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Abstract
In this paper, we propose a novel framework for fast multilevel

routing considering crosstalk and performance optimization. To han-
dle the crosstalk minimization problem, we incorporate an intermediate
stage of layer/track assignment into the multilevel routing framework.
For performance-driven routing, we propose a novel minimum-radius
minimum-cost spanning-tree (MRMCST) heuristic for global routing.
Compared with the state-of-the-art multilevel routing, the experimental
results show that our approach achieved a 6.7X runtime speedup, re-
duced the respective maximum and average crosstalk (coupling length)
by about 30% and 24%, reduced the respective maximum and average
delay by about 15% and 5%, and resulted in fewer failed nets.

1 Introduction
With decreasing feature sizes, higher clock rates, and increasing in-

terconnect densities, crosstalk has become a major concern of compa-
rable importance to area and timing in IC design. Crosstalk profoundly
affects the circuit performance in very deep submicron (VDSM) tech-
nology; it is introduced by a coupling between two neighboring wires.
For example, two adjacent wires form a coupling capacitor. A voltage
or a current change on one wire can thus interfere the signal on the other
wire. Crosstalk is an unwanted variation which makes the behavior of
a manufactured circuit deviate from the expected response. The delete-
rious influences of crosstalk can be classified into two categories. One
is malfunctioning, which makes the logic values of circuit nodes differ
from what we desire; the other is timing change, which is caused by
switching behavior. Therefore, in addition to routability and timing per-
formance, crosstalk minimization should also be considered in VDSM
router design.

Traditionally, the complex routing problem is often solved by us-
ing the two-stage approach of global routing followed by detailed rout-
ing. Global routing first partitions the routing area into tiles and de-
cides tile-to-tile paths for all nets while detailed routing assigns actual
tracks and vias for nets. Many routing algorithms adopt a flat framework
of finding paths for all nets. Those algorithms can be classified into
sequential and concurrent approaches. Early sequential routing algo-
rithms include maze-searching approaches [18] and line-searching ap-
proaches [14], which route net-by-net. Most concurrent algorithms ap-
ply network-flow [1] or linear-assignment formulation [5, 22] to route a
set of nets at one time.

The major problem of the flat framework lies in their scalability for
handling larger designs. As technology advances, technology nodes
are getting smaller and circuit sizes are getting larger. To cope with
the increasing complexity, researchers proposed to use hierarchical ap-
proaches to handle the problem. Marek-Sadowska [22] proposed a hi-
erarchical global router based on linear assignment. Chang, Zhu, and
Wong [5] applied linear assignment to develop a hierarchical, concur-
rent global and detailed router for FPGA’s.

The two-level, hierarchical routing framework, however, is still lim-
ited in handling the dramatically growing complexity in current and fu-
ture IC designs. As pointed out in [7], for a 0.07 �� process technology,
a 2.5 � 2.5 ��� chip may contain over 360,000 horizontal and vertical
routing tracks. To handle such high design complexity, the two-level,
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hierarchical approach becomes insufficient. Therefore, it is desired to
employ more levels of routing for very large-scale IC designs.

The multilevel framework has attracted much attention in the liter-
ature recently. It employs a two-stage technique: coarsening followed
by uncoarsening. The coarsening stage iteratively groups a set of circuit
components (e.g., circuit nodes, cells, modules, routing tiles, etc) based
on a predefined cost metric until the number of components being con-
sidered is smaller than a threshold. Then, the uncoarsening stage itera-
tively ungroups a set of previously clustered circuit components and re-
fines the solution by using a combinatorial optimization technique (e.g.,
simulated annealing, local refinement, etc). The multilevel framework
has been successfully applied to VLSI physical design. For example, the
famous multilevel partitioners, ML [2], and hMETIS [15], the multilevel
placer, mPL [4], and the multilevel floorplanner/placer, MB*-tree [19],
all show the promise of the multilevel framework for large-scale circuit
partitioning, placement, and floorplanning.

