
Software-Based Failure Detection and
Recovery in Programmable Network Interfaces

Yizheng Zhou, Vijay Lakamraju, Israel Koren, Fellow, IEEE, and

C. Mani Krishna, Senior Member, IEEE

Abstract—Emerging network technologies have complex network interfaces that have renewed concerns about network reliability. In

this paper, we present an effective low-overhead fault-tolerant technique to recover from network interface failures. Failure detection is

based on a software watchdog timer that detects network processor hangs and a self-testing scheme that detects interface failures

other than processor hangs. The proposed self-testing scheme achieves failure detection by periodically directing the control flow to go

through only active software modules in order to detect errors that affect instructions in the local memory of the network interface. Our

failure recovery is achieved by restoring the state of the network interface using a small backup copy containing just the right amount of

information required for complete recovery. The paper shows how this technique can be made to minimize the performance impact to

the host system and be completely transparent to the user.

Index Terms—Programmable Network Interface Card (NIC), Single Event Upset (SEU), radiation induced faults, failure detection,

failure recovery, self-testing.

Ç

1 INTRODUCTION

NOWADAYS, interfaces with a network processor and large
local memory are widely used [16], [18], [19], [20], [21],

[22], [23]. The complexity of network interfaces has increased
tremendously over the past few years. A typical dual-speed
Ethernet controller uses around 10,000 gates, whereas a more
complex high-speed network processor such as the Intel
IXP1200 [24] uses more than 5 million transistors. As
transistor counts increase, single bit upsets from transient
faults, which arise from energetic particles such as neutrons
from cosmic rays and alpha particles from packaging material
have become a major reliability concern [1], [2], especially in
harsh environments [3], [4] such as deep space. The typical
fault rate in deep space for two Myrinet Network Interface
Cards (NICs) is 0.35 faults/hour [4]. When a solar flare is in
progress, the fault rate in interplanetary space can be as great
as 6.87 faults/hour for two Myrinet NICs [4]. These also affect
systems on earth, especially far away from the equator [5].
Because this type of fault does not reflect a permanent failure
of the device, it is termed soft. Typically, a reset of the device
or a rewriting of the memory cell results in normal device
behavior thereafter. Soft-error-induced network interface
failures can be quite detrimental to the reliability of a
distributed system. The failure data analysis reported in [6]

indicates that network-related problems contributed to
approximately 40 percent of the system failures observed in
distributed environments. As we will see in the following
sections, soft errors can cause the network interface to
completely stop responding, function improperly, or greatly
reduce network performance. Quickly detecting and recover-
ing from such failures is therefore crucial for a system
requiring high reliability. We need to provide fault tolerance
for not only the hardware in the network interface but also its
local memory where the network control program (NCP)
resides.

In this paper, we present an efficient software-based
fault-tolerant technique for network failures. Software-
based fault tolerance approaches allow the implementation
of dependable systems without incurring the high costs
resulting from designing custom hardware or using
massive hardware redundancy. However, these approaches
impose some overhead in terms of reduced performance
and increased code size: it is important to ensure that this
overhead have a minimal performance impact.

Our failure detection is based on a software-implemen-
ted watchdog timer to detect network processor hangs, and
a software-implemented concurrent self-testing technique
to detect other failures. The proposed self-testing scheme
detects failures by periodically directing the control flow to
go through program paths in specific portions of the NCP in
order to detect errors that affect instructions or data in the
local memory, as well as other parts of the network
interface. The key to our technique is that the NCP is
partitioned into various logical modules and only active
logical modules are tested, where an active logical module
is the collection of all basic blocks that participate in
providing a service to a running application. When
compared with testing the whole NCP, testing only active
logical modules can limit significantly the impact on
application performance while still achieving good failure

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007 1

. Y. Zhou is with the University of Massachusetts, 310 Knowles Engineering
Bldg., 151 Holdsworth Way, Amherst, MA 01003-9284.
E-mail: yzhou@ecs.umass.edu.

. V. Lakamraju is with the United Technologies Research Center, 411 Silver
Lane, East Hartford, CT 06108. E-mail: LakamrVR@utrc.utc.com.

. I. Koren and C.M. Krishna are with the University of Massachusetts, 309K
Knowles Engineering Bldg., 151 Holdsworth Way, Amerhst, MA 01003-
9284. E-mail: krishna@ecs.umass.edu.

Manuscript received 24 Oct. 2005; revised 1 Sept. 2006; accepted 16 Feb.
2007; published online 13 Apr. 2007.
Recommended for acceptance by J. Hou.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0447-1005.
Digital Object Identifier no. 10.1109/TPDS.2007.1093.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

detection coverage. When a failure is detected by the

watchdog timer or the self-testing, the host system is

interrupted, and a Fault Tolerance Daemon (FTD) is woken

up to start a recovery process [7].
The central philosophy behind our failure recovery is to

save enough network-related state information in the host

so that the state of the network interface can be correctly

reestablished in the case of a failure. Clearly, the challenge

here is to provide for this “checkpointing” with as little

performance degradation as possible. In our technique, the

“checkpointing” is a continuous process in which the

applications make a copy of the required state information

before sending the information to the network interface and

update it when the network notifies the application that the

state information is no longer required. As the numerical

results will show, such a scheme greatly reduces the impact

on the normal performance of the system.
In this paper, we show how the proposed failure

detection and recovery techniques can be made completely

transparent to the user. We demonstrate these techniques in

the context of Myrinet, but as we will see, the approaches

are generic in nature and are applicable to many modern

networking technologies.

2 MYRINET: AN EXAMPLE PROGRAMMABLE

NETWORK INTERFACE

Myrinet [16] is a high-bandwidth ð2Gbit=secÞ and low-

latency ð� 6:5�sÞ local area network technology. A Myrinet

network consists of point-to-point full-duplex links that

connect Myrinet switches to Myrinet host interfaces and

other switches.
Fig. 1 shows the organization and location of the Myrinet

NIC in a typical architecture. The card has an instruction-

interpreting reduced instruction set computer (RISC)

processor, a direct memory access (DMA) interface to/from

the host, a link interface to/from the network, and a fast

local memory (Static random access memory; SRAM),

which is used for storing the Myrinet’s NCP and for packet

buffering. The Myrinet’s NCP is responsible for buffering

and transferring messages between the host and the

network and providing all network services.

