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ABSTRACT
Reducing computational energy consumption in cyber-physical systems (CPSs) has attracted consider-
able attention in recent years. Associated with energy consumption is a heating of the devices. Device
failure rate increases exponentially with increase temperature, so that high energy consumption leads
to a significant shortening of processor lifetime.

Reducing thermal stress without harming application safety and performance is the goal of this
work. Our approach is to abort control tasks dispatch when this is judged, by a neural network, to
not contribute to either safety or performance. This technique is orthogonal to others that have been
used to reduce energy consumption such as dynamic voltage/frequency scaling and adaptive use of
redundancy. Simulation experiments show that this approach leads to a further reduction in device
aging when used in conjunction with these prior techniques.

1. Introduction
This paper introduces an adaptive task dispatching al-

gorithm for cyber-physical systems (CPSs) with high relia-
bility requirements. The objective is to lengthen the opera-
tional lifetime of embedded processors in such applications
by reducing the thermal stress on the computational platform
without compromising on the quality of control provided or
the safety of the application.
Motivation: Embedded applications take up most of the
processors manufactured today. Many CPS applications use
dozens, if not hundreds, of processing cores. When these
processor boards are disposed of, they create a significant
environmental problem [1, 2]. With cyber-physical systems
(CPSs) growing in number and complexity, this problem is
likely to becomeworse. Any improvement in the operational
lifetime of embedded processors will therefore make a pos-
itive contribution to sustainability by (a) requiring fewer re-
placements over time and (b) requiring fewer onboard Line
Replaceable Units in the first place, to provide enough re-
dundancy to meet reliability requirements.

Furthermore, embedded applications have been migrat-
ing to highly cost-sensitive domains. When the typical CPS
was a military aircraft, the cost of the cyber subsystem was
not a limiting consideration. Today, when a typical CPS is
more likely to be a commercial product, cost pressures are
considerable. (For example, increasing the price of a car by
just $1,000 can have a measurable impact on its fate in the
marketplace.) Processors in such CPSs often have to work in
poorly ventilated or otherwise difficult environments, where
poor heat dissipation results in elevated temperatures that ac-
celerate device aging and shorten useful lifetimes.
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Organization of This Paper: This paper is organized as
follows. Section 2 contains technical background informa-
tion about conventional CPSs. Section 3 covers the connec-
tion between the controlled plant dynamics and safety re-
quirements to the demands on the computational platform. It
describes how information concerning the physical plant can
be used to provide more lightweight fault-tolerance without
sacrificing safety. Section 4 describes our adaptive control-
task dispatching algorithm, which uses Q-learning(a rein-
forcement learning algorithm) to effectively and safely abort
unnecessary control update calculations. Two case studies
are presented in Section 5 to evaluate the benefits of this ap-
proach. We conclude with a brief discussion in Section 6.

2. Technical Background
CPS Structure: The structure of a typical CPS is shown in
Figure 1. The computer (cyber subsystem) is in the feedback
loop of the controlled plant. It receives inputs from sensors
and the human operator (if any). Sensors provide raw or pre-
processed data about the state of the operating environment
and of the controlled plant. The cyber subsystem consists of
a set of cores with associated memory, which drives actua-
tors and then the controlled plant based on the current states
and the inputs of sensors.
Computational Workload: The computational workload
includes peripheral activities, such as environment and state
sensing, pre-processing sensing data and communication. In
this paper, we focus on the workload related with the con-
trol algorithm since it dominates the overall workload. The
computational workload consists of periodic and aperiodic
tasks to update the actuator values in order to meet opera-
tional needs. Periodic tasks consist of jobs that are released
at regular intervals; for aperiodic tasks, there is a minimum
interval between invocations.

Given tasks’ worst-case execution times, real-time dead-
lines, and dispatch rates, the questions of assigning them
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Figure 1: Basic CPS Structure

to cores and scheduling them has attracted a great deal of
research [3, 4, 5]. Scheduling techniques under computa-
tional energy concerns [6] while taking thermal consider-
ations into account [7] have also been recently developed;
however, many challenges remain in these critical areas.
Reliability Imperatives: When a CPS is life-critical and
therefore has to be ultra-reliable, fault-tolerancemust be used.
Massive redundancy and hardware and/or software diversity
is traditionally the way in which this has been done, espe-
cially in aviation. This approach is followed since quite of-
ten specifications require the cyber subsystem of CPS failure
probability to be very low, much lower in many cases than
that of individual components. For example, the fatal failure
rate for an aviation control system is traditionally set at 10−9
per hour [8].
The Controlled Plant and Its State Space: The controlled
plant operates in a given state-space. This consists of phys-
ical variables of relevance. For example, aircraft state vari-
ables include (among others) pitch angle, pitch rate, and an-
gle of attack. State-space equations are written to express
the plant dynamics; for computerized control, these are typ-
ically a set of difference equations.

