
A Min-Cost Flow Based Detailed Router for FPGAs ∗

Seokjin Lee
Dept. of ECE

The University of Texas at
Austin

Austin, TX 78712

Yongseok Cheon
Dept. of Computer Sciences

The University of Texas at
Austin

Austin, TX 78712

Martin D. F. Wong
Dept. of ECE

University of Illinois at
Urbana-Champaign
Urbana, IL 61801

ABSTRACT
Routing for FPGAs has been a very challenging problem due
to the limitation of routing resources. Although the FPGA
routing problem has been researched extensively, most al-
gorithms route one net at a time, and it can cause the net-
ordering problem.

In this paper, we present a detailed routing algorithm for
FPGAs based on min-cost flow computations. Using the
min-cost flow approach, our algorithm routes all the nets
connected to a common logic module simultaneously. At
each stage of the network flow computation, we guarantee
optimal result in terms of routability and delay cost. For fur-
ther improvement, we adopt an iterative refinement scheme
based on the Lagrangian relaxation technique. The La-
grangian relaxation approach transforms the routing prob-
lem into a sequence of Lagrangian subproblems. At each it-
eration of the algorithm, Lagrangian subproblems are solved
by our min-cost flow based routing algorithm. Any violation
of congestion constraints is reflected in the value of corre-
sponding Lagrangian multiplier. The Lagrangian multipliers
are incorporated into the cost of each routing rosource node
and guide the router.

Because our min-cost flow based algorithm minimizes cost
function while it maximizes the flow, our algorithm finds
congestion-free routing solutions with minimum total delay.
Comparison with VPR router shows that our router uses
less or equal number of routing tracks with smaller critical
path delay as well as total routing delay.

Keywords
FPGA routing, min-cost flow algorithm, Lagrangian relax-
ation

1. INTRODUCTION
Due to their low manufacturing cost and time, field pro-

grammable logic arrays (FPGAs) have been very popular
for rapid system prototyping, logic emulation, and recon-
figurable computing. Figure 1 shows a typical array-based
FPGA architecture. An array-based FPGA consists of a
two-dimensional array of logic modules, vertical and hor-
izontal routing channels, and switch modules. The logic
modules contain combinational and sequential circuits to re-
alize logic functions. The routing channels and the switch
modules comprise the routing resources of an FPGA. The

∗This work was partially supported by the National Science
Foundation under grant CCR-0244236

logic module

L L L

L L L

L L L

vertical channel

horizontal channel

SS

SS

switch module

LUT

FF

input pin

output
pin

Figure 1: Typical FPGA architecture

routing channels usually have various lengths of wire seg-
ments to improve circuit performance and maintain reason-
able routability at the same time. Routing of an FPGA is
performed by programming the switches to connect the wire
segments. Due to their high RC delays and large area, the
routability of switch modules are usually limited.

It is widely known that the feasiblity of FPGA design is
most constrained by routing resources, and routing delays
dominate the performance of FPGAs. The routing prob-
lem of the array-based FPGAs has been extensively stud-
ied by researchers[4, 6, 9, 12, 13, 14, 16, 18]. Most FPGA
routers route one net at a time, and they suffer from net-
ordering problem in which routing results may vary signifi-
cantly depending on the ordering of the nets to route. The
PathFinder algorithm[14] alleviates this problem by well-
designed rip-up and reroute scheme. The VPR router[16],
based on a careful implementation of the PathFinder algo-
rithm, is a very successful placement and routing tool.

In this paper, we present an effective routability driven de-
tailed routing algorithm, which also considers routing delay.
Our algorithm first considers the problem of routing all the
nets connected to one common logic module through logi-
cally equivalent input pins. We assume the LUT-based logic
modules for our target architecture. Our algorithm exploits
the fact that the input pins of a LUT are logically equivalent,
and it routes all the nets connected to one LUT simultane-
ously. Our algorithm is based on min-cost flow computa-
tions, and it guarantees to find a congestion-free wire type
assignment solution if one exists. Furthermore, it can find
a solution with minimum total delay at the same time. Al-
though network flow frameworks have been used for various

388

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

a b

c

d
e

f

g h net1
net2

L1 L2

L3 L4

Figure 2: A routing graph and the routing trees for
two nets. Black nodes represent input pin nodes,
white nodes correspond to output pin nodes, and
the gray nodes correspond to the wire segments.
Edge pairs between the nodes are represented by
the bidirectional edges for simplicity.

routing algorithms[3, 7, 11, 15], most of those algorithms
need to solve the multicommodity flow problems which can-
not guarantee integer flow solutions. Although [15] proposed
an algorithm based on min-cost flow algorithm, it can only
handle the nets connected to a common node.