Basic Myrinet-related software is freely available from
Myricom [17]. The software, called GM, includes a driver
for the host OS, the Myrinet’s NCP (GM NCP), a network
mapping program, a user library and Application Program
Interfaces (APIs). It is the vulnerability to faults in the GM
NCP that is the focus of this work, so we now provide a
brief description of it.

The GM NCP [17] can be viewed broadly as consisting
of four interfaces: Send DMA (SDMA), SEND, Receive
(RECV) and Receive DMA (RDMA), as depicted in Fig. 2.
The sequence of steps during sending and receiving is
illustrated in Fig. 2. When an application wants to send a
message, it posts a send token in the sending queue
(Step 1) through GM API functions. The SDMA interface
polls the sending queue and processes each send token
(Step 2) that it finds. It then divides the message into
chunks (if required), fetches them via the DMA interface,
and puts the data in an available send buffer (Step 3).
When the data is ready in a send buffer, the SEND
interface sends it out, prepending the correct route at the
head of the packet (Step 4). Performance is improved by
using two send buffers: while one is being filled through
SDMA, the packet interface can send out the contents of
the other buffer.

Similarly, two receive buffers are present. One of the
receive buffers is made available for receiving an incoming
message by the RECV interface (Step 5), whereas the other
could be used by RDMA to transfer the contents of a
previously received message to the host memory (Step 6).
The RDMA then posts a receive token into the receiving
queue of the host application (Step 7). A receiving
application on the host asynchronously polls its receiving
queue and carries out the required action upon the receipt
of a message (Step 8).

The GM NCP is implemented as a tight event-driven
loop. It consists of around 30 routines. A routine is called
when a given set of events occur and a specified set of
conditions are satisfied. For example, when a send buffer is
ready with data and the packet interface is free, a routine
called send_chunk is called. It is also worth mentioning here
that a timer routine (L_timer) is called periodically, when an
interval timer present on the interface card expires.

Flow control in GM is managed through a token system.
Both sends and receives are regulated by implicit tokens,

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 1. Simplified block diagram of the Myrinet NIC. Fig. 2. Simplified view of the GM NCP.

which represent space allocated to the user process in
various internal GM queues. A send token consists of
information about the location, size, and priority of the send
buffer and the intended destination for the message. A
receive token contains information about the receive buffer
such as its size and the priority of the message that it can
accept. A process starts out with a fixed number of send and
receive tokens. It relinquishes a send token each time it calls
GM to send a message and a receive token with a call to GM
to receive a message. A send token is implicitly passed back
to the process when a callback function is executed upon
the completion of the sending, and a receive token is passed
back when a message is received from the receive queue.

3 FAILURE DETECTION

In the context of the Myrinet card, soft errors in the form of
random bit flips can affect any of the following units: the
processor, the interfaces, and more importantly, the local
SRAM, containing the instructions and data of the GM
NCP. Bit flips may result in any of the following events:

. Network interface hangs. The entire network interface
stops responding.

. Send/Receive failures. Some or all packets cannot be
sent out or cannot be received.

. DMA failures. Some or all messages cannot be
transferred to or/and from host memory.

. Corrupted control information—A packet header or a
token is corrupted.

. Corrupted messages.

. Unusually long latencies.

The above list is not comprehensive. For example, a bit
flip occurring in the region of the SRAM corresponding to
the resending path will cause a message to not be resent
when a corresponding acknowledgment was not received.
Experiments also reveal that faults can propagate from the
network interface and cause the host computer to crash.
Such failures are outside the scope of this paper and are the
subject of our current ongoing research.

Fig. 3 shows how a bit-flip fault may affect message
latency and network bandwidth. The error was caused by a
bit flip that was injected into a sending path of the GM
NCP. More specifically, one of the two sending paths
associated with the two message buffers was impacted,
causing the effective bandwidth to be greatly reduced. To

achieve reliable in-order delivery of messages, the GM NCP
generates more message resends, and this greatly increases
the effective latency of messages. Since no error is reported
by the GM NCP, all host applications will continue as if
nothing happened. This can significantly hurt the perfor-
mance of applications, and in some situations, deadlines
may be missed.

Some of the effects of soft-error-induced bit flips are subtle.
For example, although cyclic-redundancy checks (CRC) are
computed for the entire packet, including the header, there
are still some faults that may cause data corruption. When an
application wants to send a message, it builds a send token
containing the pointer to the message and copies it to the
sending queue. If the pointer is affected by a bit flip before the
GM NCP transfers the message from the host, an incorrect
message will be sent out. Such errors are difficult to detect and
are invisible to normal applications.

Even though the above discussion was related to
Myrinet, we believe that such effects are generic and apply
to other high-speed network interfaces having similar
features, that is, a network processor, a large local memory
and an NCP running on the interface card. We detail our
approach in Section 3.1.

3.1 Failure Detection Strategy

Our approach to detecting interface hangs is based on a
simple watchdog, but one which is implemented in
software and uses the low-granularity interval timers
present in most interfaces.

Since the code size of the NCP is quite large, it is
challenging to efficiently test this software to detect
noninterface-hang failures. We exploit the fact that applica-
tions generally use only a small portion of the NCP. For
instance, the GM NCP is designed to provide various
services to applications, including reliable ordered message
delivery (Normal Delivery), directed reliable ordered mes-
sage delivery that allows direct remote memory access
(Directed Delivery), unreliable message delivery (Datagram
Delivery), setting an alarm, etc. Only a few of the services are
concurrently requested by an application. For example,
Directed Delivery is used for tightly coupled systems,
whereas Normal Delivery has a somewhat larger commu-
nication overhead and is used for general systems; it is rare
for an application to use both of them. Typically, an
application only requests one transport service out of the
seven types of transport services provided by the GM NCP.

ZHOU ET AL.: SOFTWARE-BASED FAILURE DETECTION AND RECOVERY IN PROGRAMMABLE NETWORK INTERFACES 3

Fig. 3. Examples of fault effects on Myrinet’s GM. (a) Unusually long latencies caused by a fault. (b) Bandwidth reduction caused by a fault.

Consequently, only about 10 percent to 20 percent of the
GM NCP instructions are “active” when serving a specific
application. Other programmable NICs such as the IBM
PowerNP [18] have similar characteristics.