Safe operation of the plant is defined by a safe state space
(SSS). This is the state-space region over which the plant
must be kept to enable safe operation. For example, the
pressure and temperature within a chemical reactor vessel
must be kept under specified limits. The SSS is specified
based on plant dynamics and other considerations; it is as-
sumed to be given as input to any discussion of cyber-side
reliability. Leaving the SSS at any time constitutes an unac-
ceptable plant-failure event, whose probability must be kept
under (very low) specified limits.

The SSS and plant dynamics provide a precise way in
which the needs of the application are fed through to define
the cyber system dependability and quality of control.
Zero-Order Hold (ZOH): We will be assuming a Zero-
Order Hold model in this paper [9]. This is widely used in

CPSs and consists of actuators getting updates at distcrete
time instances and holding steady between updates. That
is, the control surfaces are held piecewise constant, with re-
quired changes taking place between the pieces.
Quality of Control (QoC): The controlled plant actuators
are set to maximize the QoC which is generally some func-
tion of the divergence of the plant’s trajectory over its state
space from the optimal. This is under the constraint that the
plant remains in its SSS throughout. QoC depends on sev-
eral controllable factors: (a) quality of sensor data, (b) rate
at which the control surfaces are updated, (c) quality of the
algorithm used to compute actuator settings, and (d) range
of actuator capability. The dependability of the cyber sys-
tem is evaluated by its ability to keep the plant within SSS
throughout the period of operation.
Heating Accelerates Cyber Failure: The processor
hardware failure rate is strongly dependent on operating tem-
perature. A variety of physical processes, such as electromi-
gration, hot carrier injection, and bias temperature instabil-
ity, are much more strongly active at higher temperatures.
Indeed, we often model the device failure rate as exponen-
tially dependent on temperature; under the widely used Ar-
rhenius model, failure rate is proportional to exp(−Ea∕[kT ])where Ea is a constant, called the activation energy, k the
Boltzmann constant and T the absolute temperature. A gen-
erally quoted (and very approximate) rule of thumb is that
device lifetime halves for every 10oC increase in operating
temperature (calculated using the exponential relation men-
tioned above).

Operating temperature depends on two factors: the amount
of power consumed by the chip (turned into heat) and the
effectiveness with which this heat is conducted away. This
temperature can be estimated bymeans of a heat-flowmodel.
The most popular of these consists of building a thermal
equivalent electronic circuit, where the analogy is drawn be-
tween heat and charge flow. The rate at which heat can be
dissipated to the ambient is represented by a thermal resis-
tance,Rtℎermal; the amount of heat required to raise the tem-
perature of a given node by 1oC by thermal capacitance,
Ctℎermal. If the power consumption at time t is denoted by
P (t), we have the differential equation of the node tempera-
ture at time t, T (t), as follows:

Ctℎermal
dT (t)
dt

= P (t) −
T (t) − Tambient(t)

Rtℎermal

Here, Tambient(t) is the ambient temperature at time t. See
[10] for details.

Since high temperature accelerates aging, we can define
a Temperature Accelerated Aging Factor, TAAF(I), over an
interval, I , as follows:

TAAF(I) = Effective Aging over interval I
Duration of interval I .

Ways to calculate this aging factor can be found in [11].
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Controlling Power Consumption: To keep the power con-
sumption low, we can do four things:

• (a) Use a heterogeneous set of processor cores. Tasks
are then evaluated to see on which core type they con-
sume the least energy. For instance, some algorithms
may have greater affinity to GPUs than to general-
purpose architectures.

• (b) UseDynamicVoltage and Frequency Scaling (DVFS).
The energy consumed tends to go down roughly quadrat-
ically with the supply voltage at the cost of a roughly
linear increase in execution time. Voltage and fre-
quency can be adjusted appropriately to reduce energy
consumption while still meeting real-time task dead-
lines.

