers erOfCandidates” [DERAT BEHAVIOR]
—dl, —dLatency

Minimizes the lantecy in the DFG
—bitwidth

Minimizes the bitwidth of the HW implementation subject tonlimited latency|resources
—gappa

Minimizes the upper tighter bound found trough Gappa
—gm, —gMUX

Minimizes the number of muxes in the GAUT implementation
—gl, —gLatency

Minimizes the latency in the GAUT implementation
—gr, —gREG

Minimizes the number of registers in the GAUT implementartio
—ga, —gArea

Minimizes the total area of the operators in the GAUT implemation

Optimizing the design using the commarabrder* as shown in listing 1.12 gives a
latency of 70ns in GAUT; and a frequency of 193.12Mhz with &41L1Js in Quartus.

Listing 1.12. DesignF’ optimized with: reorder —annealing -gr -gm -ga -g|

Tds 01> poly F=fxbxh+a+ckb+gx«fxb+exdxb

Tds 02> setenv gautcadency=100

Tds 03> reorderx —annealing—gr —gm —ga —gl
strade=111111110

] 100% Cost 0800
Info: backtracking previous result withcost 80

Tds 04> setenv gautcadency=80

Tds 05> reorderx —annealing—gr —gm —ga —gl
strade=111111110
[F=======================================] 100% Cost0700
Tds 06> setenv gautcadency=70

Tds 07> ted2dfg

Tds 08> balance —d

Tds 09> dfg2ntl

Tds 10> cost —n

Cadency is 70

OP delays: ADD=1 SUB=1 MPY=2

resources: ADD=4294967295 MPY=4294967295

| TED | DFG

| Schedule | Gaut |
| | | | |
T T I T I
| nodes | factors | bitwidth | nMUL | nADD | nSUB | latency | rMPY | rADD | Muxes | latency | Register | Area |
| 0| 0| 0| 0| 0| 0| 0 | 0| 0 | 80 | 70 | 7 174
design name: dfg2ntl
Tds 11> quartus —p
Tds 12> quartus —c
Info: Report file saved in "dfg2ntl.quartus.report”
Info: Loading report file "dfg2ntl.quartus.report”

clock name | target freq | design freq

clk | 1000.0 MHz | 193.12 MHz

Resources | Synthesis| Fitter

Combinational ALUTs 409 411 / 12,480 (3 %)
— 7 input functions 0 0

— 6 input functions 66 66

\ \
\ \
\ \
— 5 input functions | 226 | 226
\ \
\ \
\ \

— 4 input functions 25 27
— <=3 input functions 92 92
Dedicated logic registers 119 119 / 12,480 (1 %)

Assignment to |: PARTITION.HIERARCHY = root_partition
There are 510 ADDs in the design
There are 510 SUBs in the design
There are 0 shifts in the design

TDS system manual, by Daniel Gomez-Prado 16

1.4.4 Registers
To annotate registers into the TED, the polynomial openataturing construction have
been extended to deal with timing information. The operas® to denote time delay is

the at sigh @.

Tds 0> vars P MN a

Tds 02> poly N@3«[{ax(axX)@1+a " 2«(axY)@2+a " 3«(axY)@4} @2+
a"3x{ax(axX)@1+a"2«(a+xY)@2+a "3« (axY)@4}@1]+
M@4« [{ ax(axX)@1+a " 2«(axY)@2+a " 3«(axY)@4}@1]+
P@2«[{ ax(axX)@1l+a 2« (axY)@2+a 3« (axY)@4}@3]

Tds 03> show unretimedted

Figure 1.5. Unretimed TED.

TDS system manual, by Daniel Gomez-Prado 17

4 0
© o

niel Gome

al, by Da

Tds 06> retime —up

Suggestion to restore ordering visualization:
jumpAbove —p a a

Tds 07 show retimedted. dot

Figure 1.7.Retimed TED.

Tds 08> ted2dfg —n
Tds 09> show —d retimeddfg.dot

TDS system manual, by Daniel Gomez-Prado

19

Figure 1.8. DFG corresponding to the retimed TED.

1.4.5 Precission
The bit width information can be annotated in the TED as postgss. That is one
can generate a polynomial and afterwards through the coms®ispecify the bitwidth of

each variable.

TDS system manual, by Daniel Gomez-Prado 20

Listing 1.13. Annotating bitwidth in TED

Tds 0> set —h
NAVE

set — Set the variable bitwidth and other options.
SYNOPSIS
set [bitwidth] [range] [maximal error]
OPTIONS
—h, —help
Print this message.
[bitwidth]

—b, —bitwidth integer|int|fixedpoint|fxp [varl:bitwidthl var2:bitwidth2 ...]
Set the initial bitwidth of the variables in the TED.
All other variables not specified in the list, take a
default bitwidth depending on its type:
integer (int}> 32
fixedpoint (fxp}> 4,28
[range]
—r, —range varl:intervall [var2:interval2 ...]
Where interval has the syntax: [minval, maxval]
[maximal error]

* ¥

—e, —error pol:maxerrorl [po2:maxerror2 ...]
Where maxerrorl is the maximal error allowed at the primaruytput pol
EXAMPLE
poly F1 = a-b+c+d
poly F2 = (a+b}(c+d)"2

set —b fixedpoint a:4,16 c:2,10
set —r d:[0.128, 1.123432] b:[-5.3223, 321.32e3] c:[0, 1]
set —e F1:1.324 F2:0.983
SEE ALSO
listvars , compute

The commandomputeis used then to compute the bit-width information across the
TED data structure.