A framework similar to multilevel routing was presented in [13, 21].
Lin, Hsu, and Tsai in [21] and Hayashi and Tsukiyama in [13] presented
hybrid hierarchical global routers for multi-layer VLSI’s [13], in which
both bottom-up (coarsening) and top-down (uncoarsening) techniques
were used for global routing. Recently, Cong, Fang, and Zhang pro-
posed a pioneering multilevel global-routing approach for large-scale,
full-chip, routability-driven routing [7]. Cong, Xie, and Zhang later pro-
posed an enhanced multilevel routing system, named MARS [8], which
incorporates resource reservation, a graph-based Steiner tree heuristic
and a history-based multi-iteration scheme to improve the quality of the
multilevel routing algorithm in [7]. The final results of both of the mul-
tilevel algorithms are tile-to-tile paths for all the nets. The results are
then fed into a detailed router to find the exact connection for each net.
Lin and Chang also proposed a multilevel approach for full-chip rout-
ing, which considers both routability and performance [20]. This frame-
work integrates global routing, detailed routing, and resource estimation
together at each level, leading to more accurate routing resource esti-
mation during coarsening and thus facilitating the solution refinement
during uncoarsening. Their experimental results show the best routabil-
ity among the previous works.

Different from the aforementioned works, ours has the following dis-
tinguished features:

� A new framework of performing congestion-driven global rout-
ing at the coarsening stage, followed by an intermediate stage
of routing layer/track assignment for crosstalk optimization, and
then detailed routing at the uncoarsening stage. By perform-
ing detailed routing after layer/track assignment, we can preserve
more flexibility for allocating nets for crosstalk optimization.

� A novel minimum-radius minimum-cost spanning-tree (MRM-
CST) heuristic is employed to construct routing trees for perfor-
mance optimization.

� A point-to-path maze-searching algorithm is proposed for better
wirelength and routability optimization.

� An efficient and effective layer/track assignment scheme is incor-
porated for crosstalk and run-time optimization.

Figure 1 shows our multilevel framework. Given a netlist, we first
run the MRMCST algorithm to construct the topology for each net, and
then decompose each net into 2-pin connections, with each connection
corresponding to an edge of the MRMCST. Our multilevel framework
starts from coarsening the finest tiles of level 0. At each level, pattern
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Figure 1: Multilevel framework flow

routing is used for routability-driven global routing. After the coars-
ening stage, we perform a crosstalk-driven layer/track assignment for
crosstalk optimization. At the uncoarsening stage, we perform detailed
routing. Further, the unroutable nets are performed by point-to-path
maze routing and rip-up and re-route to refine the routing solution level
by level.

Compared with [20], the experimental results show that our approach
achieved a 6.7X runtime speedup, reduced the respective maximum and
average crosstalk (coupling length) by about 30% and 24%, reduced
the respective maximum and average delay by about 15% and 5%, and
resulted in fewer failed nets. The results show the promise of our ap-
proach.

The rest of this paper is organized as follows. Section 2 presents the
routing model and the multilevel routing framework. Section 3 presents
our novel framework for run-time and crosstalk optimization. Exper-
imental results are shown in Section 4. Finally, we give concluding
remarks in Section 5.

2 Preliminaries
2.1 Routing Model

Our global routing algorithm is based on a graph search technique
guided by the congestion information associated with routing regions
and topologies. The router assigns higher costs to route nets through
congested areas (or those of higher delay and/or crosstalk costs) to bal-
ance the net distribution among routing regions.

Before we can apply the graph search technique to multilevel rout-
ing, we first need to model the routing resource as a graph such that the
graph topology can represent the chip structure. Figure 2 illustrates the
graph modeling. For the modeling, we first partition a chip into an ar-
ray of rectangular subregions. These subregions are called global cells
(���). A node in the graph represents a�� in the chip, and an edge de-
notes the boundary between two adjacent ���. Each edge is assigned
a capacity according to the physical area or the number of tracks of a
GC. The graph is used to represent the routing area and is called a mul-
tilevel routing graph, denoted by ��, where � is the level ID. A global
router finds ��-to-�� paths for all nets on a routing graph to guide
the detailed routing. The goal of global routing is to route as many nets

as possible while meeting the capacity constraint of each edge and any
other constraint, if specified.