Based on this observation, we propose to test the
functionalities of only that part of the NCP that corresponds
to the services currently requested by the application: this
can considerably reduce failure detection overhead. More-
over, because a fault affecting an instruction that is not
involved in serving requests from an application would not
change the final outcome of the execution, our scheme
avoids signaling these harmless faults. This reduces sig-
nificantly the performance impact, compared to other
techniques such as those that periodically encode and
decode the entire code segment [13].

To implement this failure-detection scheme, we must
identify the “active” parts of the NCP for a specific
application. To assist the identification process, we partition
the NCP into various logical modules based on the type of
services they provide. A logical module is the collection of
all basic blocks that participate in providing a service. A
basic block, or even an entire routine, can be shared among
multiple logical modules. Fig. 4 shows a sample NCP that
consists of three routines. The dotted arrow represents a
possible program path of a logical module, and an octagon
represents a basic block. All the shaded blocks on the
program path belong to the logical module. In our
implementation, we examined the source code of the GM
NCP and followed all possible control flows to identify the
basic blocks of each logical module. This time-consuming
analysis has been done manually, but could be automated
by using a code-profiling tool similar to GNU gprof.

For each of the logical modules, we must choose and
trigger several requests/events to direct the control flow to
go through all its basic blocks at least once in each self-
testing cycle so that the functionality of the network
interface is tested and errors are detected. For example, in
Myrinet interfaces, large and small messages would direct
the control flow to go through different branches of routines
because large messages would be fragmented into small
pieces at the sender side and assembled at the receiver side,
whereas small messages would be sent and received
without the fragmenting and assembling process. We use
loopback messages of various sizes to test the sending and
receiving paths of the NCP concurrently. During this

procedure, the hardware of the network interface involved
in serving an application is also tested for errors. The
technique can, in addition, be used to test other services
provided by network interfaces such as setting an alarm by
directing the control flow to go through basic blocks
providing these services. Such tests are interleaved with
the application’s use of the network interface.

To reduce the overhead of self-testing, we implement an
Adaptive and Concurrent Self-Testing (ACST) scheme. We
insert a piece of code at the beginning of the NCP to identify
the requested types of services and start self-testing for the
corresponding logical modules. The periodic self-testing of
a logical module should start before it serves the first
request from the application(s) to detect possible failures;
this causes a small delay for the first request. For a low-
latency NIC such as Myrinet, this delay would be
negligible. Furthermore, we can reduce this delay by letting
the application packets follow on the heels of the self-testing
packets. If a logical module is idle for a given time period,
the NCP would stop self-testing it. A better solution can be
achieved by letting the NCP create lists for each application
to track the type of services it has requested so that when an
application completes and releases network resources,
which can be detected by the NCP, the NCP could check
the lists and stop the self-testing for the logical modules that
provide services only to this completed application.

3.2 Implementation

The software-implemented watchdog timer makes use of a
spare interval timer to detect interface hangs. One of them,
say IT1, is first initialized to a value just slightly greater than
800�s, which is the maximum time between the L_timer
routine invocations during normal operation. The L_timer
routine is modified to reset IT1 whenever it is called. The
interrupt mask register provided by the Myrinet NIC is
modified to raise an interrupt when IT1 expires. Thus,
during normal operation, L_timer resets IT1 just in time to
avoid an interrupt from being raised. When the NIC
crashes/hangs, the L_timer routine is not executed, causing
IT1 to expire and an interrupt to be raised, signaling to the
host that something may be wrong with the network
interface. Such a scheme allows the host to detect NIC
failures with virtually no overhead.

This detection technique works as long as a network
interface hang does not affect the timer or the interrupt
logic. This is supported by our experiments: over an
extensive period of testing, we did not encounter a single
case of a fault that has affected the timer or the interrupt
logic. In fact, this simple failure detection mechanism was
able to detect all the interface hangs in our experiments.
Although it is not impossible that a fault might affect these
circuits, our experience has shown this to be extremely
unlikely.

In what follows, we demonstrate and evaluate our self-
testing scheme for one of the most frequently used logical
modules in the GM NCP, the Normal Delivery module.
Other modules have a similar structure with no essential
difference, and the self-testing of an individual logical
module is independent of the self-testing of other modules.

To check a logical module providing a communication
service, several loopback messages of a specific bit pattern

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 4. Logical modules and routines.

are sent through the DMA and link interfaces and back so
that both the sending and receiving paths are checked.
Received messages are compared with the original mes-
sages, and the latency is measured and compared with
normal latencies. If all of the loopback messages are
received without errors and without experiencing unu-
sually long latencies, we conclude that the network inter-
face works properly.

We have implemented such a scheme in the GM NCP.
We emulate normal sending and receiving behavior in the
Normal Delivery module. This is done by posting send and
receive tokens into the sending and receiving queues,
respectively, from within the network interface, rather than
from the host. The posting of the tokens causes the
execution control to go through basic blocks in the
corresponding logical module, so that errors in the control
flow path are detected. Similarly, some events such as
message loss or software-implemented translation look-
aside buffer misses, which might concurrently happen
during the sending/receiving process of the Normal Delivery
module, are also triggered within the NIC to test the
corresponding basic blocks. We can emulate different sets
of various requests/events to go through most of the basic
blocks. To reduce the overhead, we made an attempt to
trigger as few requests/events as possible.

Fig. 5 shows the data flow of the self-testing procedure.
When the GM driver is loaded, two extra DMA regions are
allocated for self-testing purposes. The shaded DMA region
is initialized with predefined data. We added some code at
the end of the timer routine (L_timer) to trigger requests/
events for each self-testing cycle. The SDMA interface polls
the sending queues, and when some tokens for self-testing
are found, the interface starts to fetch the message from the
initialized DMA region and passes chunks of data to the
SEND interface. For our self-testing, messages are sent out
by the SEND interface to the RECV interface at the same
node. Then, messages are transferred to the other DMA
region. Finally, after a predetermined interval, when an
L_timer is called, messages are transferred back to the
network interface. During this procedure, we can check the
number of received messages, messages’ contents, and
latencies. Such a design insures that both directions of the
DMA interface and link interface are tested, as well as the
network processor and NCP. Note that such a scheme does
not interact with the host processor and hence has minimal
overhead. Because the size of the self-testing code is
negligible when compared with the size of the GM NCP,
the performance impact is minor.