To alleviate the possible ordering problem in LUT selec-
tion, and to further improve the routing results, we adopt an
iterative refinement scheme based on Lagrangian relaxation.
In the Lagrangian relaxation framework, the routing prob-
lem is transformed into a sequence of subproblems called the
Lagrangian subproblems. Each subproblem corresponds to
the routing problem for all the nets connected to a LUT, and
it is solved by min-cost flow computation. At each iteration
of our algorithm, violations in congestion constraints are re-
flected in the value of corresponding Lagrangian multipliers,
and the multipliers guide the router.

The rest of the paper is organized as follows. The FPGA
detailed routing problem is defined in section 2. In section 3,
we present the flow network graph construction scheme and
our network flow based algorithm for routing nets together
with the Lagrangian relaxation framework for iterative re-
finement. Experimental results are shown in section 4, and
we conclude the paper in section 5.

2. PROBLEM FORMULATION
Routing of an FPGA is performed by programming the

switches to connect the wire segments. Unlike the intercon-
nection tracks in custom ICs, a wire segment in an FPGA
cannot be shared by different nets. Together with perfor-
mance constraints, this congestion constraints make FPGA
routing a very challenging problem. The problem of routing
FPGAs is assigning nets to routing resources to route all
nets successfully. The routing architecture of an FPGA can
be modeled with a routing graph G(V, E). A set of nodes

V in this directed graph represents the input pins and out-
put pins of logic modules, and the wire segments. The set
of edges E corresponds to feasible connections between the
routing resources represented by nodes. We can attribute a
set of capacity R and a set of cost C to each node and edge
in G. A capacity of a node (or an edge) denotes the avail-
able number of the pin or wire segment (switch), and a cost
of a node (an edge) represents the routing delay through
the corresponding routing resource. For detailed routing,
capacities for all the routing resources can be set to 1. A
route of a net corresponds to a subtree in G. The root of a
routing tree is the source of the net, and all the leaf nodes
are the sinks of the net. Because no resource can be shared
by different nets, the routing trees for the nets are vertex
disjoint. Figure 2 shows an example of a routing graph and
routing trees. Nodes and edges are superimposed on the
corresponding routing resources. The problem addressed in
this paper is stated below:

FPGA detailed routing problem: Given a routing
resource graph G for an FPGA architecture, find vertex dis-
joint routing trees in G for all the nets.

To alleviate the net ordering problem, we route several
nets connected to a common logic module simultaneously
rather than routing nets one by one. As shown in Figure 1,
we assume a widely used model of a logic module, which
consists of several look-up tables (LUTs) and flip-flops. In
this paper, we assume that a logic module has one LUT in
it for the simplicity of presentation unless stated otherwise.
Because all the inputs of a LUT are logically equivalent, they
are permutable when they are assigned to the routes for the
nets connected to the LUT. In our routing algorithm, we
route all the nets connected to a LUT simultaneously. For
multiple-pin nets, we route a portion of net (net segment)
branched from a partial routing tree previously constructed
for the net. In the example shown in Figure 2, both of
net1 and net2 are connected to a logic module L2. Net1
is a multiple-pin net. Suppose the routing tree for net1
is already constructed partially (from L1 to L4 using wire
segments a and g) when the logic module L4 is processed.
Then, only the portion of the tree branching from this par-
tially constructed tree needs to be routed when the module
L2 is handled. Before stating the overall routing problem,
we define a smaller problem as follows:

The Routing for One LUT (ROL) Problem: Given
a routing resource graph G(V, E) and a LUT, find routes for
all the net segments connected to the LUT such that each
edge and node is used at most once.

Because we will use min-cost flow computation to solve
ROL problem, we can also minimize the total cost of the
routes for the nets. By solving the ROL problem for each
LUT, we can solve the overall routing problem for an FPGA.
As ROL problem for each LUT is solved, branches of rout-
ings trees for the nets are gradually constructed, and after
solving ROL for all the LUTs, we can get the routing trees
for all the nets in an FPGA. In the example of Figure 2,
although only a portion of net1 is routed when L4 is pro-
cessed, by the time when routing for L2 is finished, routing
trees for both of net1 and net2 are fully constructed. The
FPGA detailed routing problem can be formulated as:

389

Minimize
P

i,k cixik

subject to P
k xik ≤ 1 ∀i ∈ V, and

x ∈ X

where xik is a decision variable for each node (or edge) de-
fined as

xik =

1, if the routing of net k uses node (or edge) i
0, otherwise

ci is the cost of node (or edge) i, x is the vector of xik, and
X is the set of all possible routes of each net.