As the process technology advances, multiple routing layers are pos-
sible. The number of layers in a modern chip can be more than six [12].
Wires in each layer run either horizontally or vertically. We refer the
layer as a horizontal (H) or a vertical (V) routing layer.

(a) Partitioned layout  (b) Routing graph

Figure 2: The routing graph.

2.2 Multilevel Routing Model
As illustrated in Figure 1, �� corresponds to the routing graph of

the level 0 of the multilevel coarsening stage. At each level, our global
router first finds routing paths for the local nets (or local 2-pin connec-
tions) (those nets [connections] that entirely sit inside a ��). After the
global routing is performed, we merge � � � ��� of �� into a larger
�� and at the same time perform resource estimation for use at the next
level (i.e., level � here). Coarsening continues until the number of ���
at a level, say the �-th level, is below a threshold. After the coarsen-
ing is finished, a crosstalk-driven layer/track assignment is performed to
assign long and straight segments to underlying routing resources. The
uncoarsening stage tries to refine the routing solution of the unassigned
segments of the level �. During uncoarsening, the unroutable nets are
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performed by point-to-path maze routing and rip-up and re-route to re-
fine the routing solution. Then we proceed to the next level (level ���)
of uncoarsening by expanding each ��� to four finer �����. The pro-
cess continues until we reach level 0 when the final routing solution is
obtained.

3 Multilevel Routing Framework
Our multilevel routing algorithm is inspired by the work [20]. Nev-

ertheless, our framework is significantly different from that of [20]. Dif-
ferent from the framework of [20] that integrates global routing, de-
tailed routing, and resource estimation together at each level, we per-
form global routing at the coarsening stage, followed by layer/track
assignment at an intermediate stage, and then detailed routing at the
uncoarsening stage. At the coarsening stage, a fast congestion-driven
pattern routing [16] is used for global routing level by level. After the
coarsening stage, we perform layer/track assignment for crosstalk opti-
mization. At this intermediate stage, long and straight segments tend to
be assigned to specified layers/tracks, leading to more efficient detailed
routing at the uncoarsening stage since often only short segments need
to be handled during detailed routing. At the uncoarsening stage, the
unroutable nets are routed by point-to-path maze routing and rip-up and
re-route to refine the routing solution level by level.

3.1 Performance-driven Routing Tree Construction
In VDSM IC designs, interconnection delay dominates the perfor-

mance of a circuit. Therefore, improving the wire delay also improves
the overall chip performance. Many techniques have been developed
to facilitate high-performance IC designs. For example, the algorithms
for constructing performance-driven routing trees have received much
attention ([10]). The minimum spanning tree (MST) topology leads to
the minimum total wire length, and thus congestion is often easier to
be controlled than other topologies. However, its topology may result
in longer critical paths and degrade circuit performance. In contrast, a
shortest path tree (SPT) may result in the best performance, but its to-
tal wire length (and congestion) may be significantly larger than that
constructed by the MST algorithm. In [10], researchers used the idea
of incrementally modifying an MST to construct a performance-driven
routing tree for a smooth trade-off between the tree radius (maximum
signal delay) and the tree cost (total interconnection length). On one
hand, minimizing wire length minimizes driver’s output resistance and
the total wire capacitance. On the other hand, minimizing the path length
from the source to a sink also minimizes loading capacitance. Thus, both
wire length and path length minimization are comparably important for
RC delay minimization.

Different from the work presented in [10], our algorithm tries to find
a timing-driven routing tree, named a minimum-radius minimum-cost
spanning tree (MRMCST), with the minimum radius among all MST’s.
Since the MRMCST problem is NP-hard [23], we resort to a heuristic to
obtain efficient solutions.