Self-testing can also be implemented using an applica-
tion running in the host with no modification to the GM
NCP. Such an implementation would impose an overhead
to the host system that we avoid with our approach. Also, a
pure application-level self-testing would be unable to test
some basic blocks that would otherwise be tested with our
self-testing implemented in the GM NCP, such as the
resending path, because of its inability to trigger such a
resending event.

Clearly, it is only when the injected faults manifest
themselves as errors that this approach can detect them.
Faults that are “silent” and simply lurk in the data
structures would require a traditional redundancy ap-
proach, which is outside the scope of our work.

Since all the modifications are within the GM NCP, the
API used by an application is unchanged so that no
modification to the application source code is required.

4 FAILURE RECOVERY

Recovery from a network interface failure primarily
involves restoring the state of the interface to what it was
before the failure. However, simply resetting the interface,
reloading and restarting the NCP would not be sufficient as
it can cause duplicate messages to be received or messages
to be lost.

In the context of Myrinet, reliable transmission is
achieved through the use of sequence numbers. These
numbers are maintained solely by the GM NCP and are
therefore transparent to the user. If the NCP is reloaded and
restarted upon a failure, the state of the connections and the
sequence numbers are lost, and messages cannot be
retransmitted reliably. To illustrate this, Fig. 6 shows the
schematic of a typical control flow in a GM application,
whereas Fig. 7 shows what might happen if a fault occurs
and the NCP is reloaded. Suppose that the sending node
crashes when an ACK is in transit. After recovering from
the failure, since all state information is lost, the sender may
try to resend the message with an invalid sequence number.
The receiver would reply by sending a negative acknowl-
edgment (NACK) with the expected sequence number. At
this point, if the sender resends the message with this
sequence number, the receiver would incorrectly accept a
duplicate message. This problem arises due to the lack of
redundant state information. If information concerning all
streams of sequence numbers was stored in some stable
storage, the GM NCP could then use this information
during recovery to send out messages with the correct

ZHOU ET AL.: SOFTWARE-BASED FAILURE DETECTION AND RECOVERY IN PROGRAMMABLE NETWORK INTERFACES 5

Fig. 5. Data flow of self-testing.

Fig. 6. A typical control flow.

sequence numbers and avoid duplicate messages. The key,
however, is to manage such information redundancy so that
the performance of the network is not greatly impacted.

Messages could also be lost. Suppose the faulty node is a
receiver. Then, there is not much state information that
needs to be restored, because the Myrinet programming
model is connectionless in that the sender does not
explicitly set up a connection with the receiver. The receiver
in GM sends out an acknowledgment (ACK) as soon as it
receives a valid message. This can lead to a faulty behavior,
as shown in Fig. 8. Consider the case when the NIC crashes
after the send of the ACK is complete but before the entire
message has been transferred to the host memory. This can
happen if the DMA interface is not free, and so the DMA
operation is delayed. The receiver will never receive that
message again because, as far as the sender is concerned, it
received the ACK for the message and notified the
application that the send was successful. The sender would
not resend the message and so, as far as the receiver is
concerned, the message is lost forever. This problem arises
because of the lack of a proper commit point for a send-
receive transaction. The receiver should send out an ACK
only when the message has been copied to its final
destination.

Even though these problems were observed in the
context of Myrinet, similar problems would very likely
happen in other programmable network interfaces.

4.1 Recovery Strategy

The above discussion indicates that reloading the NCP
alone does not guarantee correct recovery. What is required
is to restore the state of the network interface to a point that
guarantees the correct handling of future messages, as well
as messages in flight at the time of failure.

Since we are considering only network interface failures,
a sufficiently safe place for storing the required network
interface state is the host’s memory. To tolerate interface
failures, the host should duplicate all the state information
and messages in the host memory with regard to all
outstanding sending and receiving events before the next
operation in the control flow until the corresponding events
finish, irrespective of whether or not the same information
has already been present in the network interface. For
example, when the network interface on the receiver side

receives a message, it should first transfer the message to its
host and then send an ACK to the sender. This ensures that
we can have a copy of the message in the host memory; if a
failure happens during the receiving process, we can find a
commit point during recovery, that is, both sender and
receiver agree on which packet has been delivered. The
implementation may vary from interface to interface, but
the basic idea mentioned here should be the same for all
programmable NICs. The challenge, however, is in recog-
nizing the minimal necessary information to set a recovery
point for communication pairs to avoid message duplica-
tion and message loss.

Our recovery scheme works for all the failures men-
tioned in the section on failure detection, except for those
causing the corruption of data and control information. This
is because of the relatively long failure detection latency in
these cases. For such failures, before the recovery process
starts, the corrupted data or information may have already
been passed to the host application. To account for these
failures, we could use our fault-tolerant scheme in conjunc-
tion with the checkpointing of the application. When a
corruption failure is detected, we could first reset the NIC
and then roll back the host application to the last
checkpoint. As we will see in the following section, the
fraction of corruption failures is small, so we can still
achieve fast recovery in most cases. Since the checkpointing
of host applications has been widely studied, we will not
discuss it here.

4.2 Implementation

Apart from the sequence numbers, it is also important to
keep a copy of the send and receive tokens. As discussed
earlier, a process implicitly relinquishes a send token (and
passes it to the interface) when a call to a GM API function
is made to send a message and gets it back when the send is
successfully completed. A send token consists of informa-
tion about the location, size, and priority of the send buffer
and the intended destination for the message. It is
important to keep an updated copy of all the send tokens
that are in possession of the interface so that this
information can be used during failure recovery to resend
the messages that have yet to be acknowledged. Similar is
the case with the receive tokens. Keeping a copy of the
forfeited receive tokens allows us to notify the Myrinet
interface of all the pinned-down DMA regions that have not
yet been filled by the interface.

In our implementation, extra space is allocated by the
user process to maintain a copy of the send token queue and

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 7. The case of duplicate messages.

