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Abstract—Cyber-Physical Systems (CPS) are increasingly used in a variety of transportation, healthcare, electricity grid, and other
applications. Thermal stress is often a major concern for processors embedded in such systems. High operating temperatures can
dramatically shorten processor life. This in turn can require provisioning of significant amounts of additional computational hardware to
withstand more frequent failures, with obvious implications for sustainability. This paper describes a novel approach to reduce thermally-
induced damage in CPS processors by targeting Dynamic Voltage and Frequency Scaling (DVFS) to high-activity task phases. That is,
by preferentially slowing down high-activity task phases, significant additional savings in energy and thermal stress can be attained for a
given amount of computational slowdown; this approach is shown to be superior to conventional methods that use DVFS without regard
to activity levels. Also, task reassignment across cores is driven by estimates of current core reliability, which is superior to the usual
approach of simply using either current temperature or temperature history. Our approach leads to a significant reliability improvement
(around 20%) over baseline DVFS techniques.
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1 INTRODUCTION

S EMICONDUCTOR failure rates rise rapidly with device
temperature. This is of special concern in Cyber-Physical

Systems (CPS) operating in harsh environments and requir-
ing high reliability. Reliability requirements coupled with
thermally-accelerated hardware failures can significantly
increase the amount of hardware that has to be provisioned,
with obvious implications for sustainability. This has moti-
vated efforts to reduce thermal stress while still meeting the
often-stringent deadline requirements of critical, real-time
CPS workloads.

There have been many studies on Dynamic Thermal
Management (DTM). Current DTM techniques include (a)
Dynamic Voltage and Frequency Scaling (DVFS) [1], (b)
migrating tasks from hotter to cooler cores [2], and, (c) core
throttling for a certain cooling-off period when a tempera-
ture threshold is exceeded [3].

In this paper, we propose two DTM techniques for
CPSs containing multi-core processors and workloads with
hard deadline timing constraints. The two techniques are
designed to improve the reliability of processors by evenly
distributing thermal stress temporally (on each core) and
spatially (among cores). The distinguishing feature of this
paper is a recognition that power consumption varies con-
siderably not only in the execution of different tasks but
also over the execution of the same task. This is usually
driven by varying levels of Instruction Level Parallelism
(ILP) [4]. We exploit such variability to improve reliability
and reduce the energy consumption of individual cores. We
also reassign tasks between cores where appropriate, based
on an estimate of their effective aging rates in order to
balance the thermal related wearout among cores.

Our simulation results indicate that the two proposed
techniques (intra- and inter-core) can achieve more than 20%
reliability improvement compared to using a previously
proposed DVFS algorithm for a target system reliability of 1

- 1e-6 (“six nines”).
The rest of the paper is organized as follows. Section 2

discusses some previous work in thermal-aware computing.
Section 3 provides basic background in VLSI circuit relia-
bility and CPS. Section 4 presents a theoretical model and
details of the proposed thermal management techniques.
Section 5 provides numerical results. The paper concludes
with a brief discussion in Section 6.

2 RELATED PREVIOUS WORK

Two techniques have been commonly used in DTM and
Dynamic Reliability Management (DRM) of multi-core sys-
tems, namely, DVFS and thermal-aware task allocation/task
reassignment.

Various DVFS-based approaches have been proposed to
keep temperature below a prescribed limit [3], [5], [6], [7],
[8]. Solid-state failure mechanisms which are accelerated by
heating are explicitly taken into account in a few studies,
e.g., electromigration in [9], [10] and oxide breakdown in
[11]. Static task assignment to cores in a multicore system is
evaluated in [12] while offline (static) mapping of tasks in a
task graph is studied in [13].

Thermal-aware task allocation and task reassignment
have been used to better distribute thermal stress among
cores. This technique has been used for DTM of datacenters
and computing clusters [14], [15], [16] and has also been
studied for multi-core processors. For instance, [2], [17]
migrate tasks to reduce inter-core temperature differences.
In [18], various approaches to assigning tasks to processors
are compared in order to minimize the instantaneous tem-
perature of a multi-core processor. Task reassignment based
on inputs from wearout (degradation) sensors is studied in
[19]; however, such sensors are not yet widely available on
contemporary processors. The issue of whether some cores
should initially be kept unused (for later use) rather than
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having all cores active is considered in [20], [21]. Evolving
the task migration policy (in a non-real-time application)
using reinforcement learning is reported in [22]. It was not
until recently that using reliability as a criterion for task
mapping in many-core system began to be studied [23], [24].

Some DTM work has focused on systems with work-
loads that have hard deadlines [1], [25], [26], [27] [28];
the goal is usually either to satisfy a given temperature
constraint or to reduce energy consumption.

The underlying assumption in contemporary work is
that the power consumption is fairly steady over the lifetime
of a task. By contrast, in the algorithms proposed here,
we exploit the frequent considerable variation in power
consumption during the execution of a single task. Such
a variation is caused by dynamically varying levels of
Instruction Level Parallelism (ILP) within the executed code.
The central idea of the paper is that since high-ILP segments
consume more energy than low-ILP segments, using a given
amount of slack to preferentially slow down high-ILP seg-
ments provides greater energy savings.

3 BACKGROUND

3.1 VLSI Circuit Reliability
The reliability of VLSI circuits is affected by multiple failure
mechanisms. Modeling these has been an active research
topic for decades. Oxide breakdown and electromigration
are reported to be dominant permanent failure mechanisms
of VLSI circuits as CMOS technology scales [29].

Oxide (or dielectric) breakdown is caused by the forma-
tion of a low resistance path in an oxide insulating area and
is a major contributor to circuit failure. The Mean-Time-To-
Failure (MTTF) due to oxide breakdown is given by [30]:

MTTFbd = Abd × V −(a−bT ) × e
X+(Y/T )+ZT

kT (1)

where V is the voltage applied to the gate oxide, T is
the absolute temperature in Kelvin (K), k is Boltzmann’s
constant andAbd is a scale factor. Typical values cited for the
other parameters are [30]: a = 78, b = −0.0081, X = 0.759
eV , Y = −66.8 eV ×K and Z = −8.37E − 4eV/K .

