
Achieving Design Closure Through Delay Relaxation Parameter

Ankur Srivastava

ECE Department

University of Maryland

College Park, MD - USA

ankurs@glue.umd.edu

Seda Ogrenci Memik Bo-Kyung Choi Majid Sarrafzadeh

Computer Science Department

University of California

Los Angeles, CA - USA

seda,bkchoi,majid@cs.ucla.edu

Abstract

Current design automation methodologies are becoming incapable
of achieving design closure especially in the presence of deep submi-
cron effects. This paper addresses the issue of design closure from a
high level point of view. A new metric called delay relaxation parame-
ter (DRP) for RTL (Register Transfer Level) designs is proposed. DRP
essentially captures the degree of delay relaxation that the design can
tolerate without violating the clock constraint. This metric when opti-
mized results in quicker design flow. Algorithms to optimize DRP are
formulated and their optimality are investigated. Experimental results
are conducted using a state of the art design flow with Synopsys De-
sign Compiler followed by Cadence Place and Route. Our approach
of optimizing DRP resulted in lesser design iterations and faster design
closure as compared to designs generated through Synopsys Behavioral
Compiler and a representative academic design flow.

1 . Introduction

Design closure is said to occur when all constraints have been sat-
isfied and the design is ready for fabrication. With the advent of ultra
deep sub micron era, design closure is becoming harder and harder to
achieve. Inaccuracy of system level predictions, unpredictability in cir-
cuit behavior, critical design objectives, high degree of sensitivity among
various design objectives are among a few culprits to name. A formal
approach towards design closure is desired that not only optimizes the
pertinent cost function but also optimizes the inherent property of the de-
sign which favors design closure. One such property that we call Delay
Relaxation Parameter (DRP) is introduced in this paper and algorithms
are proposed for its optimization. The basic philosophy behind DRP is
to relax the timing constraints of functional resources as much as pos-
sible without violating any of the data flow or scheduling constraints.
These relaxed constraints offer more flexibility in future optimizations
(logic synthesis and physical design) hence improving the chances of de-
sign closure. We propose algorithms to maximize DRP in RTL designs
through effective management of the slack available after scheduling.

Experimental results using state of the art commercial tools illustrate
that optimizing DRP using our algorithms could achieve better design
quality after placement and routing when compared with designs gen-
erated with Synopsys Behavioral Compiler and another state of the art
academic approach with latest optimizations. Results showed that for
most of the benchmarks, the fastest clock period achievable was signif-
icantly smaller when DRP was maximized. Moreover, even if the clock
period was same, optimizing DRP resulted in overall improvement of
design metrics like area, wirelength, number of vias and the total run-
time of design tools. Hence RTL designs generated by our methodology
achieved design closure much faster than designs generated by state of
the art commercial and academic tools.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 introduces the delay relaxation parameter
and section 4 formulates algorithms to solve the problem. Experimental

1

+ +

+

+

+

+

+

-

*

*

2 1

3

4

5 2

6

7

Clk 1

Clk 2

Clk 3

Clk 4

Clk 5

Clk 6

1

1

+

+

-

*

Traditional Constraint:: Both Adders 1 Clock,
Subtractor 1 Clock, Multiplier 1 Clock

Relaxed Constraint:: Both Adders 1 Clock,
Subtractor 1 Clock, Multiplier 2 Clocks

(A)
(B)

1

+ +

+

+

+

+

+

2 1

3

4

5

6

7

Clk 1

Clk 2

Clk 3

Clk 4

Clk 5

Clk 6

1

1
-

*

*

2

Clk 7

+

+

-

*

Traditional Constraint:: Both Adders 1 Clock,
Subtractor 2 Clock, Multiplier 2 Clock

Relaxed Constraint:: Both Adders 1 Clock,
Subtractor 2 Clock, Multiplier 3 Clocks

(C) (D)