Fig. 8. The case of lost messages.

the receive token queue. When a call to any of the GM API
functions is made to send a message, a copy of the send
token is added to the queue. Since the size of a token is
small, the overhead is insignificant. The process also stores
a copy of the receive token when it provides receive buffers.
The host also needs to have a copy of the sequence numbers
used for each connection. This is achieved by having the
user process generate the sequence number and pass it
through the send token to the Myrinet interface. The GM
NCP now uses these sequence numbers rather than
generating its own. If messages are to be assigned sequence
numbers strictly on a per-connection basis to maintain the
original GM protocol, all the processes on a node sending
messages to the same remote node need to be synchronized
so that a continuous stream of sequence numbers for the
connection is obtained. Such a synchronization can, how-
ever, introduce unnecessary overhead. A simple solution to
this is to generate independent streams of sequence
numbers for each remote node on a per-port basis. This
generation can be done entirely within a single process, but
requires that the receiver now acknowledge on a per-port
basis rather than on a per-connection basis. Thus, the
receiver now has to keep an ACK number for every
connection-port pair. The extra memory requirement is,
however, not large since GM allows only eight ports per
node. This is the main deviation from the original GM
structure, as depicted in Fig. 9.

Another difference from the original GM is with regard
to the commit point on the receiver side. In our implemen-
tation, we delay the sending of an ACK to after the DMA of
the message into the user’s receiver buffer is complete. This
increases the network overhead of the message but, as the
results in Section 5 show, the impact on performance is
small. Since the receiver must also keep a copy of the ACK
number for every stream, the network processor needs to
notify the host of the sequence number of the message that
has just been ACKed. This is done by including the
sequence number as part of the event posted by the Myrinet
into the user process’s receive queue. The receiver, at this
time, also deletes the corresponding copy of the receive
token. Similarly, on the sender side, the copy of the send

token is removed just before the callback function for that

send token is invoked.
In summary, no substantial modifications to the GM

protocol were needed. All the changes were implemented

within the GM library functions, thus making them

transparent to the user. Based on our experience with

Myrinet, we expect that the implementation will not be

difficult for other NICs.

5 EXPERIMENTAL RESULTS

Our experimental setup consisted of two Pentium III

machines each with 256 Mbytes of memory, a 33MHz PCI

bus, and running Redhat Linux 7.2. The Myrinet NICs were

LANai9-based PCI64B cards and the Myrinet switch was

type M3M-SW8.

5.1 Failure Coverage

We used as our workload a program provided by GM to

send and receive messages of random lengths between

processes in two machines. To evaluate the coverage of the

self-testing of the modified GM, we developed a host

program that sends loopback messages of various lengths to

test latency and check for data corruption. We call it

application-level self-testing to distinguish it from our NCP-

level self-testing. This program follows the same approach

as the NCP-level self-testing, that is, it attempts to check as

many basic blocks as possible for the Normal Delivery

module. The application-level self-testing program sends

and receives messages by issuing GM library calls, in much

the same way as normal applications do. We assume that, if

such a test application is run in the presence of faults, it will

experience the same number of faults that would affect

normal applications. Based on this premise, we use the

application-level self-testing as baseline and calculate the

failure coverage ratio to evaluate our NCP-level self-testing.

The failure coverage ratio is defined as the number of

failures detected by the NCP-level self-testing divided by

the number of failures detected by the application-level self-

testing. When calculating the failure coverage ratio, we did

not count the failures that are not covered by the proposed

technique such as host crashes. To make the baseline

application comparable to the NCP-level self-testing, we

concurrently trigger exception events within the GM NCP

to direct the control flow to cover basic blocks handling

exceptions, so that the baseline application can detect all the

failures that can be detected by the NCP-level self-testing.
The underlying fault model used in the experiments was

primarily motivated by Single Event Upsets (SEUs), which

were simulated by flipping bits in the SRAM. Such faults

disappear on reset or when a new value is written to the

SRAM cell. Since the probability of multiple SEUs is low,

we focus on single SEUs in this paper. To emulate a fault

that may cause the hardware to stop responding, we

injected stuck-at-0 and stuck-at-1 faults into the special

registers in the NIC. The time instances at which faults were

injected were randomly selected. After each fault injection

run, the GM NCP was reloaded to eliminate any inter-

ference between two experiments.

ZHOU ET AL.: SOFTWARE-BASED FAILURE DETECTION AND RECOVERY IN PROGRAMMABLE NETWORK INTERFACES 7

Fig. 9. (a) All Streams are multiplexed into a single connection.

(b) Independent streams per connection.

To evaluate the effectiveness of our NCP-level loopback
without testing exhaustively each bit in the SRAM and
registers, we performed the following three experiments:

. Exhaustive fault injection into a single routine (the
frequently executed send_chunk).

. Injecting faults into the special registers.

. Random fault injection into the entire code segment.

The data structures that can make up a significant
fraction of the GM NCP state were not subjected to fault
injection because the proposed technique does not provide
adequate coverage for them. This kind of faults would need
a traditional redundancy approach.

In all the experiments mentioned in this section, only the
Normal Delivery logical module was active and checked. The
workload program and the application-level self-testing
program requested service only from this module. If a fault
was injected in the Normal Delivery module, it would be
activated by the workload program; if not, the fault would
be harmless and have no impact on the application. The
injection of each fault was repeated 10 times and the results
averaged.

5.2 Results

The routine send_chunk is responsible for initializing the
packet interface and setting some special registers to send
messages out on the Myrinet link. The entire routine is part
of the Normal Delivery module.

There are 33 instructions in this routine, totaling 1,056 bits.
Faults were sequentially injected at every bit location in this
routine. Columns 2 to 4 in Table 1 show a summary of the
results reported by NCP-level self-testing for these experi-
ments. Column 2 shows the number of detected failures,
column 3 shows the failures as a fraction of the total faults
injected, and column 4 shows the failures as a fraction of the
total failures observed. About 40 percent of the bit-flip faults
caused various types of failures. Out of these, 30.5 percent
were network interface hangs, which were detected by our
watchdog timer, 1.7 percent of these failures caused a host
crash, and the remaining 67.8 percent were detected by our
NCP-level self-testing. The failure coverage ratio of the NCP-
level self-testing of this routine is 99.3 percent.