Electromigration (EM) is another cause of circuit failure
[31]; Black’s model is widely used [32]:

MTTFem = Aem × J−ne
Ea
kT (2)

where Aem is a scale factor, J is the current density, Ea is
activation energy and n is a material based constant. For
copper, these values are J=1e6 A/cm [33], Ea = 0.9 eV and
n = 1.1 [34].

The failure of a system is a random process and the
reliability of a system at time t is the probability that the
system is functional throughout the time interval [0, t]. The
probability of a device failure occurrence during [0, t] is
often modeled by the Weibull distribution:

F (t) = 1−R(t) = 1− e−(t/η)
β

(3)

where F (t) is the failure occurrence probability, R(t) is
the reliability function, β is the Weibull slope parameter
(a typical value is β=2 [35]), and η is a scale parameter
satisfying η = MTTF/Γ(1 + 1/β) [11].

The above reliability expressions model the reliability of
circuits under constant temperature. In practice, however,

the working environment of a processor is varying and so
is its temperature. In this paper, the approach of [11] is
adopted to calculate the reliability in a dynamic thermal
environment. Time is divided into k time frames, [0,∆),[∆,
2∆),..., [(k-1)∆, k∆] and in each time frame, the tempera-
ture and voltage are assumed to be constant. The resulting
reliability of a functional block, over k frames, denoted by
Rblk(t) is given by

Rblk(t) = Rblk(k∆) =
i=k∏
i=1

[1− (Rblk((i− 1)∆)−Rblk(i∆))]

(4)
where Rblk(i∆) is based on the temperature of the block at
i∆; with multiple failure mechanisms taken into account,
Rblk(i∆) is equal to the product of the reliability derived
from each failure mechanism using the temperature at the
ith time interval.

The reliability of a core at time t is the product of the
reliabilities of all the functional blocks of the core at time t.
The reliability of the system is the product of the reliabilities
of all cores in the system.

3.2 System Model
Workload: The workload consists largely of periodic tasks
with deadlines. Added to the task mix may be aperiodic
tasks: there exist standard techniques for scheduling them
within a periodic framework [36]. The basic goal of schedul-
ing real-time CPS tasks is to meet the deadline (i.e., finishing
the task execution before the deadline). A task i is charac-
terized by its Worst Case Execution Time (WCET) wi when
executing at a given reference frequency and its period pi;
each period pi, an iteration (or job) of that task is released
for execution. Real-time CPS workloads are associated with
task deadlines; typically, the relative deadline (the interval
from the arrival of an iteration of task i to the time it should
be finished) of a periodic task is set equal to its period, pi;
the worst-case utilization of task i is thus ui = wi/pi.

The actual execution time of a task iteration is a random
variable: its value is unknown until its execution is com-
plete. However, its statistics (e.g., Cumulative Distribution
Function (CDF) and the Expected Execution time (EET)) can
be determined in advance by profiling.

In this paper, our algorithms assume that the Earliest
Deadline First (EDF) algorithm is used for task scheduling.
EDF was selected due to its widespread use by the CPS
community. However, we should stress that the algorithms
proposed in this paper can be used with any other real-time
scheduling algorithm.
Computational Platform: We assume a conventional compu-
tational platform, consisting of multiple processing cores
sharing main memory and lower-level caches, backed up
by flash memory. Memory density has expanded greatly in
recent years; there is enough memory so that each core has
rapid access to the text segment of any task that it may
be assigned to execute. Task inputs (deriving from other
task outputs or from sensors) are placed in predesignated
locations in memory.

All cores are assumed to have two frequency and voltage
levels; a Dynamic Voltage and Frequency Scaling (DVFS)
approach is used to select the appropriate level. Extending
the work to more than two levels is quite simple; however,
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Fig. 1. Power and IPC variation for the benchmark Typeset from Mibench
[37]

given that the maximum supply voltage to a chip keeps
dropping with advances in technology, the scope for a larger
number of voltage levels is shrinking.
Workload Assignment: There is no migration of task iterations:
once an iteration starts executing on a given core, it stays
there until its end. However, there is nothing preventing the
n+1′st iteration of a task from being activated on a different
core to that of the n′th iteration. Due to the shared memory
elements, this entails no meaningful overhead. Selection of
the appropriate node on which to activate a task iteration is
a key function of our heuristics.

4 THERMAL MANAGEMENT TECHNIQUES
4.1 Objective
The objective of our algorithm is to maximize the reliabil-
ity of CPS platforms, under the constraint that the hard
deadlines of the computational workload continue to be
met. This is done by reducing the rate at which thermally
accelerated processor aging takes place. To do so, 1) we
focus voltage/scaling on those segments of the execution
that exhibit the greatest instruction-level parallelism, and
are thus the most power-hungry; and 2) we balance the
thermal stress on different cores by adjusting the tasks
activated on each core (i.e., task reassignment).

4.2 Intra-core: Workload-Aware Voltage and Frequency
Scaling Algorithm (WA-DVFS)
Like all DVFS algorithms for real-time systems, we exploit
the slack that is generated when the workload utilization
is less than 1. Static slack is the slack that exists even if all
iterations run to their WCETs; it can be calculated before
runtime. Dynamic slack is generated when (as is usually the
case) iterations complete before their WCETs. Dynamic slack
can only be determined at runtime, upon the completion of
a task iteration. Slack generated by a task iteration expires
at the deadline of that iteration.

Key to our approach is the observation that CPS
workloads often exhibit significant time-varying levels of
instruction-level parallelism (ILP) within individual task iter-
ations. ILP correlates positively with power consumption.
An example of the power and IPC (Instructions retired Per
Cycle) variation that exists in an actual CPS workload is
shown in Fig. 1.