3. ALGORITHM DESCRIPTION
In this section, we describe the algorithms to solve the

problems introduced in the previous section. By perform-
ing the min-cost max flow computations on the flow net-
work which is constructed from G, our algorithm for the
ROL problem, ROL NF, can solve the ROL problem in
polynomial time. Because each routing resource can be ac-
cessed by several nets, there can be dependency between
the flows computed for each LUT. To avoid this ordering
problem of LUTs processed by ROL NF, we adopted an it-
erative refinement scheme based on Lagrangian relaxation.
Lagrangian relaxation is a general technique for solving opti-
mization problems with difficult constraints. In Lagrangian
relaxation, constraints are relaxed and added to the objec-
tive function after being multiplied by coefficients called La-
grangian multipliers. In our scheme, the congestion con-
straints are relaxed, and the Lagrangian multipliers used to
relax the congestion constraints are added to the cost for
each node to guide the router to find less congested routes
for the nets.

3.1 Min-cost flow algorithm to route nets for
one LUT

To solve the ROL problem for a LUT, we construct the
flow network from the routing graph. We will apply a min-
cost flow algorithm on the constructed flow network. Let
L = {l1, l2, ..., lm} be a set of all LUTs in an FPGA. Given
a routing graph G(V, E) with capacity R and cost C and a
LUT lk, we construct the flow network Gf (Vf , Ef) as fol-
lows:

1. Vf = V ∪ {s, s1, s2, ..., sn, t}, where s is a source node,
and si is a subsource node, and t is a sink node of
Gf (Vf , Ef). n is the number of nets connected to lk.

2. Ef = E ∪ Es ∪ Es′ ∪ Et, where Es = {(s, si)|i =
1, 2, ..., n}, Es′ = {(si, v)|i = 1, 2, ..., n, v ∈ Ti}, Et =
{(pi, t)|pi ∈ Sp}. Ti denotes a partially constructed
routing tree for net i, and Sp is a set of nodes corre-
spond to the input pins of lk.

3. Edge Capacity: rf (e) = 1 ∀e ∈ Ef

4. Node Capacity:
rf (v) = 1 ∀v ∈ V ∪ {s1, s2, ..., sn}, node s and
node t are incapacitated.

j i k

j i k

i' i"j k

(r(e1), c(e1))

(r(i), c(i))

(r(i), c(i))

(r(e1), c(e1))

(r(e1), c(e1))

(r(e1), c(e1))

(r(e1), c(e1))

(r(i), c(i))

(a)

(b)

(c)

Figure 3: Network transformations: (a) Original
network. Note that the edge between node i and
node j (e1) is an undirected edge. (b) Transforma-
tion to directed edges. (c) Node splitting. Node i is
split to i′ and i′′. A capacity and a cost are assigned
to the edge (i′, i′′). All the incoming edges to node i
are connected to i′, and an outgoing edge is replaced
by an edge going out of node i′′. (Node splitting for
node j and node k are omitted.)

5. Edge Cost:

cf (e) =

c(e), if e ∈ E
0, otherwise

6. Node Cost:

cf (v) =

c(v), if v ∈ V
0, if v ∈ s, s1, s2, ..., s3, t

The constructed flow network for a ROL problem is illus-
trated in Figure 4. Note that the subsource nodes and the
edge set Es′ are adaptively updated for each lk depending on
the number of nets connected to lk and the partial routing
tree of each net constructed in the process of solving ROL
problems for other LUTs. By connecting a subsource node
to all the nodes belonging to a partial routing tree for a net,
we can find the best branching point for the Steiner tree.
To make our problem conform to the classical network flow
framework, we transformed Gf (Vf , Ef) to a directed graph
in which only edges have capacities and costs. Note that any
undirected edges, which can be formed due to bidirectional
wire segments, in Gf (Vf , Ef) can be transformed to a pair of
directed edges with the cost and the capacity of the original
undirected edge [2]. By node splitting transformation, any
node i with nonzero cost and capacity is transformed into
the two nodes i′ and i′′. This transformation replaces each
of the original edges (j, i) and (i, k) into (j, i′) and (i′′, k),
respectively. It also adds an edge (i′, i′′) with the cost and
the capacity of node i. Figure 3 shows an example of the
network transformations.