For our next set of experiments, we injected faults into the
special registers associated with DMA. Columns 5 to 7 in

Table 1 show a summary of the results. The GM NCP sets
these registers to fetch messages from the host memory to the
SRAM via the DMA interface. There are a total of 192 bits in
the SDMA registers, containing information about source
address, destination address, DMA length, and some flags.
We sequentially injected faults at every bit location. From the
results, it is clear that the memory-mapped region corre-
sponding to the DMA special registers is very sensitive to
faults. In these experiments, faults propagated to the DMA
hardware or even the host computer and caused fatal failures.
Since the total number of register bits is only several hundred,
orders of magnitude smaller than the number of instruction
bits, the probability that a fault hits a register bit and causes a
host crash is very low. Even though 35.4 percent of the failures
from injecting faults in registers resulted in a host crash, they
account for a very small fraction of the total number of
failures. The failure coverage ratio of this set of experiments is
99.2 percent.

The third set of results (columns 8 to 10 in Table 1) shows
how the NCP-level self-testing performs when faults are
randomly injected into the entire code segment of the GM
NCP. We injected 1,430 faults at random bit locations, but
only 88 caused failures. The 27.3 percent of these failures
were network interface hangs detected by our watchdog
timer, 9.1 percent caused a host crash, and the remaining
63.6 percent of the failures were detected by our NCP-level
self-testing. The failure coverage ratio is about 95.6 percent.
From the table, we see that a substantial fraction of the
faults do not cause any failures and, thus, have no impact
on the application. This is because the active logical module,
that is, Normal Delivery, is only one part of the GM NCP.
This reinforces the fact that self-testing for the entire NCP is
mostly unnecessary. By focusing on the active logical
module(s), our self-testing scheme can considerably reduce
the overhead.

Due to uncertainties in the state of the interface when
injecting a fault, repeated injections of the same fault are not
guaranteed to have the same effect. However, the majority
of failures displayed a high degree of repeatability. Such
repeatability has also been reported elsewhere [25].

5.3 Recovery Time and Effectiveness

The complete recovery time is the sum of the failure
detection time and the time spent in our FTD and the user

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

TABLE 1
Results of Fault Injection

process’ failure handler for restoring the state, as shown in
Fig. 10. The failure detection time was measured as the time
from the fault injection to the time when the FTD is woken
up by the driver. It is a function of the maximum time
between L_timer invocations and the interrupt latency. We
will ignore the interrupt latency, because it is negligible
ð� 13�sÞ compared to 800 �s for the watchdog timer
interval and the self-testing intervals. The FTD recovery
time consists of the time required to reload the GM NCP
and restore routing and page hash tables and posting the
Fault_Detected event in each open port’s receive queue.
Averaging over a number of experiments revealed a value
of � 765; 000�s for the FTD recovery time with � 500; 000�s
being spent in reloading the GM NCP.

The rest of the recovery time depends on the number of
open ports at the time of failure. The per-port recovery time
is primarily a function of the execution time of the
Fault_Detected event handler. Our experimental results
show that this value is � 900; 000�s. It is arguable whether
the time for handling the restored send tokens by the
network processor needs to be accounted for in the recovery
time. This would however be a function of the number of
send tokens that have been restored.

The experiments were repeated using our Fault-Tolerant
GM (FTGM). Except for corruption failures and interface
hangs, FTGM was able to recover from all other failures.
Although all the network interface hangs were correctly
detected, there were only five cases out of the 286 hangs
that FTGM was not able to properly recover from. We are

currently investigating these cases.

5.4 Performance Impact

The performance of a network is usually measured using

three principal metrics:

. Bandwidth measures the sustained data rate avail-
able for large messages.

. Latency is usually calculated as the time to transmit
from source to destination.

. Host-CPU utilization measures the overhead borne
by the host-CPU in sending or receiving a message.

GM provides a set of programs that can be used to
evaluate these metrics. The workload for our experiments
involved both hosts sending and receiving messages at the
maximum rate possible. Measurements were performed as
bidirectional exchanges of messages of different lengths
between processes in two machines.

We first experimented with only the failure detection
scheme and evaluated its performance impact, in this
section, we will refer to this modified GM software as
Failure Detection GM (FDGM). For each message length of
the workload, messages were sent repeatedly for at least 10
seconds, and the results were averaged.

Fig. 11a compares the bandwidth obtained with GM and
FDGM for different message lengths. The reason for the
jagged pattern in the middle of the curve is that GM
partitions large messages into packets of at most 4 Kbytes at
the sender and reassembles them at the receiver. Fig. 11b
compares the point-to-point half-round-trip latency for
messages of different lengths. For this experiment, the
NCP-level self-testing interval was set to 5 seconds. The
figures show that FDGM imposes no appreciable perfor-
mance degradation with respect to latency and bandwidth.

We also studied the overhead of the NCP-level self-
testing when the test interval is reduced from 5 to
0.5 seconds. Experiments were performed for a message
length of 2 Kbytes. The latency of the original GM software
is 69.39 �s, and its bandwidth is 14.71 Mbytes/s. Fig. 12
shows the bandwidth and latency differences between GM
and FDGM. There is no significant performance degrada-
tion with respect to latency and bandwidth. For the interval
of 0.5 seconds, the bandwidth is reduced by 3.4 percent,
and the latency is increased by 1.6 percent when compared
with the original GM.

ZHOU ET AL.: SOFTWARE-BASED FAILURE DETECTION AND RECOVERY IN PROGRAMMABLE NETWORK INTERFACES 9

Fig. 10. The timeline of the fault recovery process.

Fig. 11. Comparison of the original GM and FDGM. (a) Bandwidth. (b) Latency.

Such results agree with expectations. The total size of our
self-testing messages is about 24 Kbytes, which is negligible
relative to the high bandwidth of the NIC. Users can
determine accordingly the NCP-level self-testing interval,
taking into consideration performance and failure detection
latency.

We then incorporated both the failure detection and
recovery schemes and evaluated the performance impact,
and we refer to this version of the modified GM software as
FTGM. For each message length of the workload, a large
number of messages (we used 1,000 here) were sent
repeatedly and results were averaged.