Figure 1. Delay Relaxation Parameter

Clock 6

1 2

3

4

5 6

7Clock 5

Clock 4

Clock 3

Clock 2

Clock 1

88

7

6

3

2

4

5

1Clock 1

Clock 3

Clock 2

Clock 4

Clock 5

Clock 6

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Clock 6

1 2

3

4

5 7

6

8

(a) Scheduled DFG (b) Delay Budgeting of Scheduled DFG (c) Scheduled DFG with delay budgets
assigned to operations

Figure 2. Illustration of delay budgeting on a sam-
ple scheduled DFG.

results are reported in section 5 followed by conclusion in section 6

2 . Related Work

The proposed method uses the slack available on operations after
scheduling to generate large DRPs which could then be used in later
stages of design flow. Some of the existing scheduling methods ad-
dress slack/mobility [6], [10], [2]. Slack from a gate level point of view
has been addressed by [7], [8], [9]. In all these works, the concept of
slack/mobility has been used to generate a valid schedule and the objec-
tive being minimizing the number of required control steps most of the
time. Our work increases the usability of slack available after schedul-
ing and transforms it into improved design closure by generating relaxed
delay constraints of functional resources.

54

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

3 Delay Relaxation Parameter (DRP)

The philosophy of Delay Relaxation Parameter (DRP) is illustrated
by means of an example. Figure 1(a) illustrates a data flow graph (DFG)
which has been scheduled assuming the adders, subtracters and multipli-
ers take 1 clock cycle each to run. Figure 1(b) illustrates the associated
RTL design. Let us make a few observations. Firstly, the output of
mult-1 can be delayed until clock 3 since its result is needed in clock
4. Moreover mult-2 can be delayed until clock step 5 since its result is
needed in clock 6. Hence mult-1 can take 3 clock steps to execute while
mult-2 can take 2 clock steps to execute without violating any other con-
straint. Both these operations are bound on the same multiplier resource.
Hence this multiplier could be made to run in two clock steps instead of
one (minimum of mult-1 and mult-2) without violating any of the data
dependency or resource constraints. This relaxes the delay constraint on
multipliers from one to two clock steps.

Definition 1 DRP w.r.t. each resource in an RTL design is defined as the
extra clock steps that the resource can be made to run without violating
any of the timing or data dependency constraints. The extra clock steps
are defined w.r.t. the base clock latency of the resource.

For example in figure 1(b), the multiplier had a DRP of 1 clock cy-
cle since it could take an extra clock step without violating any other
constraint. Large quantity of DRP will be beneficial in many ways to
the design process. It can have drastic impact on design closure as indi-
cated in the following example. Let us suppose that the multiplier was
estimated to run in one clock cycle while in reality it runs in two clock
steps. The schedule in figure 1(a) was then generated and converted into
an RTL design and synthesized. After the complete synthesis we found
that the multiplier takes two clock steps instead of one and hence this
results in design faliure. This would prompt the designer to reschedule
with the new estimate of multiplier delay. The new schedule is illus-
trated in figure 1(c). This approach took two design iterations. Now let
us consider a DRP driven apprroach. This approach would observe that
the original schedule in figure 1(a) has enough slack and can be used to
generate relaxed delay constraints (more DRP) to the muliplier as indi-
cated in figure 1(b). Even though the initial estimate of mulitplier clock
latency was inaccurate, there is enough tolerance in the design to handle
such unpredictabilities. Hence after the complete synthesis process we
will find that the design performs in the desired way even though the
initial estimate was inaccurate.

This was a mere example to illustrate the significance of DRP op-
timization. Essentially relaxed design constraints will result in faster
design closure since it will reduce the optimization pressure on low level
tools. The relaxed delay constraint could also be used to optimize other
cost functions like power (voltage scaling) and area (gate sizing). This
paper deals with methodologies for maximizing the sum of DRP for all
resources in the RTL design. The objective could be formally stated as

Assign a DRP for each resource in the RTL design which signifies the
extra clock delay that can be tolerated without violating any constraints.
Maximize the sum of DRPs for all resources.

