ECE 667

Synthesis and Verification of Digital Circuits

Boolean SAT

Slides adapted from students presentation, Girish Paladugu (ECE 667 Spring 2011)
Overview

• Introduction: motivation, brief history
• Conjunctive Normal Form (CNF)
• DPLL Method for solving SAT problems
• Backtrack search algorithm
• Applications
• Conclusion
INTRODUCTION

- **SAT**: Given a Boolean formula (propositional logic formula)
 - find a variable assignment such that the formula evaluates to 1 (SAT), or
 - prove that no such assignment exists (unSAT).
- For n variables, there are 2^n possible truth assignments to be checked.

The first established **NP-Complete** problem.

Conjunctive Normal Form

- Conjunctive Normal Form (CNF):

 A conjunctive normal form (CNF) formula ϕ on n binary variables x_1, \ldots, x_n is the conjunction of m clauses $\omega_1, \ldots, \omega_m$.

- **Literal**: it is the occurrence of a variable x or its complement x'.

- **Clause**: It is the disjunction of one or more literals.

- **Example**
 - CNF formula is satisfiable if each clause is satisfiable (evaluate to true) else it is unsatisfiable.

 $$\phi = (a + c) (b + c) (\neg a + \neg b + \neg c)$$
Applications

• Core computational engine for major applications
 – EDA
 • Testing and Verification
 • Logic synthesis
 • FPGA routing
 • Path delay analysis
 • Test Pattern Generation
 – Artificial Intelligence
 • Knowledge base deduction
 • Automatic theorem proving
Equivalence Checking

If \(z = 1 \) is unsatisfiable, the two circuits are equivalent!
Automatic Test Pattern Generation (ATPG)
Development of SAT: a Brief History

• Main contributions in SAT research:
 – **1960**: Davis and Putnam – resolution based - dealing with ~10 variables
 – **1962**: Davis, Logemann and Loveland – DFS-based – dealing with ~10 variables
 • Basic framework for many modern SAT solvers
 – **1986**: R. E. Bryant – BDD-based – dealing with ~100 variables
 – **1996**: Silva and Sakallah – GRASP (conflict-driven learning and non-chronological backtracking) – dealing with ~1k variables
 – **2001**: Malik *et al.* – Efficient BCP and decision making – dealing with ~10k vars

Adopted from S. Malik, Princeton University
Deriving CNF for Logic Gate

\[\varphi_d = [d = \neg(a \land b)] \]
\[= \neg[d \oplus \neg(a \land b)] \]
\[= \neg[(\neg(a \land b) \neg d + a \land b \land d)] \]
\[= \neg[(\neg a \neg d + \neg b \neg d + a \land b \land d)] \]
\[= (a + d)(b + d)(\neg a + \neg b + \neg d) \]

\[\varphi_d = [d = \neg(a \land b)] [\neg d = a \land b] \]
\[= [d = \neg a + \neg b] [\neg d = a \land b] \]
\[= (\neg a \rightarrow d)(\neg b \rightarrow d)(a \land b \rightarrow \neg d) \]
\[= (a + d)(b + d)(\neg a + \neg b + \neg d) \]

- Show alternate method (*characteristic function*)
- Point to the difference between
 - *satisfying the CNF formula*
 - *solving for the output value*
CNF Formulas for simple gates

<table>
<thead>
<tr>
<th>Gate type</th>
<th>Gate function</th>
<th>φ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>$x = \text{AND}(w_1, \ldots, w_j)$</td>
<td>$\prod_{i=1}^{j} (w_i + \neg x) \cdot \left(\sum_{i=1}^{j} \neg w_i + x \right)$</td>
</tr>
<tr>
<td>NAND</td>
<td>$x = \text{NAND}(w_1, \ldots, w_j)$</td>
<td>$\prod_{i=1}^{j} (w_i + x) \cdot \left(\sum_{i=1}^{j} \neg w_i + \neg x \right)$</td>
</tr>
<tr>
<td>OR</td>
<td>$x = \text{OR}(w_1, \ldots, w_j)$</td>
<td>$\prod_{i=1}^{j} (\neg w_i + x) \cdot \left(\sum_{i=1}^{j} w_i + \neg x \right)$</td>
</tr>
<tr>
<td>NOR</td>
<td>$x = \text{NOR}(w_1, \ldots, w_j)$</td>
<td>$\prod_{i=1}^{j} (\neg w_i + \neg x) \cdot \left(\sum_{i=1}^{j} w_i + x \right)$</td>
</tr>
<tr>
<td>NOT</td>
<td>$x = \text{NOT}(w_1)$</td>
<td>$(x + w_1) \cdot (\neg x + \neg w_1)$</td>
</tr>
<tr>
<td>BUFFER</td>
<td>$x = \text{BUFFER}(w_1)$</td>
<td>$(\neg x + w_1) \cdot (x + \neg w_1)$</td>
</tr>
</tbody>
</table>
Circuit - CNF conversion

\[\varphi = (x_1 + x_3) \cdot (x_2 + x_3) \cdot (\neg x_1 + \neg x_2 + \neg x_3) \cdot (\neg x_3 + z) \cdot (\neg x_4 + z) \cdot (x_3 + x_4 + \neg z) \]

(a) Consistent assignments

\[\varphi' = (x_1 + x_3) \cdot (x_2 + x_3) \cdot (\neg x_1 + \neg x_2 + \neg x_3) \cdot (\neg x_3 + z) \cdot (\neg x_4 + z) \cdot (x_3 + x_4 + \neg z) \cdot (\neg z) \]

