Reliability Enhancement of Real-Time Multiprocessor
Systems through Dynamic Reconfiguration®

Kai Yu and Israel Koren
Department of Electrical and Computer Engineering
University of Massachusetts at Amherst
Ambherst, MA 01003

Abstract

Enhancing the reliability of a system executing real-time jobs is, in many cases, one of the most
important design goals. A dynamically reconfigurable system offers an approach for improvement
of reliability. To achieve high reliability, the most suitable recovery action must be used when a
fault occurs, which means that some kind of optimal recovery strategy should be followed. This is
called a dynamic recovery strategy. To satisfy the service requirements of real-time jobs with hard
deadlines, a more powerful system, intuitively, should always be preferred. On the other hand, higher
processing capacity means more processing modules and electronics parts, which may result in more
frequent faults and a higher risk that the system will fail to complete the real-time jobs prior to
their deadline. In this paper, we investigate the reliability enhancement of a real-time distributed
computing system with hard deadlines through the employment of dynamic recovery strategies. Since
the classical reliability evaluation technique is not applicable to a dynamically reconfigurable system,
we present a new approach to reliability evaluation. The results show that the optimal recovery
policy can significantly improve the system’s reliability, that both the job arrival rate and the job’s
deadline have significant effect on the optimal reliability and optimal policy, and that for a given
workload and deadline, the mazimum of the system reliability can be achieved at a certain (optimal)
configuration.

1: Introduction

In a real-time distributed computing system, to meet the service requirement of jobs with hard
deadlines, the system must keep a high momentary processing power and minimize disturbances
from both transient and permanent faults. The design objective is to achieve a high probability
that the system is functioning and satisfying the requirements of real-time jobs in both the fault-free
state and the fault state. In the fault-free state, a system should offer an adequate processing power
(or service rate) to real-time jobs. For a given job arrival rate, the higher the system service rate,
the higher the reliability of the service. In the fault state, the probability that the system is able to
satisfy the real-time job’s requirements is reduced, which means that frequent faults will diminish
the system reliability. Higher processing power requires more processing elements, which in turn
produce more frequent faults. Therefore, there is a balance point at which the system can achieve
the maximal reliability.
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Faults occur in computing systems, most of them either intermittent or transient faults, as
a result of physical environment variants and electronic wear-out. Some recovery procedure is
therefore commonly used to avoid having to prematurely give up system resources. Several recovery
techniques have been suggested and are being used in various fault-tolerant systems [5-9, 11, 12, 14,
16]. These include instruction, memory and communication retries, and more complex steps such
as program rollbacks, program reloads, and module replacements. However, any recovery procedure
will result in some overhead and delay of service which will reduce the reliability. As system sizes
increase, the occurrence rate of intermittent or transient faults increases as well. Consequently,
the recovery overhead can dramatically reduce the system reliability. As a result, if some of the
processors experience a high rate of fault occurrences, causing multiple invocations of the recovery
procedure, we may consider disconnecting them from the system altogether.

Different recovery techniques handle different faults with varying efficiency. The recovery proce-
dure must be carefully designed to reliably recover the system from faults with minimal overhead.
Many different kinds of recovery strategies have been proposed. The dynamic recovery technique
[3][15] is one of the most sophisticated. The underlying idea is that for a given system mission
time, the choice of the recovery action should be concerned not only with the current system state
and the fault symptom, but also with the remaining mission time. The alternative recovery actions
constitute a set in which each action has only limited recovery capacity, and can cover only certain
faults with a high probability of success and short overhead.

Berg and Koren [3] developed a model for a computing system consisting of one operational
module and several standby modules. When a fault occurs in an operational module, the system
can either retry the faulty module or replace it with a standby. The goal of the system recovery
strategy is to maximize the application-oriented availability and minimize the cost of the faults and
their corresponding recovery actions.

Xia, Chow, and Luo [15] extended the model to computing systems consisting of multiple oper-
ational and standby modules. When a fault occurs in an operational module, the system can either
retry the faulty module, replace it with a standby module, or completely disconnect the faulty
module, leaving a degraded system. The goal of the system recovery strategy is the same as in [3].

The expected real-time workload of the system must be a factor when determining the configu-
ration of the system. For a given workload, the higher the processing power, the faster the response,
and the higher the probability with which the system can complete a job before its deadline. On
the other hand, more processing elements in operation may lead to a greater number of transient
faults, which can reduce the reliability. The workload must, therefore, be one of the most important
factors in the design of a dynamic recovery procedure.