The main idea behind our WA-DVFS algorithm is to
use the available slack to preferentially slow that part of
the workload with higher power consumption: this allows
greater energy savings and thermal benefits per unit of
consumed slack. The ILP can be easily monitored using
performance counters (measuring the number of instruction

Shaded (unshaded) segments indicate high (low) IPC

Case 1: Long Segments of high and low IPC Case 2: Short segments of high and low IPC

Fig. 2. Illustrating Extreme Cases 1 and 2

retired per cycle, i.e., IPC) which are part of most modern
processors.

A user-defined threshold divides the IPC region into
high and low levels. This threshold may be determined by
profiling the workload in advance (note that the workload
of a CPS is known prior to its deployment). Another method
to determine the threshold is to allow the system to learn an
appropriate value based on operational data.

4.2.1 An Approximate Model
To obtain an idea of how much improvement one might
expect from the proposed approach, we use a simple and
approximate model of a single task. For purposes of thermal
modeling, we treat the entire processor as a single node.
Heat flows are modeled by means of thermal equivalent
circuits [38]. Thermal resistance expresses the amount of
heat that flows across an interface given the temperature
differential across that interface; thermal capacitance repre-
sents the amount of heat required to raise the temperature
of the node by one degree. The thermal inertia of the chip is
expressed by means of the thermal time-constant, which is
the product of the chip thermal resistance and capacitance.

Exact thermal models are too complicated to analyze
and require simulation. However, two extreme cases are
tractable and can shed light on how much lifetime im-
provement we can expect with targeted voltage/frequency
scaling. In Case 1 (Fig. 2), the high- and low-parallelism
segments are each of duration much longer than the thermal
time constant of the chip. In Case 2, we assume that these
segments are of duration much shorter than the thermal
time constant. In all cases, the segments are assumed to be
much longer than the time required to carry out voltage and
frequency scaling; since the scaling time is small [39], this
is not a limiting assumption in practice. Fig. 2 illustrates
both cases. Due to the length of these segments, we can
use the steady-state temperature; in Case 1, each segment
is long enough so that steady state temperature is reached
for most of its duration; in Case 2, due to the fine-grained
interleaving of low- and high-parallelism segments, the
temperature holds relatively steady through the lifetime of
the task. The detailed analysis for both cases are presented
in the Appendix.

Denote by Aeff (t) the effective age of the node at
time t. The effective age takes into account the accelerated
aging caused by elevated temperatures [38]; it is equal to
the chronological age when the node is at room temper-
ature (300K) and rises exponentially with an increase in
temperature. In Fig. 3, we plot the improvement in sys-
tem reliability, where reliability at time t is calculated as
R(t) = exp(−(Aeff (t)/η)β). The reliability improvement
over a baseline algorithm is defined as

Improvement = 1− 1−R(tref )WA−DV FS

1−R(tref )Baseline
(5)

where tref is the time when R(tref )Baseline reaches the
lower bound of the system reliability requirement (e.g., 1
- 1e-6). We use as baseline the widely-cited DVFS algorithm
proposed in [40].
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Fig. 3. Processor Reliability Improvement with WA-DVFS

Fig. 3 indicates the range of improvement possible; finely
interleaved segments yield the lowest, while very long
segments provide the greatest improvement in processor
reliability. Note that benefits from this approach accrue
when the utilization is moderate. For very low utilizations,
the entire workload can be slowed down; for utilizations
close to one, there is not much scope to slow anything down.
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Fig. 4. Flow Chart of WA-DVFS

4.2.2 WA-DVFS Algorithm Description
DVFS algorithms operate by exploiting static and dynamic
slack to run at lower voltage/frequency levels. Other DVFS
algorithms use up available slack at the first available op-
portunity. However, this can result in slack being wasted
in slowing down low-ILP segments when it can more prof-
itably be used to slow down later high-ILP segments. WA-
DVFS characterizes task segments by the two-tuple (x, y),
where x = PE denotes the segment of the task prior to its
Expected Execution Time and x = BE that beyond; and
y = L,H denote Low- and High-execution ILP. There are
four segments specified by all combinations of (x, y). Given
a certain amount of available slack, we assign it to each such
segment to prevent one segment encroaching on the quota
of another (details are provided below).

TABLE 1
Notation I

f Processor frequency setting
tsys System time, initialized at 0
fhV Processor high frequency level
flV Processor low frequency level
σ fhV /flV
h Worst case execution time of high-IPC phases

of all tasks at frequency fhV
l Worst case execution time of low-IPC phases

of all tasks measured at frequency fhV
pi Period of task i
wi WCET of task i
ai Actual execution time of task i
ui Utilization of task i (ui = wi

pi
)

n Total number of tasks
LCM Least common multiple of all pis
sstatic Static slack
sdynamicnew Newly-obtained dynamic slack
sreq [(x, y)],srsv [(x, y)] Slack needed and reserved to slow down IPC

phase (x, y) ∈[(PE,H), (PE,L), (BE,H), (BE,L)]
s[H] Currently available slack for high IPC phase
s[L] Currently available slack for low IPC phase
st[i] Available slack amount (st[i].slack) and expiry

time (st[i].expire) of dynamic slack from task i
∆t Time step
∆ Reliability update interval
IPCthresh IPC threshold used to separate high- and

low-IPC
IPClast IPC in the previous time step
MhI (MlI) Statistical mean execution time of high(low)-

IPC as a fraction of the high(low)-IPC part in
the worst case

sexpire Total expired slack
Udyn
i Effective utilization of task i

γm,n Accumulated reliability difference between
core m and n

Tssi Steady-state temperature of task i

WA-DVFS makes the DVFS decision every pre-defined
time step (∆t, a configurable parameter which does not have
to be the same as the reliability update interval ∆ mentioned
in Section 3.1). WA-DVFS does not miss deadlines since it
uses the same static and dynamic slack usage policy as the
DVFS algorithm proposed in [40].