There are many aspects of the DRP optimization problem. Essen-
tially, all steps of High Level Synthesis will affect DRP but we chose
post scheduling phase to optimize DRP. This is because scheduling can
be used to satisfy the timing and resource constraints which are of pri-
mary concern. Moreover schedulers like [5] could be used to generate
a valid schedule with large operation slack. Schedules with more oper-
ation slack would result in designs with large DRP (this will be shown
later). The post scheduling step can then optimize the DRP for improved
design closure. Hence, for the rest of the paper we assume that we are
given a scheduled DFG which satisfies the resource constraint. Our
DRP optimization system does not change the schedule or number of
resources. It generates an RTL design with large DRP which could then

INPUT: Scheduled Data Flow Graph G= (V, E, T)

OUTPUT: d(i): Delay Budget for each operation i in G

1 Repeat: for each operation type OPT

2 F = Set of all operations of type OPT scheduled in step 0 with slack > 0

3 Sort F in decreasing order of their slack

4 For clock step I = 1; I < NUMBER_OF_CYCLES

12 d(i) = delay of i

11 For each operation i in scheduled DFG

5 F’ = Set of all operations of type OPT in clock step I
6 A_R = (Number of resources of type OPT) -

(Number of resources used in step I)

7 Pick the first A_R operations from F, increase their delay
by one cycle and reduce their slack by one unit.

8 F’ = F’ U {First A_R operations from F}

9 F = all operations in F’ with nonzero slack

10 Sort F in decreasing order of their slacks

Algorithm 1: Maximizing Delay Budget

be exploited towards design closure. The DRP maximization problem is
solved in two steps

1. The delay budgeting problem

2. Resource binding for maximized relaxation

3.1 The Delay Budgeting Problem

The delay budgeting problem takes a scheduled data flow graph as
input and tries to assign extra delays to operations such that no data
dependency, resource constraints (the schedule is assumed to satisfy a
resource count constraint) of the DFG are violated. This is done such
that the starting time of operations does not change. These extra delays
would then be used by the resource binder to maximize the sum of DRP.
Each operation i on the scheduled DFG is characterized by operation
slack which can be defined as

s(i) = (required(i) − 1) − arrival(i). (1)

All the operation slack could not potentially be used to increase the
operation delay. This is due to resource constraints on scheduled data
flow graphs. Such a case is illustrated in Figure 2. Figure 2 illustrates
the input scheduled DFG with a resource constraint of two. In figure 2(b)
operation 1 could be delayed due to an available slack while operationn
5 and 6 could not be delayed even though slack is available. The delay
budgeting problem tries to assign delays to operations such that maxi-
mum delay could be assigned without violating any of the constraints.
Formally the objective could be stated as follows

Definition 2 Consider a valid schedule that meets the timing, resource
and data dependency constraints and a vector S = {s(i): ∀ i ∈
Operations} which contains the slack for each operation i. Assign delay
budgets d(i) ≤ s(i) to each operation i such that the resource, timing and
data dependency constraints are still met and

∑
d(i) is maximized.

3.2 Resource Binding for Maximized Relaxation

The objective of the resource binding problem is to generate the RTL
design with DRPs for each resource such that the sum of DRPs is as large
as possible. This formulation takes the output of delay budgeting and
uses the assigned delays effectively to generate relaxed constraints. Fig-
ure 2(c) illustrates the output of delay budgeting. If operations 1,4,6,7,8
are bound together on one resource and 2,3,5 on other then no delay re-
laxation is achieved. This is because both resources have at least one
operation that must execute in 1 clock step. On the other hand binding
operations 1 and 5 together results in the corresponding resource obtain-
ing a DRP of 1. The resource binding step tries to maximize the sum of
all DRPs. Formally the objective can be stated as follows

Definition 3 Consider a scheduled data flow graph with delay budget
d(i) for each operation i. Let the gain of binding a set of operations

55

Algorithm 2: Solving Extend_Bind.