390

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

s

s1

s2

s3

s4

t

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)
(1, 0)

(1, 0)

(1, 0)

(1, 0)

Figure 4: A flow corresponds to ROL for 4 net seg-
ments connected to l7.

It can be shown that any flow in Gf is a routing solu-
tion for a subset of the given nets to route. Each flow from
s to t through subsources corresponds to a route for a net
segment connected to lk. A node occupied by a flow corre-
sponds to a wire segment used for the route, and the flow
along an edge denotes that the corresponding switch is used
for the route. If a flow f exists and |f | = n, then we can
find a feasible solution for all the net segments connected
to the LUT, and the cost of the flow is the cost of a solu-
tion to the ROL problem. Since we assigned 1 to all the
edges and the number of edges connected to s is n, and it is
the same as the number of edges connected to t, |f∗| ≤ n,
where f∗ is the maximum flow in Gf . If f∗ < n, there is
no feasible solution to the ROL problem, and the min-cost
maximum flow assigns routing resources to the routes for as
many net segments connected to the LUT as possible with
minimum total delay costs. The following theorem shows
that the ROL problem can be exactly solved by a network
flow computation on Gf .

Theorem 1. A min-cost maximum flow f∗ in Gf corre-
sponds to a solution to the ROL problem with minimum total
delay cost. If the size of f∗ is n, the number of net segments
connected to a LUT, then the ROL problem for the LUT is
feasible so that all the net segments connected to the LUT
can be routed.

From the computed flow in Gf , a solution to the ROL
problem can be derived by a depth-first search from each in-
put pin node of the LUT to each subsource node in Gf . Be-
cause each subsource node si is associated to a net segment
and it is connected to the nodes belonging to the partial
routing tree associated with that net, the node connected to
the subsource node among the nodes in partial routing tree
becomes a branching point for the branch from the routing
tree to the LUT. Figure 4 shows a flow f corresponding to
a ROL solution for 4 net segments connected to a LUT. In
this example, the net from l1 is a multiple-pin net, and a
portion of this net is routed while l14 is processed. Hence,
the subsource s2 is connected to all the nodes along the par-
tially connected routing tree. Because only a flow of size one
can flow through s2, only one node is selected as a branch-

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5: Routes correspond to the flow computed
in Figure 4

Algorithm ROL NF
Input: G(V, E), R, C, lk
Output: routes for all net segments to lk
begin
1. Construct the flow network Gf (Vf , Ef)
2. Assign costs and capacities
3. Run min-cost max-flow algorithm on Gf (V, E)
4. Derive the corresponding routes from the computed flow
end

Figure 6: Algorithm ROL NF

ing point. The routes correspond to the flow solution of
Figure 4 is shown in Figure 5. Figure 6 summarizes our
ROL NF algorithm.

There are several polynomial-time optimal algorithms avail-
able for finding a min-cost maximum flow in a network[2].
Deriving a solution to the ROL problem from a flow can be
done in O(E) time. Thus, the ROL problem can be solved
efficiently as stated in the following theorem, if we adopt the
double scaling algorithm[1].

Theorem 2. The ROL NF algorithm exactly solves the
ROL problem in O(V EloglogRmaxlog(V Cmax)) time, where
Rmax is the maximum value of the capacities and Cmax is
the maximum value of the costs.

3.2 Iterative refinement using Lagrangian re-
laxation

In this section we solve the FPGA detailed routing prob-
lem. We apply the ROL NF algorithm successively on all
the LUTs in an FPGA. To avoid ordering problem of select-
ing LUTs, we adopt an iterative refinement scheme based on
Lagrangian relaxation. We relax the congestion constraints
in the FPGA detailed routing problem formulated in the
previous section. Each of the constraints is multiplied by
the corresponding Lagrangian multiplier, and added to the
objective function. Let

Lλ(x) =
X

k

X
i

cixik +
X

i

λi(
X

k

xik − 1)

391

circuit # of # of tracks critical path delay (ns) total wire length
LUTs vpr FlowRoute vpr FlowRoute improve vpr FlowRoute improve

9symml 26 10 9 26.7 25.1 6.0% 472 434 8.0%
term1 32 13 12 25.3 23.3 7.9% 627 600 4.3%
apex7 63 13 13 26.1 21.3 18.4% 843 738 12.5%

example2 101 17 16 29.6 23.2 21.6% 1488 1402 5.8%
alu2 56 17 17 54.7 49.2 10.1% 1660 1560 6.0%

too-lrg 52 19 19 31.2 30.2 3.2% 1721 1590 7.7%
vda 114 23 23 46.5 38.9 16.3% 3254 2987 8.2%
alu4 390 33 33 143.4 122.5 14.6% 5130 4694 8.5%
s298 490 27 27 274.0 194.7 28.9% 18816 16319 13.3%

Table 1: Comparisons between VPR and FlowRoute in number of used routing tracks, delay, and total
wirelength.