A high-level view of WA-DVFS is shown in Fig. 4.
The pseudo-code of the main algorithm is presented in
Algorithms 1 to 7. The notations used in the pseudo-codes
and the flow chart can be found in Table 1.

At the beginning of every ∆t, the available slack will
be updated with the newly generated and expired slack
and suitably allocated to the various task segments. Then
the workload is checked to see which IPC phase it is in,
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based on the average IPC in the previous time step. If the
corresponding allocated slack is enough to slow down the
workload execution, the execution in this step will be at low
frequency, otherwise at high frequency. Note that frequency
changes only happen at the start of each time-step.

An initialization step, to record the available static slack,
is carried out every LCM (Least Common Multiple) of the
task periods, as shown in Algorithm 2. The total available
static slack at the beginning is calculated based on the
WCETs (denoted by sstatic). The slack values needed to slow
down the high- and low-IPC portions of the PE (denoted by
sreq[(PE,H)] and sreq[(PE,L)]) are then calculated (lines
3 and 4 of Algorithm 2 ).

Algorithm 1 Workload-Aware Dynamic Voltage/Frequency
Scaling (WA-DVFS)

WA-DVFS:
At every time step

1 IF tsys mod LCM =0
2 Initialize( ) //see Algorithm 2

ENDIF
3 IF tsys = 0
4 f = fhV
5 ELSE
6 set IPClast equal to the average IPC in the previous

time step
7 HandleNewSlack(tsys) //see Algorithm 4
0 HandleExpiredSlack(tsys) //see Algorithm 5
9 IF IPClast ≥ IPCthresh

10 IF s[H] ≥ (σ − 1) ·∆t
11 f = flV
12 s[H] = s[H]− (σ − 1) ·∆t
13 UseSlack((σ − 1) ·∆T ) //see Algorithm 3
14 ELSE
15 f = fhV

ENDIF
16 ELSE
17 IF s[L] ≥ (σ − 1) ·∆t
18 f = flV
19 s[L] = s[L]− (σ − 1) ·∆t
20 UseSlack((σ − 1) ·∆t)
21 ELSE
22 f = fhV

ENDIF
ENDIF

ENDIF
23 tsys = tsys + ∆t

Then, the slack needed to slow down the high-IPC
portion of the WCET beyond the high-IPC portion of
the EET (denoted by sreq[(BE,H)]) is calculated in
line 5 of Algorithm 2. The rest of the code consists
of allocating slack to the four parts of the workload
mentioned above (line 6, details in Algorithm 6)
and reset the dynamic slack associated with each
task (line 7-10). In Algorithm 6, the available slack
(static or dynamic) will be reserved for phases in the
following sequence: (PE,H), (PE,L), (BE,H), (BE,L).
The variable srsv[(x, y)], where (x, y) ∈
[(PE,H), (PE,L), (BE,H), (BE,L)], is used to record
the slack reserved for each phase. The slack will be

reserved for (PE,H) first and added to the amount of
slack in srsv[(PE,H)]. If the value srsv[(PE,H)] reaches
sreq[(PE,H)] and there is still slack available, the slack will
be reserved for (PE,L) and then to phases (BE,H) and
(BE,L) as long as there is slack available. Slack reservation
stops once the slack has been exhausted. Slack reserved for
the high or low IPC portion (s[H] or s[L]) will be updated
during the reservation for each phase (lines 5 and 9 in
Algorithm 6, y is the second term in the tuple, i.e. H or
L). The value of srsv[(x, y)] will increase when new slack
is available and reserved and decrease (Algorithm 7) when
slack expires. The value of s[H] and s[L] will increase when
new slack is reserved and decrease when the processor is
running in low frequency and slack expires.

Algorithm 2 Initialization (WA-DVFS)
Initialize( )

1 s[H]=0, s[L]=0
2 sstatic = ( 1∑n

i=1
wi/pi

− 1)
∑n
i=1 wi

3 sreq[PE,H] = h ·MhI · (σ − 1)
4 sreq[PE,L] = l ·MlI · (σ − 1)
5 sreq[BE,L] = h · (1−MhI) · (σ − 1)
6 ReserveSlack(sstatic)
7 FOR i in 1 to n
8 st[i].slack = 0
9 st[i].expire = +∞

ENDFOR
10 sdynamicnew = 0
11 IPClast = +∞

Algorithm 3 Slack Consumption
UseSlack(s)

1 FOR ALL st[i], in st[i].expire in ascending order
2 IF st[i].slack ≥ s
3 st[i].slack− = s
4 break
5 ELSE
6 s− = st[i].slack
7 st[i].slack = 0

ENDIF
ENDFORALL

At the beginning of every time step, after the
update of the IPC value, the available slacks are
updated using functions HandleNewSlack(t) and
HandleExpiredSlack(t).

The function HandleNewSlack(t) assigns newly
available dynamic slack released from tasks which finish
prior to their WCET in the previous time step. The amount
of slack and its expiry time for task i will be saved in
st[i].slack and st[i].expire, respectively; the amount is the
difference between the worst-case and actual execution time
and the expiry time is the deadline of that task iteration.
The function UseSlack(s) handles the use of the available
slack. Note that dynamic slack is always associated with a
deadline; slack is used in an earliest-deadline-first order. The
total amount of newly available dynamic slack is accumu-
lated in sdynamicnew . Assignment of the newly available
dynamic slack is carried out using the same approach as
used in the static slack assignment.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 23,2020 at 00:07:48 UTC from IEEE Xplore.  Restrictions apply. 