Listing 1.14. Compute bitwidth required for exact computation

Tds 01> compute —h
NAVE

compute — Annotate the bitwidths required for exact computation.
SYNOPSIS

compute [—t —b —snr] | [—d —b —g]
OPTIONS

—h, —help

Print this message.
—b, —bitwidth
Compute the bitwidth at each point in the graph [DEFAULT BEHAR].
—9, —gappa
Compute a bound on the maximal error.
—snr
Compute the Signal to Noise Ratio of the architecture.
—t, —ted
In the TED graph [DEFAULT BEHAVIOR].
—d, —dfg
In the DFG graph.
SEE ALSO
optimize

The above means that the bitwidth information can be contparethe TED and DFG
data structure, whereas the maximal error bound provideghppa can only be computed

from the DFG graph.

Let’s look at the following synthetic example to see how ity optimization works.

Tds 0> poly Fl=a-b+c+d

Tds 02> poly F2=(a+b}(c+d)"2

Tds 03> show precisionnot_.annotated . dot

Tds 04> set —b fixedpoint a:4,16 ¢:2,10 b:4,12 d:4,12
Tds 05 show precisionted.dot

TDS system manual, by Daniel Gomez-Prado 21

4:a Q(4,16)

3:b Q(4,12)

2:c Q(2,10)

1:d Q(4,12)

Figure 1.9.(a) Initial TED. (b) TED with bitwidth annotation in nodes.

Tds 06> compute —t —b
Tds 07> show precisioncomputedted . dot

4:a Q(4,16)

3:b Q(4,12)

2:c Q(2,10)

1:.d Q(4,12)

Figure 1.10. TED with bitwidth annotation for exact computation.

TDS system manual, by Daniel Gomez-Prado

22

Tds 08> ted2dfg —f
Tds 09> compute —b —d
Tds 10> show —ids —d precisioncomputeddfg . dot

Q)

+[19] f=ow0.24)

F1

Figure 1.11.DFG with bitwidth annotation for exact computation.

Tds 1> set —r d:[0.128,1.123432] b:F5.3223,321.32e3] c:[0,1]
Tds 12> set —e F1:1.324 F2:0.983

Tds 13> compute —d —g

Tds 14> optimize

Done. Type ’'info —d” for more information
Tds 15 show —ids —d precisionoptimized dfg . dot

TDS system manual, by Daniel Gomez-Prado 23

Q(2)

Figure 1.12.DFG with bitwidth optimization for target error.

Tds 16> info —d

| Level | OP | ID | bitwidth | Left ID | Right ID | Ref |
I I I I I I I |
y 0 | 2 | 14 | Q(2) | NONE | NONE | 1 |
| 0 | a | 11 | Q(4,16) | NONE | NONE | 2 |
| 0 | b | 8 | Q 4,12) | NONE | NONE | 2 |
] 0 | c | 4 | Q(2,10) | NONE | NONE | 4 |
| 0 | d | 3 | Q(4,12) | NONE | NONE | 4 |
! 1| « [16 | Q(4.,7) | 4 | 41 1|
| 1| « |15 | Q(4,5) | 4 | 14 | 1|
! 1| « | 13] Q(C 8,11) | 3 | 3| 1
| 1| + | 5 | Q(5,0) | 4 | 3| 1
! 1| + | 21 | Q(5,3) | 11 | 8 1|
| 2 | + | 17 | Q(9,11) | 16 | 13 | 1|
! 2 | - | 10 | Q(6,2) | 5 | 8 1|
| 2 | * | 18 | Q(8,12) | 15 | 3 | 1 |
| 3 | + | 12 | Q(7.,4) | 11 | 10 | 0 | PO
] 3 | + | 19 | Q(10,12) | 17 | 18 | 1 |
| 4 | x| 22 | Q(15,10) | 21 | 19 | 0 | PO

TDS system manual, by Daniel Gomez-Prado 24

1.4.6 Linearization
The TED data structure can have multiple edges as shown r&beof Figure 1.13(a),
nonetheless all internal nodes can be forced to have oniyhaglédges and multiplicative-

edges through linearization as shown in Figure 1.13(b).

Tds 0> poly a"2+b+c+(3(b+c)xd+e)xa
Tds 021> show

Tds 03> linearize

Tds 04> bottom a

Tds 04> show

The node with variable in Figure 1.13(a) has an edge connected to hode ONE with
power2, which represents a termi. After linearizing the TED, it can be observed that the

edge has been replaced by two nodgs$ anda[2] both of typea.