• (c) Only carry out redundant calculations when this is
required to ensure the safety of the controlled plant. In
other words, adapt the amount of fault-tolerance pro-
vided to the current needs of the application.

• (d) Reduce the rate at which control tasks are dispatched.
This has an obvious effect on the computational work-
load; the challenge is to do this in such a way as to
not compromise application safety or meaningfully di-
minish application performance.

Note that doing (d) increases the scope for (b). When we re-
duce task dispatch rate, we are increasing the available slack
in the task schedule. Some of this slack can then be used
to scale the voltage to run the processor slower and more
energy-efficiently without missing any deadlines.

Controlling control task dispatch rate appropriately is the
focus of this paper.

3. Task Dispatch Rate Tradeoffs
There are two key tradeoffs in changing the task dispatch

rate, one obvious and the other less so. The first is the impact
on the QoC; the second on the amount of redundant compu-
tations required.
Impact on Quality of Control: Delay in updating the ac-
tuator settings corresponds to feedback delay. From basic
control theory, we know that such delay pushes the poles
of the plant closed-loop transfer function towards the right
half-plane, degrading plant performance and making it less
stable. Beyond a point, aviation-failure stability is lost al-
together. This problem is accentuated when there are sig-
nificant disturbances from the operating environment. We
therefore have a lower bound to the task dispatch rate, below
which it is not safe to go.

However, as we keep increasing control task dispatch
rate, diminishing returns set in and the rate of QoC improve-
ment keeps dropping.

Also, CPSs typically have a large number of actuators.
Their impact on the plant is correlated (e.g., have a multi-
plicative effect). That is, the impact on QoC of changing

the update rate of one actuator depends on the update rate of
many, if not all, of the others. In some cases, the actuators
can be grouped into sets, where such correlative behavior
happens within sets but the sets themselves are largely un-
correlated from one another.
Impact on Computational Workload: The impact of chang-
ing periodic task dispatch rate on the computational work-
load is not monotonic. The reason is that the amount of re-
dundancy required changes as the plant nears the edge of its
Safe State Space, SSS.

To make this precise, we break up the SSS into two dis-
joint parts, S1 and S3, i.e., S1∪S3 = SSS and S1∩S3 = ∅.Then, a point x ∈ SSS is said to be in S1 if and only if the
plant will remain in SSS through the subsequent task dis-
patch period even if its controls are set arbitrarily wrong over
that period. S3 covers the rest of SSS.Therefore, if the plant is in S1, there is no need for re-
dundant calculations. Even if a failure in the computational
units happens in some component (and failures are mostly
transient), the plant will not become unsafe as a result of
an incorrect actuator output. If, however, it is in S3, thenredundancy is required to maintain plant safety to its pre-
scribed (high) level. (To determine whether it is in S1 or S3,a classifier-based approach works well: see [12].)

What does this have to do with periodic task dispatch
rate and the computational workload? To keep the descrip-
tion simple, consider a plant with a single actuator: the idea
is the same for more complex systems. Let the fraction of
time the plant spends in S1, S3 with a task dispatch rate of
� be denoted by �1(�) and �3(�), respectively. Let the aver-age computational workload without and with redundancy,
respectively, be W1,W3. Then, the total average computa-
tional workload is proportional to Wtot(�) = �(�1(�)W1 +
�3(�)W3) = �W3−��1(�)(W3−W1) (since �1(�)+�3(�) =
1). Now,W3 ≫ W1; typicallyW3 ≥ 3W1. Since �1(�) is amonotonically non-decreasing function of �,Wtot(�) is a U-shaped curve: it has a high value for small � since the plant
spends a large fraction of its time in S3. As � increases,
this fraction drops and the amount of redundant calculations
goes down. Beyond a certain point, the beneficial impact of
an increase in �1(�) is more than offset by the impact of an
increase in dispatch rate, and the workload goes up again.

The problem of setting a suitable update rate is com-
plicated by the fact that in a real system, there are multi-
ple actuators which (as mentioned earlier) interact with one
another in their impact on QoC. Disturbances (e.g., turbu-
lence, noise) in the operating environment also play a part.
Rather than do an analytical search for the appropriate dis-
patch rates, we instead propose in this paper to use a machine
learning approach.

4. Task Dispatch with a Q-Learning Agent
4.1. Outline of Approach

Our approach can be summarized as follows.
• For each periodic control task, �i, set a baseline dis-
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patch rate,  i. This is the maximum rate at which jobs
of �i are released; the minimum time between succes-
sive invocations isΔi = 1∕ i. This step is determined
by the control engineer and treated as input by our al-
gorithm.