2377-3782 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2019.2958298, IEEE
Transactions on Sustainable Computing

6

Algorithm 4 Injecting New Slack
HandleNewSlack(t)

1 FOR ALL task i finishing during t−∆t
2 st[i].slack=wi − ai
3 sdynamicnew+ = st[i].slack
4 st[i].expire=deadline of the current iteration of task i

ENDFORALL
5 ReserveSlack(sdynamicnew)

When a deadline is reached, the slack associated with
that task iteration expires. To deal with the expired slack,
the function HandleExpiredSlack(t) removes the slack
in the reverse order in which it was assigned (Algorithm 7);
slack assigned to the low-IPC portion of the WCET will be
removed first.

Algorithm 5 Slack Expiry
HandleExpiredSlack(t)

1 sexpire = 0
2 FOR ALL st[i].expire ≤ t
3 sexpire+ = S[i].slack
4 st[i].slack = 0
5 st[i].expire = +∞

ENDFORALL
4 RemoveSlack(sexpire)

Algorithm 6 Reserve Slack
ReserveSlack(s)

1 FOR (x, y) in [(PE,H), (PE,L), (BE,H), (BE,L)]
2 IF srsv[(x, y)] < sreq[(x, y)]
3 If s > sreq[(x, y)]− srsv[(x, y)]
4 s− = sreq[(x, y)]− srsv[(x, y)]
5 s[y]+ = sreq[(x, y)]− srsv[(x, y)]
6 srsv[(x, y)] = sreq[(x, y)]
7 ELSE
8 srsv[(x, y)]+ = s
9 s[y]+ = s

10 break
ENDIF

ENDIF
ENDFOR

Algorithm 7 Remove Slack
RemoveSlack(s)

1 FOR (x, y) in [(BE,L),(BE,H),(PE,L),(PE,H)]
2 IF srsv[(x, y)] < s
3 s− = srsv[(x, y)]
4 s[y]− = srsv[(x, y)]
5 srsv[(x, y)] = 0
6 ELSE
7 srsv[(x, y)]− = s
8 s[y]− = s
9 break

ENDIF
ENDFOR

Example: We compare the result of WA-DVFS with the
widely-cited cycle-conserving DVFS algorithm of Pillai and
Shin in [40] (denoted by P-DVFS), shown in Algorithm 8.
There are three tasks with parameters (w1 = 2, p1 = 4),
(w2 = 1, p2 = 5), and (w3 = 0.5, p3 = 5), respectively. The
available frequencies are fhV = 1, f`V = 0.5, and ∆t = 0.1.
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Tall (Short) boxes indicate execution at frequency fhV (flV ).

Fig. 5. Task schedule for the example according to (a) WA-DVFS (b)
P-DVFS

From offline profiling, it is known that T1 contains a high
IPC phase and a low IPC phase, T2 only contains a high IPC
phase and T3 only a low IPC phase. Consider the first few
moments of that execution. Assume that at fhV , the actual
run times of the first iteration (i.e., job) of task T1 are 0.4 for
the high-IPC and 0.6 for the low-IPC segments, respectively.
The actual run times of the first iteration of T2, T3 at fhV are
0.4, 0.35, respectively.

Algorithm 8 P-DVFS
select frequency():

1 IF
∑n
i=1 U

dyn
i ≤ 1

σ
2 set frequency flV
3 ELSE
4 set frequency fhV

ENDIF
upon task release(Task i):

5 set Udyni = wi/pi
6 select frequency()

upon task completion(Task i):
7 set Udyni = ai/pi
8 select frequency()

Fig. 5 provides a comparison between the baseline P-
DVFS algorithm and WA-DVFS. The dark shaded boxes
are high IPC phases while the light shaded boxes are low
IPC phases; taller boxes indicate a frequency of fhV while
shorter boxes indicate f`V .

WA-DVFS preferentially allocates slack so that more of
the high-IPC segments can be run at low frequency. By
contrast, P-DVFS takes no account at all of the task IPC level
and keeps running at fhV until early task completions drop
the total utilization temporarily below 1/σ.
4.3 Inter-core: Reliability-Aware Online Task reassign-
ment
As shown in [28], reliability is maximized when the cores
are thermally balanced. Thus, a reliability aware scheduler
should dynamically attempt to equalize the reliability of the
cores by reassigning tasks as needed.

The Largest Task First (LTF) scheme was shown in [18]
to reduce the temperature difference among cores more
efficiently than other offline partitioning algorithms. Our
initial task assignment, therefore, follows the LTF algorithm.

As a workload executes, the estimated reliability of each
core will be updated periodically with a period of ∆. Us-
ing Equation 4 to compute the current reliability, we only
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need temperature data for the last interval, i.e., the one
following the previous reliability update. The workloads
of the cores will not be adjusted when there is a small
difference in reliability, because such a small difference
may well be reversed by the time the next job arrives.
Instead, the reliability decreasing rate of each core m (the
reliability difference between two consecutive updates),
δm(k∆) = Rm(k∆) − Rm((k − 1)∆), is monitored. The
proposed algorithm updates the accumulated difference in
the reliability decreasing rate between each pair (m,n) of
cores until it exceeds a given threshold and only then does
a workload adjustment happen on these two cores. The
accumulated difference is denoted by γmn and is defined
as:

γmn(t)=

d t−tl(m,n,t)∆ e∑
k=0

(δm(tl(m,n, t)+k∆)−δn(tl(m,n, t)+k∆))

(6)
where tl(m,n, t) is the latest time smaller than t when the
workload on either core m or core n was adjusted.