This relaxed objective function is called the Lagrangian func-
tion, and the Lagrangian subproblem associated with a fixed
set of Lagrangian multipliers λ is

LSλ : Minimize Lλ(x)

For any given λ, we note that

Lλ(x) =
X

k

X
i

cixik +
X

i

λi(
X

k

xik − 1)

=
X

k

(X
i

cixik +
X

i

λixik

)
−

X
i

λi

=
X

k

X
i

(ci + λi)xik −
X

i

λi

Because
P

i λi is a constant term, we can solve LSλ for a
given λ by solving

LS′
λ = min

(X
k

X
i

(ci + λi)xik

)

We solve this reduced Lagrangian subproblem LS′
λ by solv-

ing the ROL problems for all LUTs in L after assigning
(ci + λi) to each node (edge) i as a cost. After solving the
ROL problem, we reset the capacity of the edges to allow the
relaxation of the congestion constraints. To discourage us-
ing routing resources used in routing for nets to other LUTs,
we define the ci term as follows,

ci = di ∗ qi

where di is a delay cost of node (edge) i, and qi is the penalty
term proportional to the number of nets using node (edge)
i currently.

It is known that the minimum value of the Lagrangian
subproblem for any given vector λ is a lower bound on the
optimal objective function value of the original optimization
problem. Hence, the tightest lower bound to the optimal
objective function value is obtained by solving

L∗ = max
λ≥0

LSλ

which is known as the Lagrangian dual problem. To solve
the Lagrangian dual problem, an iterative approach is used.
At each iteration, we solve LSλ by solving LS′

λ for a given
λ, and then update the Lagrangian multipliers for the next
iteration using the solution of the current iteration. The

Algorithm FlowRoute
Input: Gf , R, C, L
Output: Routing trees for all nets in an FPGA
begin
1. Initialize λ
2. for each lk in L do
3. Rip up all the nets connected to lk
4. Call ROL NF
5. Update costs and reset capacities
6. Update λ
7. Repeat Step 2-6 until no shared resource exists
end

Figure 7: Algorithm FlowRoute

Lagrangian multipliers for (j + 1)th iteration are updated
by the subgradient method [2, 5] as follows:

λj+1
i = max

(
0, λj

i + θj(
X

k

xik − 1)

)

where θj is a step size with the property that limj θj → 0,
and limj

P
θj → ∞. We used θj = a/(j + b) as a step size,

where a and b are constants. By multiplying the amount of
violations of the congestion constraints, overly subscribed
routing resources can be penalized over iterations.

Figure 7 summarizes our algorithm for the FPGA detailed
routing problem, FlowRoute.

4. EXPERIMENTAL RESULTS
We have implemented our algorithms in C programming

language on a SUN Sparc Ultra 5 (360MHz) with 128M
memory. The experiments are performed on 9 circuits from
MCNC benchmark [17]. The placed netlists were generated
using the placer in VPR [16]. We assumed a symmetrical-
array-based FPGA, where each logic block contains four 4-
input lookup tables and four flip-flops. We set Fs = 3 and
Fc = W , where W is the number of wire segments of each
channel. Fs denotes the number of connections for each
wiring segment entering the switch box. Fc denotes the
number of tracks to which each logic block pin can connect.
For the purpose of comparison, we used identical intrinsic
delay values and timing models of VPR.

We compared the minimum number of tracks per channel
to achieve feasible routings for all nets, critical path delay,

392

and the total wire length from FlowRoute with those from
VPR router. Because FlowRoute is basically a congestion-
driven detailed router, we compared our results from the
ones obtained by running VPR router in congestion-driven
mode. Results are shown in Table 1. FlowRoute used
smaller number of tracks per channel for 3 circuits. Al-
though FlowRoute is a congestion driven router, because it
is based on min-cost flow computation, it shows improve-
ment in critical path delay up to 28.9 %(average 14.1 %).
Because the objective function of the problem of this paper
is the total sum of delays of routing resources, we also com-
pared total wire length. The wire lengths in the table are
represented as integer multiple of one logic module length.
The total wire length used to route all nets are reduced up
to 13.3 % (average 8.3 %).