• Define tentative release epochs �i,1, �i,2,⋯, spaced Δiapart.
• At time �i,j for each j, the system will decide whether

or not to actually release a new iteration of �i or not.Let x be the current state of the controlled plant.
– If x ∈ S3, the task will be released.
– If x ∈ S1, then use a deep Q-learning agent to

decide whether or not to release �i.
The deep Q-learning agent has to be trained suitably, to en-
sure high quality decisions. It it important to note that while
deep Q-learning has been used as the control algorithm for
some systems or even some CPSs, the deep Q-learning agent
used here is limited to tuning the control workload in CPSs,
i.e., adjusting the workload dispatch rate, based on the phys-
ical states of the CPSs.
4.2. Sub-state-space Identification

As explained in the background section and the section
above, one of the most important steps is to identify which
sub-state-space the states of the CPS is in. The dispatch rate
of workload can be adjusted to achieve power and thermal
stress reduction only when the state of CPS is in S1. There
are multiple ways to do this.

The most intuitive and simplest way is to use a table to
save the states in S1 and to consult the table when the sub-
state-space identification is needed. However, this approach
is impractical for CPS as the states of CPS consist of con-
tinuous physical variable and it is impossible to maintain a
table that can precisely cover the whole state space. The
sub-state-space identification is a typical classification prob-
lem, which can be efficiently solved using machine learning.
Thus, in this research, we use machines learning techniques
to obtain sub-state-space classifiers. If the state space is of
low dimensionality, decision tree(s) can be used. With high
dimension state space, neural networks can be used. The
training of sub-state-space classifier will happen offline. In
actual deployment, the offline-trained classifier is executed.
During operation of CPS, the execution of the offline-trained
classifier will introduce minimal overhead [13].
4.3. Training of Deep Q-Learning Agent

Deep Q-learning is a neural network approximation to
optimization by Markov Decision Theory (MDT). In MDT,
we take actions in each state of a Markov chain and calcu-
late the expected reward from the present to infinity (in one
version; in others, one can have a finite time horizon). Ac-
tions are taken to maximize this expected reward. Denoting
by V (i) the expected such reward if the present state is i, we

can write the MDT equation:
V (i) = max

a
{R(i, a) + �

∑

j
pi,j(a)V (j)}

where R(i, a) is the immediate reward for taking action a in
state i and pi,j(a) is the probability of making the transition
from state i to j as a result of taking action a. � ∈ [0, 1)
is a discount factor which expresses the amount by which
future rewards are discounted at the present time. See [14]
for more details. If R(⋅, ⋅), pi,j(⋅), and � are known, then it
is fairly simple to obtain V (⋅) by means of value iteration.
Then, the optimal action to take in state i is whatever action
maximizes the right-hand side of the above equation. The
action, in our case, would be to either release or not release
a task iteration.

However, such an approach is impractical for our pur-
poses. To begin with, we do not know R(⋅, ⋅) or pi,j(⋅) aheadof time. Even if we did, we could not afford to store V (i)
given that any reasonably fine-grained sampling of the con-
trolled plant state space would result in too large a table. The
obvious solution is to learn these quantities as we go along
and use a neural network in which to (approximately and im-
plicitly) store the optimum action for each state. This is done
by the well-known deep-Q learning algorithm [15].

We define our immediate reward as the weighted sum of
the QoC and the TAAF, both calculated over the interval to
the next decision epoch for this task. Weights have to be
provided by the user, based on the relative importance of
each quantity.

The weights of the neural network that is used to deter-
mine the optimum action are obtained by training it on a sim-
ulation of the controlled plant and its operating environment.
(Note that further training can also be done in parallel with
actual plant operation, based on the observed or recorded be-
havior of the controlled plant. This would follow the same
procedure as described here.)

The training process is shown in Algorithm 1.
The algorithm is run for a number of training cycles. It

starts with selecting, at random, a starting state for the con-
trolled plant in S1. The first iteration of every control task isexecuted to set up the simulation just prior to the entry into
the for loop (line 3).

After some housekeeping steps (lines 5 and 6), it simu-
lates the system by taking an action. This action is specified
by the function getAction().