The pseudo-code of the online load adjustment is shown
in Algorithm 9. The initial value of each γmn is 0. If γmn is
positive, the reliability of corem decreases faster than that of
core n and vice versa. If so, the workload adjustment algo-
rithm will be invoked (line 5 in Algorithm 9). Workload ad-
justment includes reassigning/swapping tasks between the
cores for which γmn is being checked. If the load adjustment
(task reassignment and swapping that will be introduced
below) fails due to high load (large utilization) on the cores,
the pair of cores with the second largest absolute value of
γmn is chosen. Then, a check is made to see if this quantity
exceeds the threshold. If so, task reassignment or swapping
is performed. If not, the execution continues with the current
task assignment. If the task reassignment or swapping also
fails for the pair of cores with the second largest absolute
value of γmn, the pair with third, or fourth largest value
and so on is considered. This process continues until we run
out of core pairs, or load adjustment (task reassignment or
swapping) is successfully performed on one pair of cores or
the pair of cores chosen has an abs(γmn) smaller than the
threshold. Every time the load adjustment is invoked, only
the load on one pair of cores will be adjusted. Then, all the
γmns that are related to the pair of load adjusted cores are
reset to 0 (for example, when workload on core j and core k
is adjusted, the γmns that involve core j and core k are set to
0, as is shown in line 7 of Algorithm 9).

The first load adjustment that is attempted is reassigning
a task from the less reliable core to the more reliable core
(line 6 in Algorithm 9). A successful reassignment indicates
that the next iteration of the reassigned task will be executed
on the more reliable core. In order to guarantee that all tasks
meet their deadlines, the utilization of the target core must
be smaller than or equal to 1 after reassignment.

When the utilization of each core is close to 1, it is
possible that no task can be reassigned from one core to
another. When this is encountered, a task swapping process
will be attempted (line 10 in Algorithm 9). In the task
swapping process, each core has a task list in which tasks are
sorted according to their ui × Tssi value (Tssi is the steady-
state temperature of task i). This product is chosen because
Tssi indicates the thermal stress caused by executing task i

and ui is the fraction of time the task executes on the core.
The task swap process is described below with an example.
Assume the tasks on core 1 and core 2 need to be swapped
and core 1 is the less reliable core. Tasks on core 1 are τ11,
τ12,..., τ1n in ui × Tssi descending order. Similarly tasks on
core 2 are τ21, τ22,..., τ2n.

Algorithm 9 Pseudo Code for Online Load Adjustment

Online load adjustment()

1 Update all γmn;
2 Define P as the set containing all core pairs
3 (j, k)=the core pair in P with maximum abs(γjk);
4 WHILE(P is not empty)
5 IF(abs(γj,k)≥ Threshold)

// assume core j is less reliable
6 IF(reassign success(j,k))
7 γj,m = γk,m = γm,j = γm,k = 0 for all m;
8 break;
9 ELSE

10 IF(swap success(j,k))
11 γj,m = γk,m = γm,j = γm,k = 0 for all m;
12 break;
13 ELSE
14 remove (j,k) from P ;
15 (j,k)=the core pair in P with maximum

abs(γmn);
ENDIF

ENDIF
16 ELSE
17 continue execution with current assignment;
18 break;

ENDIF
ENDWHILE

Firstly, the swapping algorithm will try to swap τ11 and
τ2n. If the utilization on either core is greater than 1 after
the swap, with the initial assumption that tasks with larger
product tend to have larger utilization, the algorithm will
try to swap τ11 with two tasks, τ2n and τ2n−1. If the swap
still fails due to utilization larger than 1 on one of the cores,
the swapping between τ11 and three tasks,τ2n,τ2n−1 and
τ2n−2, will be tried. If the swapping continues to fail, tasks
on core 2 will continue to be added to swapping until the
newly added task on core 2 has a larger ui × Tssi than τ11.
If swapping τ11 fails, then τ12 will be tried to swap with
tasks on core 2. Tasks on core 1 will be chosen in order
to swap with tasks on core 2 if previous swap fails until
the chosen core 1 task has a smaller ui × Tssi than τ2n . It
is also possible that some tasks have large utilization, low
steady-state temperature and a small ui×Tssi value. If such
a task resides on the more reliable core, it may be chosen
as the first task to be swapped according to the previous
process and lead to failure due to worst-case utilization
being greater than 1. In order to avoid this situation, if the
above swapping process fails, the proposed algorithm will
try to swap one task on the more reliable core with one or
multiple task(s) on the less reliable core, starting from τ2n,
in a similar way to the swapping process above.
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5 EXPERIMENTAL RESULTS
5.1 Simulation Configuration
The simulated system has two homogeneous cores sharing
a cache. The cores can run at two frequency levels, a high
frequency of 2.0 GHz and a low frequency of 1.2 GHz. The
power files of the workloads were obtained using Gem5 [41]
and McPAT [42]. The power files using different DRM algo-
rithms are sent to TILTS [43] to calculate the temperature
trace. Temperature is then used to calculate the reliability
of the processor during the execution of the workloads.
Benchmarks from SPEC06 are used (Even though SPEC06 is
not a CPS benchmark, programs in the suite utilize different
function blocks of the processor and give different levels of
IPC phase within the same task. This is similar to tasks on
today’s CPS with multi-core processors where tasks have
very different characteristics). Each benchmark has a given
period and acts as an independent CPS task. The execution
time assigned to each iteration of a task is picked randomly
over a given interval (according to a normal distribution
with mean equal to its average execution time). The aim
is to choose execution time and period for each task so
that a given worst-case and average processor utilization
that are needed to test the algorithms are maintained. The
reliability improvement shown in the figures in this section
are calculated using Equation 5, i.e., we compare the re-
liabilities using different thermal aware techniques at the
time instance at which the reliability of the system using the
baseline algorithm is 1-1e-6.
5.2 Performance of WA-DVFS
We compare our WA-DVFS to P-DVFS [40] in terms of chip
reliability, using both synthetic and standard benchmark
(SPEC06) workloads. The synthetic workload is based on
power traces generated using the observed approximate
linear dependence of power consumption on IPC. This
function is obtained using linear regression over SPEC06
benchmarks. In the low (high) IPC phase(s) of the syn-
thetic power traces, the IPC value has a normal distribution
around a specified low (high) mean IPC value. The synthetic
workload is used to explore the impact on WA-DVFS’s
performance of the characteristics of the workload (e.g., the
IPC difference between high and low IPC phases, the length
of each IPC phase and the accuracy of workload estimation).