5 resource gain = min(previous gain, delay of binded node)
4 Bind the ith candidate node to the ith resource
3 While (there are candidate nodes with NO binding)
2 Sort the candidate nodes in increasing order of their delays
1 Sort the resources in increasing order of their gains
OUTPUT: Assignment of each candidate node to one resource

each candidate node has an associated delay
Set of candidate nodes < Number of resources,

INPUT: Set of resources with their gain values

Algorithm 3: Overall Binding Algorithm

7 R = set of resources available at step I+1
6 mark resource unavailable for next c’ cycles
5 c’ = gain of resource
4 For all resources with new node assigned
3 Solve the Extend_Bind problem (Algorithm 2)
2 C = set of candidate nodes in clock step I

For each resource type repeat
|R| = number of resources
R = set of resources

1 For I = 0; I < NUMBER_OF_CYCLES
gain of each element initialized to INFINITY

on a resource R be defined by the operation with minimum delay budget
(Note: this is the slowest that this resource can be made to run). Bind op-
erations to resources such that

∑
∀ resource r

(min∀i binded on r d(i)) is
maximized.

Note that DRP and Gain of a resource r have the following relation.
DRPr = Gainr - Clock Constraintr . Hence gain maximization is
same as DRP maximization. Next we describe algorithms for both delay
budgeting and binding.

4 . Algorithms for Maximizing DRP

4.1 . The Delay Budgeting Problem: Algorithms

Algorithm 1 solves the delay budgeting problem. In each clock step
there are a number of operations whose delay can potentially be in-
creased. Since there is a resource constraint in the next clock step, we
increase the delay of only those operations, which have the maximum
slack. This is done iteratively for each clock step starting from the first
clock step.

Theorem 1 Given a scheduled DFG, which satisfies a resource and tim-
ing constraint. Algorithm 1 assigns extra delays to operations such that
the timing, data flow and resource constraints are satisfied while the sum
total of extra delays is maximum.

Proof: Omitted for brevity �

4.2 . The Resource Binding Problem

The objective of the binding problem is to maximize the utilization
of the delay budgets generated by Algorithm 1. This problem is solved
by the iterative execution of a local formulation. The local formulation,
which we call Extend Bind is described below

Definition 4 Given a set of resources R with some operations assigned
to them. The gain associated with each resource is defined by the op-
eration with minimum delay budget assigned to it. Given a set of can-
didate nodes C with C ≤ R. These nodes have an associated delay
budget. Bind these nodes on the resources such that the sum of the gain
of the resources after binding is maximized. Note that when a candi-
date C1 is binded on a resource R1, the new gain of the resource is
min(gain(R1),delay(c1)).

Algorithm 2 solves the Extend Bind problem by sorting all resources
and candidates in increasing order of their gains. Then it merges the ith
candidate with ith resource.

Behavioral
Compiler

Scheduler Scheduler

Binder
Delay

Budgeting

DRP Driven
Binder

Design
Compiler

NO

Clock
Met?

Academic
ApproachCommercial

Approach

Yes

Cadence Place and Route

NO

NO
(new estimates)

(new estimates)(new estimates)

INPUT DFG

Figure 3. Experimental Flow

Syn-D.C Cad-QP Cad-QR Tot-Run
Area Area Wire Wire No-Via

Benchmark JDMERGE1
Clock Constraint:1.37ns

DRPs Met
Comm Not Met

Clock Constraint:1.8ns
DRPs Imprv
Over Comm 21.75% 21.56% 5.04% −1.8% 7.6% 3.3%

Benchmark JCTRANS1
Clock Constraint:1.16ns

DRPs Met
Comm Not Met

Clock Constraint:1.8ns
DRPs Imprv
Over Comm 26.87% 0.7% 19.3% 11.8% 5.2% 7.13%

Benchmark FFT2
Clock Constraint:1.8ns

DRPs Met
Comm Not Met

Clock Constraint:2.0ns
DRPs Imprv
Over Comm 9.8% 9.2% 13.3% 12.8% 9.1% 12%

Table 1. Comparison With Commerical Approach:
After Execution of Complete Design Flow

Theorem 2 Algorithm 2 solves the Extend Bind problem optimally.