Given a vertex � in a graph �, its eccentricity, denoted by 	�����,
is the distance from � to the farthest vertex in G. The essential edges
are those contained in every MST, and the optional edges are those con-
tained in some MST’s but not all MST’s. The pseudo-center of a tree,
denoted by 
�, is a point on an edge or a vertex of diameter � of the tree
such that the distances from 
� to the two extremes of � are the same.
By diameter, we mean the longest path between any two vertices in a
tree.

Since an MRMCST is an MST with the minimum radius among
all possible MST’s, this leads us to find the union graph of all MST’s
(called the MST Union Graph, MSTUG for short) and the intersection
graph of all MST’s (the MST Intersection Graph, MSTIG for short). We
construct an MSTUG and an MSTIG by modifying the edge-coloring
process introduced by Tarjan [26], in which edges are colored either
blue (essential edges) or red (discarded edges). But neither blue nor
red edges can be applied to the optional edges. By modifying the edge-
coloring process, we introduce green edges to represent optional edges.
The MSTUG contains all the blue and green edges while the MSTIG
contains blue edges only.

Initially there are � single components. As edges are colored green
or blue, two components are merged together to produce one compo-
nent. If there exists one and only one component, the algorithm will
terminate after coloring all the uncolored edges red. The algorithm is
summarized in Figure 3.

Algorithm : MSTUG and MSTIG(G)
Input : A connected graph � � ����;

Output : Partition � into three sets,
GREEN (set of optional edges),
BLUE (set of essential edges), and
RED (set of discarded edges).

�	���
1 Partition the edges of � into equivalence classes

��� ��� ������ s. t. two distinct edges are in the same
class iff they have the same edge cost.

2 while (there exists more than one component) do
3 For each 	 � ��

if both ends of 	 are in the same current component
then color it RED and delete it from ��

4 If ���� � � then goto Step 6
else if ���� � � then color it BLUE and goto Step 6

else color them GREEN.
5 For each GREEN edge 	 � ��

if 	 is a bridge in the current component
then recolor it BLUE.

6 If there is only one component (i.e. connected)
then color all uncolored edges RED and stop.

	��

Figure 3: Algorithm for constructing an MSTUG and an MSTIG.

Based on this modified edge-coloring process, an MSTUG and an
MSTIG can be constructed in ��� �� �� time, where � is the number
of vertices. See Figure 4(b) for an example of MSTUG and MSTIG
construction.

After constructing an MSTUG and an MSTIG, we may obtain sev-
eral blue trees and optional edges unless the MST is unique, and then
an MRMCST can be constructed by selecting optional edge(s) to con-
nect the blue trees. We introduce a Prim-based heuristic, named locally
optimal connection strategy (LOCS), for the MRMCST construction.

The Prim-based method considers only one criterion. If there is more
than one minimally cost optional edge incident to the blue tree with
source �, we break the tie by choosing the edge 	 � �
� ��, where 
 is
in the blue tree with source � and � is in a neighboring blue tree � , to
minimize ��	� � � defined below:

��	� � � � ������� 
� 	 �����	� 	 ������� 
��� �� 	 	���
��� ��� (1)

where ������� 
� is the distance from the source to the node 
, and
�����	� is the length of edge 	.

The MRMCST algorithm that employs LOCS is summarized in Fig-
ure 5. See Figure 4(c) for the MRMCST of Figure 4(b).

Theorem 1 The MRMCST algorithm runs in O��	���� ������� time,
where � is the number of vertices and ���� is the number of optional
edges.

3.2 Crosstalk-Driven Layer/Track Assignment
As fabrication technology shrinks into the VDSM era, as pointed

out in [25], on-chip minimum feature sizes continue to decrease, and
devices and interconnection wires are placed in closer proximity in order
to reduce interconnection delay and routing area. The increasing aspect
ratio of wires and the decreasing of interconnect spacing have made the
coupling capacitance larger than self capacitance. In fact, the ratio of
coupling capacitance is reported to be even as high as 
�� � ��� of
the total wiring capacitance, even in ����� technology.