The reliability improvement using the proposed algo-
rithm running synthetic workloads is shown in Fig. 6.
Fig. 6a-6e, show the reliability improvement of WA-DVFS
when the workload execution time is accurately estimated
(EET=WCET).

Fig. 6a-6c show the reliability improvement of WA-DVFS
when there is only a single low IPC phase and a single
high IPC phase in the workload. Each curve in these figures
shows the impact of a different length of the high IPC phase
(denoted by “H=”) as a fraction of the WCET.

Fig. 6a shows the reliability improvement of WA-DVFS
and P-DVFS over the case where DVFS is not applied. Fig.
6b and 6c show the benefit of WA-DVFS over P-DVFS when
the IPC difference between the low and high IPC phases is
large (2.0) or small (1.0).

In these figures, when the worst-case utilization is close
to 1, little or no slack is available and the two algorithms
behave similarly as there is limited opportunity for voltage
scaling. At the other extreme, for low utilizations (below

0.6 in our example), there is enough slack to run the entire
workload at the low voltage and frequency and all scaling
algorithms behave similarly. Between these two extremes,
WA-DVFS outperforms P-DVFS by more than 15% when
the workload contains intervals of sufficient IPC disparity.
Since WA-DVFS relies on such a disparity for its functioning,
as the disparity drops, so does the benefit of this algorithm
over P-DVFS (see Fig. 6c).

Fig. 6d shows the benefit of WA-DVFS over P-DVFS for
four values of the phase length (expressed as a multiple of
the processor’s thermal time-constant τthermal=25ms, which
is obtained via simulation). Here, we assume that the high-
and low-IPC segments are of equal length and that the task
consumes its WCET. As the segment size drops below about
a quarter of the thermal time-constant, the benefit of WA-
DVFS drops as well since the processor has an opportunity
to cool down during the low-IPC segments.

Fig. 6e shows the impact of ∆t. Larger ∆t values impose
a coarser granularity on the actions of the algorithm. In Fig.
6e, the workload has a single low IPC phase and a single
high IPC phase. Up to a step size of 50 ms, there is little
degradation in performance; beyond that, the algorithm’s
performance deteriorates markedly. With a large step, IPC
will be monitored less accurately. Also, the slack needed to
execute in low frequency for each step is large. Thus, if there
is only a small amount of slack left, it cannot be utilized. On
the other hand, a very small step size will introduce more
overhead. In this study, the step size used is 50 ms.

The situation where execution time is not accurately
predicted is studied in Fig. 6f. In this figure, the length of
the low IPC phase is assumed to be 0.5 of the total expected
execution time. “L”(“H”) is the ratio of the actual length
of the low (high) IPC phase to the WCET. As before, the
comparison is against P-DVFS.

In Fig. 6f, the slacks are assigned according to the ex-
pected length of each phase. WA-DVFS behaves slightly
worse than P-DVFS for a certain utilization range, especially
when the actual high IPC phase is short. This is because
the proposed algorithm assigns slack according to its prior
(inaccurate) information and assigns more slack to the high
IPC phase than needed. Since the actual high IPC phase is
shorter than expected, the high-IPC phase does not use all
its assigned slack which is then wasted.

Next, we study the performance of WA-DVFS for stan-
dard benchmarks. The workload consists of 4 or 5 randomly
selected benchmarks from SPEC06. Each of the selected
benchmarks acts as an independent task. The utilization
is randomly assigned and normalized to the desired total
system utilization. The ratio between actual execution time
and WCET (the time to run the benchmark using provided
input in SPEC06) of each task is randomly generated dur-
ing simulation and is in the range (0,1]. To capture all
characteristics of the workload, when the actual execution
time is smaller than WCET, the power profile is shrunk
proportionally instead of being cut off.

Table 2 shows the average reliability improvement of 100
workloads consisting of 4 tasks and a further 100 workloads
consisting of 5 tasks. When the total utilization of the core
is low (e.g., around 0.65), all workloads can be run at low
frequency and there is little to be gained in using WA-
DVFS. When the utilization is high (e.g., 0.85 or higher), WA-
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Fig. 6. Reliability Improvement for Synthetic Workload

TABLE 2
Improvement (in %) over No DVFS using Actual Workload

P-DVFS WA-DVFS
IPCthresh NA 30% 60% 90%

0.65 16.0 15.7 16.5 15.6
0.7 15.4 16.4 17.4 16.3
0.75 13.6 17.3 18.5 17.1
0.8 11.0 18.2 19.4 17.8
0.85 9.0 18.7 19.6 18.4
0.9 8.1 19.4 20.1 19.0

DVFS provides substantial gains benefit as it preferentially
slows down thermally-intense phases. The impact of the
IPC threshold is shown in the rightmost three columns of
Table 2. Here, the IPC threshold is dynamically obtained
based on the actual IPC observed over a given window. For
example, if the threshold is set at 60%, we identify the IPC
value which would be greater than for 60% of what was
seen over the window. When the threshold is high (90%),
most of the workload is treated as low-IPC phase. When the
threshold is low (30%), most of the workload is treated as
high-IPC phase. In either of these two cases, the WA-DVFS
will behave like P-DVFS and thus has lower improvement.