Fig. 13a shows that the sustained bidirectional data rate
for GM, as well as FTGM approaches an asymptotic value

of � 92Mbytes=sec for long messages. FTGM follows very
close on the heels of GM and imposes no appreciable

performance degradation with regards to bandwidth.
Fig. 13b compares the point-to-point half-round-trip

latency of messages of different lengths. Here, again, the

performance of FTGM is not far behind the original GM.
The short-message latency, a critical metric for many
distributed-computing applications, is about 11.5 �s for

GM and 13.0 �s for FTGM, averaged over message lengths
ranging from 1 byte to 100 bytes. These latencies consist of a

host component and a network interface component.
Although the host component is a combination of the
host-CPU execution time and the PCI latency, the network

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 12. Performance impact for different self-testing intervals. (a) Bandwidth difference versus interval length. (b) Latency difference versus interval

length.

Fig. 13. Comparison of the Original GM and FTGM. (a) Bandwidth. (b) Latency.

interface component is a combination of the network
processor execution time and the packet interface latency.
FTGM was designed to minimize the amount of extra
information being transferred through DMA from the host
memory to the NIC memory. Moreover, there is absolutely
no change in the packet header and no extra information is
sent with the packet. Therefore, the effect on the PCI latency
and the packet interface latency in the network processor is
minimal. The modification in the GM NCP that affects the
critical path the most is the delay in sending the ACK after
the DMA is complete. Since the ACK needs to be delayed,
only when a receive token is returned to the user, a
multiple-packet message can be made to take full advantage
of the network bandwidth by not waiting for the DMA to be
complete, thus allowing several packets of the same
message to be in-flight at the same time. For small
messages, however, the extra delay comes mainly from
the host-CPU utilization. This factor is most evident in
protocols employing a host-level credit scheme for flow
control such as FM [27].

Minimizing the host-CPU utilization was one of our
principal design objectives. Information posted on the
Myricom Web site indicates that the measured overhead
on the host for sending (receiving) a message is about
0:3�s ð0:75�sÞ. In FTGM, the send and receive token
housekeeping contributes the most to the increase in delay.
It is around 0.25�s for the send and around 0.4�s for the
receive. The extra overhead for the receive is because the
receiver has to update two hash tables for every receive: one
containing the receive tokens and the second containing
ACK numbers for each stream. Table 2 summarizes the
results presented in this section.

6 RELATED WORK

Chillarege [26] proposes the idea of a software probe to help
detect failed software components in a running software
system by requesting a certain level of service from a set of
functions and/or modules and checking the response to the
request. This paper however, presents no experimental
results to evaluate the efficiency and performance impact.
Moreover, since it considers general systems, there is no
discussion devoted to minimizing the performance impact
and improving the failure coverage as we do in this paper.

Several approaches have been proposed in the past to
achieve fault tolerance by modifying only the software.
These approaches include Self-Checking Programming [8],
Algorithm-Based Fault Tolerance (ABFT) [9], Assertion [10],
Control Flow Checking [11], Procedure Duplication [12],
Software Implemented Error Detection and Correction
(EDAC) code [13], Error Detection by Duplicated Instruc-
tions (EDDI) [14], and Error Detection by Code Transforma-

tions (EDCT) [15]. Self-Checking Programming uses
program redundancy to check its own behavior during
execution. It results from either the application of an
acceptance test or the comparison of the results of two
duplicated runs. Since the message passed to a network
interface is completely nondeterministic, an acceptance test
is likely to exhibit low sensitivity. ABFT is a very effective
approach, but can only be applied to a limited set of
problems. Assertions perform consistency checks on soft-
ware objects and reflect invariant properties for an object or
set of objects but effectiveness of assertions strongly
depends on how well the invariant properties of an
application are defined. Control Flow Checking cannot
detect some types of errors such as data corruption,
whereas Procedure Duplication only protects the most
critical procedures. Software Implemented EDAC code
provides protection for code segments by periodically
encoding and decoding instructions. Such an approach,
however, would involve a substantial overhead for a
network processor because the code size of an NCP might
be several hundreds of thousands of bytes. Although it can
detect all the single bit faults, it is an overkill because many
faults are harmless. Moreover, it cannot detect hardware
errors. EDDI and EDCT have a high-error coverage, but
have substantial execution and memory overheads.

7 CONCLUSION

This paper describes a software-based low-overhead fault-
tolerant scheme for programmable network interfaces.
Failure detection is achieved by a watchdog timer that
detects network interface hangs and a built-in self-testing
that detects noninterface-hang failures. The proposed self-
testing directs the control flow to go through the active
logical modules; during this procedure, the functionality of
the network interface, essentially the hardware and the
active logical modules of the software, are tested. The idea
behind our failure recovery scheme is to keep a copy of just
the right amount of network interface state information in
the host so that the state of the network interface can be
restored upon failure. The proposed fault-tolerant scheme
can be implemented transparently to applications.

The basic idea underlying the presented failure detection
and recovery techniques is quite generic and can be applied
to other modern high-speed networking technologies that
contain a microprocessor and local memory, such as IBM
PowerNP [18], Infiniband [19], Gigabit Ethernet [20], [21],
QsNet [22], and Asynchronous Transfer Mode (ATM) [23],
or even other embedded systems.

ACKNOWLEDGMENTS

This work has been supported in part by a grant from a joint
US National Science Foundation (NSF) and NASA program
on Highly Dependable Computing (NSF Grant CCR-
0234363 and NASA Grant NNA04C158A).

REFERENCES

[1] J.F. Ziegler et al., “IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),” IBM J. Research and Development, vol. 40,
no. 1, pp. 3-18, Jan. 1996.

ZHOU ET AL.: SOFTWARE-BASED FAILURE DETECTION AND RECOVERY IN PROGRAMMABLE NETWORK INTERFACES 11

TABLE 2
Comparison of Various Performance Metrics

between GM and FTGM

[2] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, “The Soft Error
Problem: An Architectural Perspective,” Proc. 11th Int’l Symp.
High-Performance Computer Architecture, pp. 243-247, Feb. 2005.

[3] Remote Exploration and Experimentation (REE) Project, http://
www-ree.jpl.nasa.gov/, year?

[4] A.V. Karapetian, R.R. Some, and J.J. Beahan, “Radiation Fault
Modeling and Fault Rate Estimation for a COTS Based Space-
Borne Supercomputer,” Proc. IEEE Aerospace Conf., vol. 5, pp. 5-
2121-5-2131, Mar. 2002.

[5] The Human Impacts of Solar Storms and Space Weather, http://
www.solarstorms.org/Scomputers.html, year?