5. CONCLUSIONS
In this paper, we proposed a congestion-driven detailed

router for FPGAs. In our algorithm, we route all the net
segments connected to a LUT simultaneously rather than
routing one net at a time. By routing several net segments
simultaneously using min-cost flow computation, our algo-
rithm can alleviate the net ordering problem. To avoid or-
dering problem in selecting LUTs, we adopted an iterative
refinement scheme based on Lagrangian relaxation. Each
of Lagrangian subproblems is solved by successive applica-
tion of min-cost flow based routing algorithm on all the net
segments connected to each LUT.

We could find feasible routings for the benchmark circuits
with less or equal number of routing tracks per channel com-
pared to VPR router. Furthermore, the total delays of the
nets are also reduced, which can contribute to reducing crit-
ical path delay of the circuit. We compared our algorithm
with VPR router and the experimental results shows that
our algorithm is very effective.

6. REFERENCES
[1] R. K. Ahuja, A. V. Goldberg, J. B.Orlin, and

R. E. Tarjan, “Finding minimum-cost flows by double
scaling,” Mathematical Programming 53, pp. 243-266,
1992.

[2] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications. Prentice
Hall, 1993.

[3] C. Albrecht, “Provably good global routing by a new
approximation algorithm for multicommodity flow,”
Proceedings of ACM ISPD-00, pp. 19-35, 2000

[4] M. Alexander, G. Robins, “New performance-driven
FPGA routing algorithms,” Proc. ACM/IEEE Design
Automation Conference, pp. 562-567, 1995.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,
Nonlinear Programming: Theory and Algorithms, 2nd
ed. New York: Wiley, 1993.

[6] S. Brown, M. Khellah, G. Lemieux, “Segmented
Routing for Speed-Performance and Routability in
Field-Programmable Gate Arrays,” in Journal of
VLSI Design, 1996.

[7] R. C. Carden, C. K. Cheng, “A global router using an
efficient approximate multicommodity multiterminal
flow algorithm,” ACM/IEEE DAC-91, pp. 316-321,
1991.

[8] Yao-Wen Chang, D. F. Wong, Kai Zhu, and
C. K. Wong, “On a New Timing-Driven Tree
Problem,” in Proc. Intl. Conf. on Computer-Aided
Design, 1994, pp. 380-385.

[9] Yao-Wen Chang, D. F. Wong, C. K. Wong, “FPGA
Global Routing Based on a New Congestion Metric,”
in Proc. Intl. Conf. on Circuit Design, 1995, pp.
372-378.

[10] J. S. Swartz, V. Betz, J. Rose, “A Fast
Routability-Driven Router for FPGAs,” Proc.
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 1998, pp. 140-149.

[11] J. Huang, X. L. Hong, C. K. Cheng, and E. S. Kuh,
“An efficient timing-driven global routing algorithm,”
ACM/IEEE DAC-93, pp. 596-600, 1993.

[12] Y.-S. Lee, C.-H. Wu, “A performance and routability
driven router for FPGAs considering path delay,” in
Proc. Design Automation Conference, 1995, pp.
557-561.

[13] G. G. F. Lemieux, S. D. Brown, D. Vranesic, “On
Two-Step Routing For FPGAs,” in Proc. International
Symposium on Physical Design, 1997, pp. 60-66.

[14] L. McMurchie, C. Eberling, “PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs,” in Proc. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 1995,
pp. 111-117.

[15] G. Meixner, U. Lauther, “A new global router based
on a flow model and linear assignment,” Proc.
ICCAD-90, pp.44-47, 1990.

[16] V. Betz, J. Rose, “VPR: A New Packing, Placement
and Routing Tool for FPGA Research,” in Proc. the
7th Annual Workshop on Field Programmable Logic
and Applications, 1999, pp. 213-222.

[17] S. Yang, “Logic Synthesis and Optimization
Benchmarks, Version 3.0,” Tech. Report,
Microelectronics Center of North Carolina, 1991.

[18] K. Zhu, Y.-W. Chang, D. F. Wong, “Timing-Driven
Routing for Symmetrical-Array-Based FPGAs,” in
Proc. Intl. Conf. on Computer Design, 1998, pp.
628-633.

393