Table 3 shows the temperature variation when using
WA-DVFS and P-DVFS for a given utilization. This variation
is expressed as the standard deviation of the temperature of
individual functional blocks (e.g., branch prediction unit,
integer register file, load and store queue and floating point
register file) within the processor. The standard deviation of
temperature is over the execution of all task sets mentioned
above. WA-DVFS has a lower temperature variation than
P-DVFS, especially for the blocks that are hottest during
execution, such as the integer register file. As an example,
Fig. 7 shows the temperature variation over time of the
integer register file and the load/store queue.
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TABLE 3
Standard Deviation of Temperature

P-DVFS WA-DVFS
Utilization 0.9 0.75 0.65 0.9 0.75 0.65

Dcache 2.092 1.739 1.098 1.818 0.784 0.943
Bpred 1.031 0.862 0.525 0.867 0.271 0.462
IntReg 10.574 8.920 5.637 9.250 3.734 4.507

LSQ 2.626 2.233 1.382 2.254 0.768 1.116
FPReg 0.800 0.664 0.407 0.667 0.212 0.368
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Fig. 8. (a) Original Alpha Floorplan [44] (b) Simplified Floorplan

5.3 Evaluation of Online Task Reassignment
The target hardware platform for our experiments is a
system with multiple Alpha 21264 cores. Even though the
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Alpha architecture has been discontinued for several years,
its structure is often used in research work since its floor-
plan and other specifications are available to academic re-
searchers; furthermore, it is reasonably close to cores today.
We used Wattch [45] to calculate the power profile and
TILTS [43] to calculate the temperature. In our experiments,
we used the original Alpha floorplan to estimate the temper-
ature of each block and calculate the reliability of the system.
This reasonably accurate reliability value is used to assess
the quality of our algorithm that relies on only approximate
temperature estimations that are based on a simplified floor-
plan (see Fig. 8). In the simplified floorplan, some blocks are
merged, reducing the total number of blocks from 13 to 6 :
Integer Register File, Integer ALU, Floating Point, Decode,
Branch Prediction and Load-Store Queue. This reflects the
reality that exact temperature information for each block in
the original floorplan is never available in practice to the
algorithm (since the temperature is often estimated using
performance counters [46]). We show that the lack of such
exact temperature information has very little impact on the
effectiveness of our algorithm.

The workload is generated following the same approach
as was used for generating the actual workload to test
WA-DVFS. The only difference is that there are 8 tasks
in each workload. The algorithm proposed in this paper
(denoted by ALGR) is compared against the following
alternatives: (a) Utilization balancing scheduling (denoted
by ALGU ), which assigns tasks to each core before the start
of execution to (approximately) balance core utilization [18],
(b) Instantaneous temperature-based scheduling (denoted
by ALGIT ) which triggers task reassignment when the
average temperature difference between the cores is greater
than a given threshold, and (c) Temperature history-based
scheduling (denoted by ALGTH ) which records the history
of the temperature difference between cores. When the
accumulated difference exceeds a threshold, tasks will be
moved from the historically hotter to the colder core [2].

The experimental results for a dual-core system are
shown in Fig. 9. The improvement in a dual-core system
reliability, over the utilization balancing algorithm, for our
algorithm and the temperature-history and instantaneous
temperature algorithms, are plotted in Fig. 9a. When the
processor utilization is low, the cores are cool and not much
improvement can be achieved by any algorithm. As the
utilization increases, the thermal stress increases and the
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Fig. 10. The impact of the reliability update interval

reliability improvement of our algorithm increases steadily.
We simulated total utilizations up to an average core uti-
lization of 0.875; higher utilizations are unlikely to occur in
practice in a CPS. A quad-core system was also simulated
(Fig. 9a curve ALGR(4 core)). The improvement achieved
by the proposed reliability aware algorithm over the static
utilization balancing algorithm is similar to that in the dual-
core case. The reliability improvement is due to the effective-
ness with which our algorithm balances the reliabilities of
the cores. Fig. 9b shows the reliability difference between the
two cores (in a dual-core system) for all four algorithms. The
reliability difference between cores is much smaller when
our proposed algorithm is used.

The impact of using only an approximate core temper-
ature, based on a simplified floorplan (Fig. 8b), is shown
in Fig. 9(c) to be negligible. The curve in Fig. 9c marked
by Threshold=1 × 10−5 (OF) shows the resulting reliability
improvement when a more precise thermal information
is used based on the Original Floorplan (OF). Using the
temperature from the original floor plan for the reassign-
ment algorithm can be seen as the case where accurate
temperature information is available.

Finally, Fig. 10 shows the reliability improvements for
five different values of the reliability update interval for a
dual-core system. More frequent updates result in improved
performance.

5.4 Combining intra-core and inter-core techniques
The online task reassignment algorithm determines the
task assignment and the DVFS technique determines the
frequency of a core when executing the tasks assigned
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Fig. 11. Reliability Improvement using different thermal management
techniques

to it. We compare five combinations of techniques: online
adjustment and no DVFS on each core (ad/n-dvfs), no
online adjustment and using P-DVFS on each core (nad/p-
dvfs) , no online adjustment and using WA-DVFS on each
core (nad/wa-dvfs), online adjustment and using P-DVFS
on each core (ad/p-dvfs) and online adjustment and using
WA-DVFS on each core (ad/wa-dvfs). The situation where
no online adjustment and no DVFS on each core is used as
baseline (all improvements are w.r.t. this configuration). Fig.
11 shows the reliability improvement of a system with two
cores. As is shown, when the utilization is high or low, DVFS
algorithms have similar reliability improvements. When the
utilization is low, both DVFS algorithm can allow the cores
to execute under low thermal stress, thus there will not
be a considerable reliability difference among cores. When
the utilization is high, the reassignment can be difficult or
even impossible. Overall, using the proposed intra-core and
inter-core thermal management performs better than prior
techniques.

6 CONCLUSION
Improving processor reliability contributes to sustainabil-
ity by reducing hardware provisioning requirements. Our
heuristics enhance reliability by focusing DVFS on high-IPC
stretches of the executing code and by using estimates of
the thermally-accelerated age of each core in making task-
to-core assignment.

Several extensions to this work are currently being pur-
sued. These include (a) advance task profiling to obtain their
IPC characteristics and execution time cumulative distribu-
tion function, and exploiting that information in initial task
assignment, (b) studying the impact of adding graphical
processing units (GPUs) to the computational platform,
and (c) selecting task dispatch rates to trade off quality of
control (of the CPS application) against the aging of the
computational platform.
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