In this paper, we investigate the reliability of real-time multiprocessor systems with hard dead-
lines. To simplify the analysis, we still assume that the system consists of multiple identical op-
erational and standby modules, and that the alternative recovery actions are retry, replace, and
disconnect. The multiprocessor system is allowed to operate in a degraded state. The objective
here is to maximize the reliability of the service of real-time jobs with hard deadlines during the
mission time. When a fault occurs in a module, a recovery procedure is selected based on relevant
information such as the current system state, the remaining mission time, the workload, and the
fault symptoms (e.g., whether the faulty module has previously experienced faults), so as to mini-
mize the deterioration of the reliability caused by the degraded processing power or by the fault and
its recovery action. The results show that the optimal recovery strategy can significantly enhance
the real-time system reliability. The optimal policy will vary when the workload is changed. We
also find that for given processor’s transient fault rate and workload, the maximal reliability of
a multiprocessor system can be achieved using a certain (optimal) number of processors; i.e., the
reliability cannot be increased by simply using more active processors. In order to represent the
fault arrival process precisely, we allow the arrival of permanent faults and transient faults to be
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represented by two different Poisson processes. We also assign different fault arrival rates for those
modules that have experienced faults in the past and those that have not.

The rest of this paper is organized as follows. In Section 2, the basic assumptions on the system
are stated, and the optimization problem and the system reliability functions are described. The
optimality equations are presented in Section 3. Some numerical examples are included in Section
4. Final conclusions are presented in Section 5.

2: Assumptions and model description

We denote by s a fault-free system state, s € S where S = {(ao, a1, so, s1)}; ao is the number of
“new” nodes in operation, i.e., nodes which remained fault-free since the beginning of the mission;
a1 is the number of “old” nodes in operation, i.e., nodes which have previously experienced faults; sg
is the number of new spare nodes; s; is the number of old spare nodes. A failing operational module
can be disconnected or replaced by a spare one. Faults in operational modules occur according
to two different Poisson processes since permanent faults are mainly due to component wear-out
mechanisms, while most intermittent faults are the result of environmental causes. Permanent faults
arrive at the rate \,, and transient (intermittent) faults arrive at the rate Ao on new nodes and A\q
on old nodes (Mg < A1). The real-time jobs are processed in a distributive manner and the system
service rate is pu(n) = C,, -n®, with C, >0, 0< B <1, and n = ag+a;. The job arrival process
is a Poisson process with rate «y, and there is a queue for buffering the incoming jobs if required.
The real-time jobs with a hard-deadline have an identical deadline A, which means that the entire
system fails whenever it fails to complete the service for any one of the jobs before its deadline. We
further assume that at any time the system is in operation, the following condition holds:

n n
pn) 2y >>3 Ap+ X)) => (\p) +n-X,
i=1 i=1
where A\ € {X\g, Ar}. This assumption implies that the job arrival rate is much greater than
the frequency of fault occurrences, so that the system will be in a steady-state during most of the
interval between fault occurrences.

For a real-time computing system, we hope that it can service all arriving jobs within their
deadline. The system reliability is, therefore, defined as the probability with which the system can
service all the arriving jobs within their deadline throughout the system mission time.

When a fault occurs in an operational module, there are three alternative recovery procedures:
retry, replace, and disconnect. In the retry procedure, the system first retries the task on the faulty
module from the last checkpoint for a certain number of times. If these retries fail, the module is
either replaced or disconnected. In a replace action, the faulty module is replaced by a spare one,
and the uncompleted task is resumed from its last checkpoint. In a disconnect action, the faulty
module is disconnected, and the uncompleted task is rescheduled on another module. The replaced
or disconnected module can be tested off-line and, if still functional, it can serve as a spare. Any
one of these procedures can bring about a system crash, leading to a catastrophic system service
termination. Also, the faults and these recovery procedures will cause some service delay which will
reduce the probability that the real-time job will be serviced within the deadline. We denote by p,¢,
Drpl, and pgis the probability of failure of the three recovery actions, retry, replace, and disconnect,
respectively. Retry is the most reliable and efficient recovery procedure for transient faults, but it
always keeps in place modules which have already experienced several faults in operation, usually
leading to more frequent faults later on. If the fault is permanent, the faulty module must be
replaced by a spare. If new spares are not available, additional modules which have previously
experienced faults will become active and the system will experience more frequent transient faults,
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greatly reducing its reliability. At this point, disconnection becomes a reasonable choice, although
it forces the system to run at a lower processing power and reduces the probability with which the
fault-free system can service the arriving jobs within their required deadline.