(b) With property \(z = 0 \)
DLL Algorithm

• Davis, Logemann and Loveland

• Also known as **DPLL** for historical reasons (P = Putman)

• It is basically an intelligent
 – Depth First Search (DFS)
 – Binary Covering Problem (BCP)

• Basic framework for many modern SAT solvers
Example

Single gate

\[(^a+^b+ c)(a+^c)(b+^c)\]

Circuit in AIG form: network of connected AND gates

Note:
- Nodes 1,2,3: PI
- Nodes 4,5,6,7,8,9: AND gates
Circuit Satisfiability

\[\varphi = h \ [d=\neg(ab)] \ [e=\neg(b+c)] \ [f=\neg d] \ [g=d+e] \ [h=fg] \]

\[= h \]

\[(a + d)(b + d)(\neg a + \neg b + \neg d) \]
\[(\neg b + \neg e)(\neg c + \neg e)(b + c + e) \]
\[(\neg d + \neg f)(d + f) \]
\[(\neg d + g)(\neg e + g)(d + e + \neg g) \]
\[(f + \neg h)(g + \neg h)(\neg f + \neg g + h) \]
Conjunctive Normal Form (CNF)

\[\phi = \left(a + c \right) \left(b + c \right) \left(\neg a + \neg b + \neg c \right) \]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

0 ⇐ Decision

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

(-- Decision

Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

- a
- b
- c
- d

Implication Graph

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Implication Graph

Conflict!

ECE 667 - Synthesis & Verification - SAT
Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c + d') \\
(a + c' + d) \\
(a + c' + d') \\
(b' + c' + d) \\
(a' + b + c') \\
(a' + b' + c) \\
\end{align*}
\]

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(a' + b + c)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

\[d = 1\]
\[c = 1\]
\[a = 0\]
\[b = 0\]

Conflict!

\[\text{Forced Decision}\]

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a' + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Forced Decision

Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\[(a' + b + c) \]
\[(a + c + d) \]
\[(a' + c + d') \]
\[(a + c' + d) \]
\[(a' + c' + d') \]
\[(a' + b + c) \]
\[(a' + b' + c) \]

\(c = 0 \)
\(d = 1 \)

\(a = 0 \)
\(d = 1 \)
\(c = 0 \)
\(d = 0 \)

Conflict!

Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

\[\text{Backtrack}\]
Basic DLL Procedure - DFS

\((a' + b + c)\)
\((a + c + d)\)
\((a + c + d')\)
\((a + c' + d)\)
\((a + c' + d')\)
\((b' + c' + d)\)
\((a' + b + c')\)
\((a' + b' + c)\)

Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a′ + b + c)
(a + c + d)
(a + c + d′)
(a + c′ + d)
(a + c′ + d′)
(b′ + c′ + d)
(a′ + b + c′)
(a′ + b′ + c)

Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

\[(a + c + d) \]
\[(a + c + d') \]
\[(a + c' + d) \]
\[(a + c' + d') \]
\[(b' + c' + d) \]
\[(a' + b + c') \]
\[(a' + b' + c) \]

\[\iff \text{Forced Decision} \]

Slide adapted from 'The Quest for Efficient Boolean Satisfiability Solvers' – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\((a' + b + c)\)
\((a + c + d)\)
\((a + c' + d)\)
\((a + c' + d')\)
\((b' + c' + d)\)
\((a' + b + c')\)
\((a' + b' + c)\)

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

⇐ Backtrack

[Diagram of a SAT problem with nodes labeled a, b, c, and d with assignments 0 and 1, and backtracking indicated]

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

\(a=1\)
\(b=1\)
\(c=1\)

Forced Decision

Slide adapted from ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d')
(a + c' + d)
(a' + b' + c)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

ECE 667 - Synthesis & Verification - SAT
Slide adapted From ‘The Quest for Efficient Boolean Satisfiability Solvers’ – Sharad Malik
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

\(a=1\)
\(b=1\)
\(c=1\)
\(d=1\)

\(\text{SAT}\)
Backtrack Search Algorithm

- The algorithm conducts a search through the space of the possible assignments to the problem instance variables.

- The search is improved by
 - Resolution
 - Clause recording
 - Recursive learning

- Backtrack search has proven useful for solving instances of SAT from EDA applications, in particular for applications where the objective is to prove unsatisfiability.
// Input arg: Current decision level d
// Output arg: Backtrack decision level β
// Return value: SATISFIABLE or UNSATISFIABLE

SAT (d, &β) {
 if (Decide (d) != DECISION)
 return SATISFIABLE;
 while (TRUE) {
 if (Deduce (d) != CONFLICT) {
 if (SAT (d + 1, β) == SATISFIABLE)
 return SATISFIABLE;
 else if (β != d || d == 0) {
 Erase (d); return UNSATISFIABLE;
 }
 }
 if (Diagnose (d, β) == CONFLICT) {
 return UNSATISFIABLE;
 }
 }
}
Methods in the Backtrack SAT Algorithm

- **Decide()**: Identify the necessary assignments
- **Deduce()**: Returns a conflict indication whenever a clause becomes unSAT
- **Diagnose()**: Analyzes the conflict and returns a decision level to which the search process is required to backtrack
- **Erase()**: Clears implied assignments that results from each assignment selection
- **Preprocess()**: Preprocessing before running SAT algorithm.
Summary of SAT Techniques

Techniques for Backtrack Search

• Formula simplification & clause inference
• Conflict analysis
 – Clause/implicate recording
 – Non-chronological backtracking
• Resolution
• Recursive learning
• Randomization & Restarts