Proof: Omitted for Brevity �

In order to solve the overall binding problem, we iteratively execute
Extend Bind for all clock steps. The overall algorithm is illustrated in
Algorithm 3.

5 . Experimental Results

The primary objective of the experimental results is to illustrate that
optimizing DRP results in faster design closure and also demonstrate
that traditional methodologies do not optimize DRP implicitly. Figure 3
illustrates our experimental flow in which we compare our results with
Behavioral Compiler (commercial tool) and state of the art academic ap-
proaches. The RTL designs generated by the three approaches are syn-
thesized by Synopsys DC and Cadence QPlace, WRoute. The academic
approach has a state of the art path based scheduler [4] (which we found
to be equally good as Synopsys scheduler in terms of clock cycles and
resource counts) and a low power driven binder [1]. We use the sched-
uler in [4] to generate a valid schedule which is then provided as input
to our algorithms that optimize DRP.

First Synopsys Behavioral Compiler was used to generate the RTL
design. The clock latency estimate for each operation and the resource

56

Syn-D.C Cad-QP Cad-QR Tot-Run
Area Area Wire Wire No-Via

Benchmark JDMERGE4
Clock Constraint:2ns

DRPs Met
Acad Not Met

Clock Constraint:2.2ns
DRPs Imprv
Over Acad −0.2% 0% 1.8% 4.3% 1.2% −26.4%

Benchmark NOISEST2
Clock Constraint:1.8ns

DRPs Imprv
Over Acad 14.23% 14.3% 10.8% 7% 5.2% 29.4%

Benchmark MOTION2
Clock Constraint:1.8ns

DRPs Imprv
Over Acad 2.2% 1.6% 2% 1.5% 0.9% 0%

Table 2. Comparison With Academic: After Execu-
tion of Complete Design Flow

constraints was provided as input to the path based scheduler [4]. Hence
all three designs (DRP, academic and commercial) had similar area and
clock latency. The RTL designs were syntehsized using Synopsys-DC
such that minimum clock delay could be achieved (using the highest
compile effort option). If a certain clock delay was satisfied, the resulting
gate level netlist was placed and routed using Cadence. The technology
library used was tsmc0.18.

We experimented with DFGs automatically extracted using the SUIF
and Machine-SUIF compiler infrastructure from representative C func-
tions of MediaBench suite [3]. In this section we present the results
obtained by running the commercial flow (Synopsys Behavioral Com-
piler) on some benchmarks and academic flow (see figure 3) on others.
Comparisons were made with results obtained from DRP driven design
flow.

Table 1 compares our solutions with the solution from Synopsys Be-
havioral Compiler. When performing logic synthesis, the clock delay
constraint was slowly increased from a very low value. The moment the
clock delay got satisfied, the design was placed and routed. It can be seen
that for all three benchmarks we can achieve faster clock cycles if DRP
is optimized. For example in benchmark JDMERGE1 a clock latency of
1.37ns was achievable for the DRP approach whereas it was not achiev-
able for Behavioral Compiler. The clock latency was increased till both
Behavioral Compiler and DRP approach could satisfy it (for example
a clock latency of 1.8ns was achieved by both). The two designs were
then placed and routed. Various metrics like gate area (column Syn-DC),
placement area, and total pre-routing wirelength (column Cad-QP) and
post routing wirelength and via count (column Cad-QR) and total run-
time for synthesis, placement and routing were compared. The results
show that for benchmark JDMERGE1, The DRP approach was 21.7%
better in gate area, 21.56% in placement area and so on over commercial
approach. This indicates that even if the achieved clock latency was the
same, the overall design quality was better.