Therefore, a recovery strategy should be derived based on the available information to determine
which recovery procedure should be executed so as to maximize the system reliability or minimize
the system cost.

The optimization problem is

Given: The mission time [0, T'] and the three alternative fault-recovery actions:
{retry, replace, disconnect}

Select a recovery policy which will maximize the system reliability.

3: Fault-free system reliability and optimality equations

3.1: The fault-free system reliability function

Given system state s = (ag, a1, So, $1) and job arrival rate v, following the steady-state queueing
analysis in [1], we can determine that the response time for an arriving job is

Pr{response time <t} =1—e /W
where W is the average response time W =1/(u — 7).

Given a deadline A, the probability for the successful completion of a job is, therefore, 1—e~
When the system is in the fault-free state, it can offer a constant rate of service u. Denote by 7(t)
the probability with which all the arriving jobs can be serviced by the fault-free system over the
time interval [0, ¢]. We then obtain the following equation:

A/W

o0

T‘(t) = Z e_Vt% . (1 _ e—A/W)i _ e_(ve—A/w)t (1)
i=0 °

3.2: Optimality equations

Let R(s,t) denote the optimal reliability for the system in state s = (ag, a1, So, 1) with remain-
ing mission time ¢. The system total fault arrival rate is A(s) = agAo + a1 A1 + (ap + a1)Ap. For
the mission interval [0, ¢], the system is fault-free with probability e *(*)t. The first fault arrives in
the interval [t — u,t — u + du] with probability A(s) - e *®)=®)qy, where ¢t and u are the system’s
total mission time and remaining mission time, respectively. If the system stays fault-free, it can
offer satisfactory service with probability (s, t), which equals the probability r(¢) of the system in
state s. Otherwise, upon the arrival of the first fault, the optimal recovery action, the one which
maximizes the reliability for the remaining mission time, is performed. The corresponding relia-
bility is reduced by a factor of (1 — Popt_action), Where opt_action € {retry, replace, disconnect}.
The system is configured to another functional state and continues its operation until the next fault
occurs. Hence, we have the following optimality equation for the system reliability function:

¢
R(s, t) = 7(s,t) - e Nt 4 / A(s) - e AOEW) Lp(s p— )
0

1
ai(Ai +Ap) i i i
X{; aO(AO +>\p) +(11()\1 +)\p) ma‘x[hrtr(sau)a hrpl(sau)a hdis(sau)]}du (2)
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and h?

where s = (ag, a1, so, 51) L.

i
(87 'U/), h'r'pl (87 u)
remaining mission time v when the corresponding

, hi..(s,u) are the reliability functions for the
recovery action, retry, replace, or disconnect, is

taken.
hi‘tr(&“’) = (1 - prtr)[# ma'x{(]- _pT‘Pl)R(Slau)a (]- - pdis)R(Suau)} + )‘l R(S’”,U)]
Ai +)\p Ai +)\p
where
(ag,a1,s0 — 1, 1), ifi=0and sg >0
o (ap — 1,a1 + 1,809,851 — 1), ifi=0and so=0,s >0
o (ap+1,a1 — 1,80 — 1,51), ifi=1andsg>0
(ag, a1, so,s1 — 1), ifi=1and so=0,s1 >0
S” _ ((10,(11 — 1,80,81), if 1=1
o (00—1,01,50,81), lf’LZO
M — s, if i=1
| (a0 —1,a1 +1,50,51), ifi=0
Similarly,
) A s
hl =(1— /4 R ! t R "
rpl(sau) ( pTPl)[/\i +/\p (S ,U) + )\i+/\p (S 7“’)]
where
(ap,a1,so —1,s1), ifi=0and sg >0
o (ap — 1,a1 + 1,809,851 — 1), ifi=0and so=0,s >0
o (ap+1,a1 — 1,80 — 1,51), ifi=1andsg>0
(ag, a1, so,s1 — 1), ifi=1and so=0,s1 >0
(ag,a1,s0 — 1,81 + 1), ifi=0and sg >0
v (ap — 1,a1 + 1, s0,51), ifi=0and sg=0,s; >0
o (ap+1,a1 —1,s0 — 1,51 +1), ifi=1andsy>0
(ao, a1, So,51), ifi=1and so=0,s; >0
and N N
hi- — 1 _ s 14 R I7 i R II7
dls(s7u) ( Ddi )[}\l + >\p (S U) + >\i + >\p (S U)]
where
SI_ (ao,al—l,s(),sl), if i=1
o (00—1,01,80,81), lleO
S — (ag,a1 — 1,509,851 + 1), ifi=1
B (00—1701,80,814-1), ifi =0