Crosstalk is mostly caused by coupling capacitance between inter-
connection wires. In general, the crosstalk between two wires is pro-
portional to their coupling capacitance, which is determined by the rel-
ative positions of the wires. The coupling capacitance between a pair of
parallel wires is proportional to their coupling length, and is inversely
proportional to their separating distance. The coupling capacitance be-
tween a part of orthogonal wires is negligible in comparison with the
coupling capacitance between a pair of parallel wires for current tech-
nology. Consequently, it is reasonable to assume that there is crosstalk
only between adjacent parallel wires.
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Source Essential edge (blue)

Optional edge (green)

(a)  Vertex set P (c)  MRMCST (P)(b)  MSTUG (P) and MSTIG (P) 

Figure 4: Example MRMCST construction. (a) The given vertex set. (b) The MSTUG contains all edges while the MSTIG contains all solid edges. (c) The
resulting MRMCST.

Recently, there has been much research on the coupling problem
in both global and detailed routing. Zhou and Wong [27] minimized
crosstalk at the global routing stage. Chaudhary et al. [6] proposed wire
spacing after detailed routing to reduce crosstalk. This technique can be
applied as a post-processing and used for improving an existing layout,
but it is not suitable for routing.

However, both global routing and detailed routing are not the best
stage to address crosstalk. It might be too early to handle crosstalk dur-
ing global routing since the relative positions and ordering of nets are not
determined at this stage; therefore, the best one can do here is use rough
statistical estimators that discourage nets from entering regions where
unwanted proximities seem likely. Conversely, it is too late for detailed
routing since area routers that embed one net at a time may encounter
unsolvable rip-up/re-route problems trying to embed a late-routing net
that must traverses a region already dense with conflicting aggressor or
victim nets.

To address these problems, Kay and Rutenbar [17] suggested an in-
teger linear programming (ILP)-based track/layer assignment method
to do crosstalk optimization. However, the ILP-based approach is very
time-consuming and thus not suitable for large and complex design. Bat-
terywala et al. [3] proposed a fast track assignment heuristic considering
routability, but crosstalk was not addressed in the work.

In this paper, we propose a fast layer/track assignment heuristic for
crosstalk optimization. After the coarsening stage, we may obtain some
long horizontal and vertical segments. To simplify the layer/track as-
signment problem, we only assign segments which span more than one
complete global cell in a row or a column. (We handle short segments
during detailed routing.) The layer/track assigner works on a full row or
column of the global cell array at a time. Each row (column) is called a
panel .

We first build the horizontal constraint graph ������� for all
segments in the panel. Each vertex � �  corresponds to a segment in
the panel. Two vertices �� and �	 are connected by an edge 	 � � iff
these segments belong to two different nets and their spans overlap. The
edge cost of 	 � ���� �	� � � represents the coupling length if �� and
�	 are assigned to adjacent tracks. We define the crosstalk-driven layer
assignment problem as follows:

� The Crosstalk-driven Layer Assignment (CLA) Problem:
Given a set of layers �, a set of segments �, and a cost function
� � ��� �� � which represents the coupling cost of assigning
a segment to a layer, find an assignment that minimizes the sum
of the coupling costs of each layer.

The CLA problem can be formulated as the max-cut, �-coloring
(MC) problem [24]. However, the MC problem is NP-complete [24].
Thus, we resort to a simple yet efficient heuristic by constructing a max-
imum spanning tree from the given HCG. Since a tree can be � colored
in linear time if we have � layers, we shall first partition the vertices
incident on edges with larger costs (coupling lengths) and allocates the
corresponding segments to different layers.