Tables 2,3 present similar data for academic design flow. Out of six
benchmarks, four could achieve a shorter clock period. This clearly im-
plies faster design closure if the shortest clock period is desired. Besides,
even if the clock period was the same, the overall design quality was bet-
ter if DRP was optimized.

Optimizing DRP essnetially relaxes the criticality of the delay param-
eter and hence gives ample avenue for the low level tool to improve the
other parameters of the design.

6 . Conclusions and Future Work

In this paper we proposed DRP as a new design metric. We presented
problem formulation and post scheduling algorithms for delay budgeting

Syn-D.C Cad-QP Cad-QR Tot-Run
Area Area Wire Wire No-Via

Benchmark MOTION3
Clock Constraint:1.81ns

DRPs Met
Acad Not Met

Clock Constraint:1.82ns
DRPs Imprv
Over Acad 14.5% 12.8% 9.33% 2.5% -0.7% 13.8%

Benchmark JDMERGE2
Clock Constraint:1.6ns

DRPs Met
Acad Not Met

Clock Constraint:1.8ns
DRPs Imprv
Over Acad 13.5% 11.3% 12.6% 8.8% 8.8% 0%

Benchmark JDMERGE3
Clock Constraint:1.6ns

DRPs Met
Acad Not Met

Clock Constraint:1.8ns
DRPs Imprv
Over Acad 12.4% 11.2% 12% 10.1% 8.5% −12.4%

Table 3. Comparison With Academic: After Execu-
tion of Complete Design Flow

and resource binding for generating large delay relaxation parameter at
RT Level. Extensive experimentation illustrated the effectiveness of this
parameter. DRP could be used to optimize overall design quality by
exploiting it for voltage scheduling, gate sizing and other optimizations.

References

[1] J.M. Chang and M. Pedram, ”Low Power Register Allocation and
Binding ”, Design Automation Conference, 1995.

[2] R. Cloutier, D. Thomas , ”The Combination of Scheduling, Alloca-
tion and Mapping in a Single Algorithm”, Design Automation Con-
ference, 1990.

[3] C. Lee, M. Potkonjak and W. H. Maggione-Smith, ”MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Commu-
nications Systems,” International Symposium on Microarchitecture,
1997.

[4] S. Ogrenci Memik, E. Bozorgzadeh, R. Kastner and M. Sarrafzadeh,
”A Super-scheduler for Embedded Reconfigurable Systems”, Inter-
national Conference on Computer Aided Design, 2001.

[5] S. Ogrenci Memik, A. Srivastava, E. Kursun, M. Sarrafzadeh, ” Al-
gorithmic Aspects of Uncertainty Driven Scheduling”, IEEE Inter-
national Symposium on Circuits and Systems, 2002.

[6] B.M. Pangrle, D.D. Gajski, ” Design Tools for Intelligent Silicon
Compilation”, IEEE Transactions on CAD 6(6), 1098-1112, Nov
1987.

[7] E. Bozorgzadeh, S. Ghiasi, A. Takahashi and M. Sarrafzadeh, ” Op-
timal Integer Delay Budgeting on Directed Acyclic Graphs ”, De-
sign Automation Conference Jun 2003.

[8] C. Chen, X. Yang and M. Sarrafzadeh, “Potential Slack: An Effec-
tive Metric of Combinational Circuit Performance ”, International
Conference on Computer Aided Design, Nov 2000: 198-201.

[9] C. Chen, E. Bozorgzadeh, A. Srivastava and M. Sarrafzadeh, “Bud-
get Management and Its Applications ”, ALGORITHMICA 2002.

[10] A. C.Parker, J. Pizarro, M. Mlinar. ”MAHA: A Program for Data-
path Synthesis”, Design Automation Conference, 1986.

57