[6] A. Thakur and B.K. Iyer, “Analyze-NOW—An Environment for
Collection of Analysis of Failures in a Network of Workstation,”
Proc. Seventh Int’l Symp. Software Reliability Eng., pp. 14-23, Oct.
1996.

[7] V. Lakamraju, I. Koren, and C.M. Krishna, “Low Overhead Fault
Tolerant Networking in Myrinet,” Proc. Dependable Systems and
Networks, pp. 193-202, June 2003.

[8] L.L. Pullum, Software Fault Tolerance Techniques and Implementation.
Artech House, 2001.

[9] K.-H. Huang and J.A. Abraham, “Algorithm-Based Fault Toler-
ance for Matrix Operations,” IEEE Trans. Computers, vol. 33, no. 6,
pp. 518-528, Dec. 1984.

[10] D.M. Andrews, “Using Executable Assertions for Testing and
Fault Tolerance,” Proc. Ninth Int’l Symp. Fault-Tolerant Computing,
pp. 102-105, June 1979.

[11] S.S. Yau and F.-C. Chen, “An Approach to Concurrent Control
Flow Checking,” IEEE Trans. Software Eng., vol. 6, no. 2, pp. 126-
137, Mar. 1980.

[12] D.K. Pradhan, Fault-Tolerant Computer System Design. Prentice
Hall, 1996.

[13] P.P. Shirvani, N.R. Saxena, and E.J. McCluskey, “Software-
Implemented EDAC Protection against SEUs,” IEEE Trans.
Reliability, vol. 49, no. 3, pp. 273-284, Sept. 2000.

[14] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Error Detection by
Duplicated Instructions in Super-Scalar Processors,” IEEE Trans.
Reliability, vol. 51, no. 1, pp. 63-75, Mar. 2002.

[15] B. Nicolescu and R. Velazco, “Detecting Soft Errors by a Purely
Software Approach: Method, Tools and Experimental Results,”
Proc. Design, Automation and Test in Europe Conf. and Exhibition, pp.
57-62, Mar. 2003.

[16] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-per-Second
Local-Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb.
1995.

[17] Myricom, http://www.myri.com/, year?
[18] J.R. Allen, B.M. Bass, C. Basso, and R.H. Boivie et al., “IBM

PowerNP Network Processor: Hardware, Software, and Applica-
tions,” IBM J. Research and Development, vol. 47, no. 2/3, pp. 177-
193, Mar./May 2003.

[19] Infiniband Trade Assoc., http://www.infinibandta.com/, year?
[20] P. Shivam, P. Wyckoff, and D. Panda, “EMP: Zero-Copy OS-

Bypass NIC-Driven Gigabit Ethernet Message Passing,” Proc.
ACM/IEEE Supercomputing 2001 Conf., p. 49, Nov. 2001.

[21] The Gigabit Ethernet Alliance, http://www.gigabit-ethernet.
com/, year?

[22] The QsNet High Performance Interconnect, year? http://
www.quadrics.com/.

[23] A.T.M. Forum, ATM User-Network Interface Specification. Prentice
Hall, 1995.

[24] T. Halfhill, “Intel Network Processor Targets Routers,” Micro-
processor Report, vol. 13, no. 12, Sept. 1999.

[25] D.T. Stott, M.-C. Hsueh, G.L. Ries, and R.K. Iyer, “Dependability
Analysis of a Commercial High-Speed Network,” Proc. 27th Int’l
Symp. Fault-Tolerant Computing, pp. 248-257, June 1997.

[26] R. Chillarege, “Self-Testing Software Probe System for Failure
Detection and Diagnosis,” Proc. 1994 Conf. Centre for Advanced
Studies on Collaborative Research, vol. 10, 1994.

[27] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal, “User Level Network
Interface Protocols,” IEEE Computer, vol. 31, no. 11, pp. 53-60, Nov.
1998.

Yizheng Zhou received the BS degree in electronics engineering from
Tsinghua University, China, in 2000 and the MS degree in computer
engineering from North Carolina State University in 2002. He is currently
a PhD student in electrical and computer engineering at the University of
Massachusetts, Amherst. His research interests include distributed
systems, fault tolerance, and embedded systems.

Vijay Lakamraju received the PhD degree from
the University of Massachusetts, Amherst, in
2002. He is currently a research scientist at the
United Technologies Research Center. From
2002-2005, he was a cofounder of the BlueRISC
Inc. and a postdoctoral research associate at the
Architecture and Real-Time Systems (ARTS)
Lab, University of Massachusetts, Amherst. His
research interests include distributed real-time
systems, power aware computing, wired and

wireless networking, and fault tolerance.

Israel Koren (S’72-M’76-SM’87-F’91) received
the BSc, MSc, and DSc degrees from the
Technion—Israel Institute of Technology, Haifa.
He is currently a professor of electrical and
computer engineering at the University of
Massachusetts, Amherst. Previously, he was
with the Technion—Israel Institute of Technol-
ogy. He also held visiting positions with the
University of California at Berkeley, the Univer-
sity of Southern California, Los Angeles, and the

University of California, Santa Barbara. His current research interests
include fault-tolerant techniques and architectures, yield and reliability
enhancement, and computer arithmetic. He published extensively in
several IEEE Transactions and has more than 200 publications in
refereed journals and conferences. He currently serves on the editorial
board of the IEEE Transactions on VLSI Systems, IEEE Computer
Architecture Letters, and the VLSI Design Journal. He was a coguest
editor for three special issues of the IEEE Transactions on Computers
and served on the editorial board of these Transactions between 1992
and 1997. He also served as general chair, program chair, and program
committee member for numerous conferences. He is the author of the
textbook Computer Arithmetic Algorithms (A.K. Peters, Ltd., 2002). He is
a coauthor of the textbook Fault Tolerant Systems, to be published by
Morgan-Kaufman in 2007. He is a fellow of the IEEE and the IEEE
Computer Society.

C. Mani Krishna received the PhD degree from the University of
Michigan in 1984. Since then, he has been on the faculty of the
University of Massachusetts, Amherst. His research interests include
real-time systems, distributed computing, and performance evaluation.
He has coauthored texts on real-time systems and on fault-tolerant
computing. He is a senior member of the IEEE and the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