() (b)

Figure 1.13.(a) TED for functionF0 = a*> + b+ c+ (3(b+ c)d + e)a. (b) linearized TED.

TDS system manual, by Daniel Gomez-Prado 25

1.4.7 Decomposition
A TED can be further decomposed in terms of chain of addersaincof multipliers
by using the commandecompose

Listing 1.15. Annotating bitwidth in TED

Tds 01> decompose—h

NAME

decompose— Decompose the TED in its Normal Factor Form.
SYNOPSIS

decompose[—a——pt|——st] [-—force]
OPTIONS

—h, —help

Print this message.
—force

perform aggressive extraction by treating support as pmynautputs
—st
Decompose all sum terms available in the current TED
—pt
Decompose all product terms available in the current TED
—a, —all
Decompose changing the given order if necessary until
the entire TED is reduced to a single node
DETAILS
The TED must be linearized first
SEE ALSO
show
Tds 01>

The commandaiecompose —albpplied to the TED shown in Figure 1.13(b) results in
the TED shown in Figure 1.14. The resulting TED contains geewutputs labele®T and

ST corresponding to product terms and sum terms respectively.

Figure 1.14.Decomposed TED.

TDS system manual, by Daniel Gomez-Prado 26

1.4.8 TED to DFG Transformations
Although the TED data structure is canonical, that is givdixed variable ordering
the representation of its data structure is unique, the D&@igated from the TED is not

unique.

Listing 1.16. Annotating bitwidth in TED

Tds 01> ted2dfg —h

NAVE
ted2dfg — Generate a DFG from the TED.
SYNOPSIS
ted2dfg [method]
OPTIONS
—h, —help
Print this message.
[method]
—I, —latency F—cluster, —clusterA , —clusterD] —level]
Generate a DFG by balancing all operations on it
Sub option:—clusterA
Generate the DFG using only TEDs in clusterA.
Sub option:—clusterD
Generate the DFG using only TEDs in clusterD.
Sub option:—-cluster
Generate the DFG using TEDs in both clusterA and clusterD.
Sub option:—Ilevel
Maintain the delay level of extracted boxes in the Netlist.
—n, —normal F—cluster, —clusterA ,—clusterD]
Generate a one to one translation of the DFG through a TED NF&versal [DEFAULT BEHAVIOR].
—f, —factor , —flatten [—show]
Flatten the DFG by factorizing common terms in the TED graph.
Sub option:—show
Treat each factor found as a pseudo output in the DFG graph.
DETAILS

Most of the times this construction is made implicit. For itmanice when
an operation in a DFG is requested(i.ehow —d)and no DFG exist yet
an implicit conversion occurs. If a DFG already exist thismmoand will
overwrite it.

EXAMPLE
poly X = a—b+c
poly Y = a+b-—c

poly F = X+Y

dfg2ted —normal

show —dfg

echo produces a DFG with outputs X,Y and F
purge —dfg

dfg2ted —factor

show —dfg

echo polynomials X and Y disappear in the DFG as evaluation FRof
echo the resulting polynomial F =&, has no record of X or Y
SEE ALSO
ted2ntl , ntl2ted, dfg2ted, dfg2ntl
Tds 01>

Continuing the example shown in Figure 1.13(a), the comnaddadfg can be used
to transform the TED data structure into a DFG data structiireee different DFGs are

shown in Figure 1.15.

Tds 0> poly a"2+b+c+(3X(b+c)xd+e)xa
Tds 02> linearize

Tds 03> bottom a

Tds 04> ted2dfg —normal

Tds 05 purge —d

Tds 06> ted2dfg —factor

Tds 07> purge —d

Tds 08> ted2dfg —Ilevel

TDS system manual, by Daniel Gomez-Prado 27

(©)

Figure 1.15. DFG generated through: (a) a normal factor form transfoiomatb) factor-
ization transformation. (c) levelized and balanced tramsétion.

TDS system manual, by Daniel Gomez-Prado 28

1.4.9 Replacing constant multiplication with shifters

All constant multiplications, that is, multiplicationspeesented by weight on edges
within the TED data structure can be replaced by a seriesifbfogierations. The first step
to replace constant multiplications by shifters is to faite TED data structure to consider

all weights on edges as a factor of constant node 2.

Tds 0> poly Fl=ax91+(bxa)x77—bx7
TDS 02> show

Tds 03> shifter

Tds 04> show

(@) (b)

Figure 1.16.(a) TED with implicit constant multiplication on edges. (gD with constant
multiplications explecitly represented by variable caRst

The DFG generated for the TED shown in Fgure 1.17(b) is shawigure??(a).

Tds 05> show —d
TDS 06> remapshift
Tds 07 show —d
Tds 08> balance —d
Tds 08> show —d

TDS system manual, by Daniel Gomez-Prado 29

Figure 1.17. (a) DFG corresponding to TED in Figure 1.17(b). (b) DFG wigplaced
shifters. (c) Balanced DFG.

TDS system manual, by Daniel Gomez-Prado 30