Let � be the set of tracks inside a panel. Each track � � � can be
represented by its set of constituent contiguous intervals. Denoting these
intervals by  �, we have � �

�
 �. Each  � is either

� a blocked interval, where no segment from � can be assigned,

� an occupied interval, where a segment from � has been assigned
or

� a free interval, where no segment from the set � has yet been
assigned.

A segment �	� � � is said to be assignable to � � � , � �
�
 �, iff

 � 	 �	� 
� � implies that either  � is a free interval or is an interval
occupied by a segment of the same net. Thus, the crosstalk-driven track
assignment problem can be defined as:

� The Crosstalk-driven Track Assignment (CTA) Problem:
Given a set of tracks � , a set of segments �, and a cost function
� � ��� �� � which represents the coupling cost of assigning
a segment to a track, find an assignment that minimizes the sum
of the coupling costs of the assignment.

After layer assignment, most of the edges with larger costs in an
HCG are eliminated, and the HCG is decomposed into � subgraphs
subHCG�, subHCG�, ..., subHCG� if we have � layers. Figure 6 shows
an example of track assignment problem for a subHCG, where � =
�!� �� �� �� 	� ��, � = ��� �� �� ��, and obstacles on tracks are shaded
in grey (e.g., the two obstacles on tracks � and �). We use a bipartite
assignment graph to indicate the assignability of segments to tracks. For
example, as shown in Figure 6(b), edges between vertex ! and vertices
1, 2, and 3 are introduced since segment ! can be assigned to track 1, 2,
or 3, but not track 4. For easier implementation, we merge the subHCG
and the bipartite assignment graph into a combination graph, as shown
in Figure 6(c).

The CTA problem can be formulate as the Hamiltonian path problem
which has been proven to be NP-complete [11]. We resort to a heuristic
for the CTA problem. Our track assignment algorithm starts by finding
the maximal sets of conflicting segments. This is equivalent to finding
the largest clique 
 in the subgraph subHCG�. Since the graph is an
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Algorithm : MRMCST
Input : MSTUG, MSTIG and source �

Output : An MRMCST
�	���
1 �� = a blue tree containing the �;
2 �"����#		� = the number of blue trees;
3 Find the 
� for each blue tree which is not ��;
4 For all vertices not in ��, find the distance to its

corresponding 
�;
5 For each blue tree ��, find 	���
������ and optional edges

incident to it;
6 For all vertices in ��, find the distance from �;
7 Mark all vertices in �� “visited”;
8 For each optional edge 	 incident to ��, mark it

“inserted” and call InsHeap(	, FirstCost, SecondCost);
9 while (�"����#		� $ �) do
10 MinE = (��� ��) = PopHeap();
11 while (both � and % are marked “visited”) do
12 MinE = (��� ��) = PopHeap();
13 �"����#		���;
14 �� � ��	 MinE = (��� ��);
15 mark �� “visited”; find ����(��� �);
16 For each “unvisited” vertex % in the blue tree

containing �� (say &�)
17 Update ����(%� �) and mark “visited” while

traversing &� from ��;
18 For each “uninserted” optional edge

	 � ���� ���, �� � &� and �� � &	

19 FirstCost = ����(��� ��);
20 SecondCost = ����(�, ��) + ����(��� ��) +

����(��� 
��&	�) + 	��(
��&	�);
21 InsHeap(	, FirstCost, SecondCost);
22 Mark 	 “inserted”;
23 MRMCST = ��;
	��

Figure 5: Algorithm for constructing an MRMCST.

interval graph, finding the largest clique can be done in polynomial time.
The algorithm first assigns one maximal subset of conflicting segments
at a time by starting from the largest clique. Then we choose the longest
segment in the clique as the source � and assign it to the uppermost
available track. Then, we choose the min-cost edge ��� �� (and thus the
minimal coupling) and assign the segment associated with � to the first
available track. If all tracks are occupied, we refer to the net associated
with � as a failed net which will be reconsidered at the uncoarsening
stage. We repeat the procedure by finding the min-cost edge ��� '� for
further processing, where ' is an unvisited vertex.