The dynamic programming technique is employed to solve the problem. It computes the relia-
bility associated with the current system by using the information of previously solved, lower level,
smaller size systems. In other words, we have to compute the reliability functions recursively in
some order from the minimal state (0, 1, 0, 0) to the final state s = (ag, a1, So, s1). The detailed
algorithm for solving the problem is not described here for the sake of brevity.

4: Numerical examples

In this section we present several numerical examples illustrating the application of our proposed
dynamic recovery procedure.
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The system is operated with the initial state s = (10, 0, 1, 0) and the following parameters:
fault rates (A, Ao, A1) = (0.0001, 0.001, 0.01); service rate p(n) = n®7 (jobs per second); system
crash probabilities (prer, Prpt, Pais) = (0.01,0.02,0.015); job arrival rate v = 2.0 (jobs per second);
job deadline A = 10(seconds); and system mission time: T = 100(hours).

The optimal reliability functions are shown in Figure 1.

1 &
0.995 -
R(s,t) 0.99 - Optimal policy
Retry-Replace —— -
Retry-Disconnect —»—
0.985 - Always disconnect -e—
: Always replace +—
0.98 ‘ ‘ L
0 20 40 60 80 100

Remaining Mission Time, ¢(hr)

Figure 1: The reliability for the optimal recovery policy vs. simple policies (s =
(10,0,1,0), v = 2.0, A = 10).

The corresponding optimal recovery policy is

retry-disconnect, if 0 <t < 45;
disconnect, if45 <t

From Figure 1 we can see that the optimal policy can enhance the reliability and reduce the
failure probability. We can also see that the “Always disconnect” achieves the best reliability among
the simple policies for a mission time of 100 hours. This is because the workload is relatively light,
the system has more modules than are needed to complete the jobs, and disconnecting the redundant
modules can therefore reduce the fault rate.

Obviously the system reliability and the optimal switching policy should be significantly affected
by the size of the deadline. This is shown in Figure 2.

For a given deadline, the system processing power may become insufficient when the job arrival
rate increases. To investigate the dependence on the job arrival rate, we set the deadline to 4 and
vary the job arrival rate. The resulting reliability and optimal policy are plotted in Figures 3 and
4.
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Figure 2: System optimal reliability for
different values of the deadline (s =
(10,0, 1, 0), v = 2).
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Figure 4: Optimal switching policy vs.
job arrival rate and the remaining mis-
sion time (A = 4.0).
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Figure 3: System reliability vs. job ar-

rival rate.
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Figure 5: The system’s reliability

vs. number of active processors (s =
(n, 0,1, 0)).

The rapid decrease of the reliability in Figure 3 shows that the insufficiency of the system pro-
cessing power, instead of the high frequency of fault occurrences, becomes the major contributor to
reliability deterioration. Figure 4 shows that when the processing power is sufficient, the disconnect
action is optimal in the case of a long remaining mission time, and that when the processing power

is insufficient, the retry-replace action is optimal.

Finally, we calculate the reliability of a system with a single new spare and a varying number
of active processors for two different values of the pair (7, A). The results are shown in Figure 5.
From this figure we can see that for different deadlines and job arrival rates, the maximal system
reliability is achieved at different system configurations.
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5: Conclusions

Improving reliability is one of the most important goals in real-time system design. We apply
a dynamic recovery technique to a real-time distributed processing system. The results show that
the optimal recovery policy can significantly enhance the system reliability and the optimal system
reliability is greatly affected by the job arrival rate and the deadline. Reliability evaluation of the
dynamic reconfigurable system is complicated and the classical evaluation techniques are no longer
applicable. The method employed in this paper provides a new approach for reliability evaluation
of a reconfigurable system. In addition, the results show that for a given workload and deadline,
the reliability of a real-time system cannot be increased by merely adding more active processors
because of the increase in the total fault rate for the system. The maximum can be achieved only
at a certain size—the optimal configuration.
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