Figure 7(a) shows the final track assignment for the instance of Fig-
ure 6. The maximum clique in the subHCG is ��� �� 	� ��, and the
longest segment in the clique is �. We thus assign segment � to the
uppermost available track, which is track 1. See Figure 7(b) for the up-
dated combination graph after assigning � to track 1. Then, our heuristic
makes � the source for constructing the Hamiltonian path for the clique.
The min-cost edge 	 � ��� �� incident on � is chosen, and � is assigned
to the first available track. See Figure 7(c) for the updated combina-
tion graph after assigning � to track 2. The process is repeated until
all vertices in the clique are visited. We then have the track assignment
solution shown in Figure 7(a).

After the track assignment, the actual track position of a segment is
known. Thus, we can perform point-to-segment maze routing to com-
plete the routing.

4 Experimental Results
We have implemented our crosstalk-driven multilevel system in the

C++ language on a 1 GHz SUN Blade 2000 workstation with 1GB mem-
ory. We compared our results with [20] based on the six benchmark cir-
cuits provided by the authors. See Table � for the benchmark circuits.
(Note that the benchmark circuits used in [20] also contain Mcc1, Mcc2,
Struct, Prim1 and Prim2. However, as pointed out in [20], those circuits
do not have the information of net sources, and thus we cannot calcu-
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Figure 6: Constraint graph modeling for track assignment. (a) The subHCG
for the given instance. (b) The corresponding bipartite assignment graph. (c) The
combination graph.
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Figure 7: The process for track assignment. (a) The final track assignment for
the instance of Figure 6. (b) The resulting combination graph after assigning � to
track 1. (c) The resulting combination graph after assigning � to track 2.

late the delay for nets for those benchmarks. Therefore, we shall focus
our comparative studies on the six benchmark circuits listed in Table �.)
The design rules for wire/via widths and wire/via separation for detailed
routing are the same as those used in [20].

Table � describes the set of benchmark circuits. In the table, “Size”
gives the layout dimensions, “#Layers” denotes the number of routing
layers used, “#Nets” represents the number of two-pin connections after
net decomposition. Since the results reported in [20] are better than
those in [9] and [7], we shall compare our multilevel router with that
in [20].

Experimental results on run-time, routing completion rate, delay, and
crosstalk are listed in Tables � and �, where “(���” represents the crit-
ical path delay, “(��” represents the average net delay, “����” repre-
sents the maximum coupling length of a net, and “���” represents the
average coupling length. To perform experiments on timing-driven rout-
ing, we used the same resistance and capacitance parameters as those
used in [20] and set the constraint ratio � used in [20] to � for compar-
ison. (For this case, both routers have comparable routability, and thus
it is easier to compare the delay and crosstalk results.) A via is modeled
as the �-model circuit, with its resistance and capacitance being twice
of those of a wire segment. All the parameters were the same as those
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12566832137040x3880S15850
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Table 1 : The benchmark circuits.
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Table 2 : Results of run-time and routability comparison.
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Table 3 : Results of timing and crosstalk comparison.

used in [20], and both routers were run on the same machine. Com-
pared with [20], the experimental results show that our router achieved
a 6.7X runtime speedup, reduced the respective maximum and average
crosstalk (coupling length) by about 30% and 24%, reduced the respec-
tive maximum and average delay by about 15% and 5%, and resulted in
fewer failed nets.

It should be noted that the coupling capacitance is not included in
delay computation for fair comparison with [20]. If coupling capaci-
tance is considered, we can obtain even better timing reduction due to
the significant crosstalk reduction.

5 Conclusion
In this paper, we have proposed a novel framework for fast multilevel

routing considering crosstalk and timing optimization. The experimen-
tal results have shown that our algorithm is very efficient and effective.
Our future work lies in multilevel routing considering nanometer elec-
trical effects.
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