The controlled plant is then simulated starting from state
s and with action a; as a result, at the next decision epoch,
it is found in state s′ having accrued over the past interval,
a reward of r. (If s′ ∈ S3, meaning that the controlled plant
has wandered into an area requiring fault tolerance, a large
penalty is applied to discourage such a step.) The history is
updated and the plant state is reset to this new state, s′. This
process continues until the plant leaves S1. (A failsafe loop-
exit criterion if it does not leave S1 for a very long time is
not shown here.) The neural network weights and the explo-
ration factor are then updated using the standard approach in
Q-learning [15].
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Algorithm 1 Training of Q-Learning agent
1: �=1 //exploration factor
2: CPS //system under control
3: for each training cycle do
4: s=random selected state in S1
5: CPS.reset(s)
6: ℎ=[] //record states/rewards history
7: while s ∈ S1 do
8: a =getAction(s)
9: s′,r = CPS.sim(a)
10: if s′ ∉ S1 then
11: r=large negative value
12: end if
13: ℎ.append([s,a,s′,r])
14: s = s′
15: end while
16: Update Weights for the Q-Value network based on ℎ
17: Update � value
18: end for
19: getAction(s,�)
20: b =random number in (0,1]
21: if b > �
22: return action with highest Q value on state s
23: else return random action

5. Case Studies
In this section, we use two case studies to compare the

workload adjustment approach presented in this paper against
a baseline algorithm. We first outline the baseline algorithm
before describing the reward function used. Then, our case
studies are introduced: involving (a) quadcopter control and
(b) adaptive cruise control in cars.
5.1. Baseline Algorithm

The baseline algorithm we use to compare the present
approach appeared in [13]. It also uses adaptive fault toler-
ance based on the S1 and S3 subspaces, but relies on a more
static approach.

The pseudocode for this baseline algorithm is shown be-
low.
Algorithm 2 State Based Adaptive Control Selection
1: Input: S1 associated with different control period,
S1(P1),S1(P2)...S1(Pk) (P1<P2<...<PK ).

2: At the end of every frame, with system state s:
3: if s ∈ ∪ki=1S1(Pi) then4: p = max{i|s ∈ S1(Pi)}
5: else
6: p = P1
7: end if

It is a lightweight greedy algorithm. All control task pe-
riods are assumed to be identical. This is frame-based con-
trol, with a single dynamically adjustable frame duration,
and each control task releasing one iteration each frame. The

duration of the frame can be adapted based on the current
state of the controlled plant.

The algorithm selects from among a menu of allowed
periods (i.e., frame lengths), P1 < P2 < ⋯ < Pk. Its ob-
jective is to use the largest among these periods for which
no fault-tolerance is required for the present task iteration,
if such a selection is possible. As mentioned before, it is
greedy, in that no consideration is given to the impact of the
period selection on future task iterations.

It uses a classifier, which is offline trained using machine
learning techniques (see [13] for details), to rapidly deter-
mine if the current state is in S1 for any of the allowed frame
lengths. If this is so, it selects the longest frame length (i.e.,
the greatest period) which satisfies this requirement. (Note
that S1 tends to shrink as the frame length increases. The
reason is that increasing the frame length tends to increase
the controlled plant feedback delay which degrades the QoC
and tends to increase the chance of the plant ending up closer
to the edge of the SSS and in subspace S3.) If, on the other
hand, the current state is in S3 even for the smallest period,
P1, this is the one that is chosen.Experimental results reported in [13] suggest significant
performance improvements for this baseline approach over
the traditional non-adaptive application of fault-tolerance.
The improvements listed for the current algorithm are those
above and beyond those delivered by this baseline.
5.2. Reward Function

The reward function we use is a weighted sum of QoC
and TAAF. QoC is the negative of the Integrated Squared
Tracking Error (ISTE). In particular, if s(t), sd(t) are the cur-rent and desired states at time t, respectively, then we have
ISTE = ∫ T0 ||s(t) − sd(t)||2dt where T is some specified in-
tegration period. The Quality of Control is the negative of
ISTE.

In the two case studies, we assume a processor energy
consumption of 15 watts when busy (0.5 watts when idle, no
Dynamic Voltage and Frequency Scaling), an ambient tem-
perature of 23oC, and the thermal equivalent circuit param-
eters of Rtℎermal = 2Ω, Ctℎermal = 0.5F . The parameters
related to thermal calculation are obtained from simulation
data.
5.3. Case Study 1: Quadcopter Hovering

The application in this section is a quadcopter hovering
in position, trying – in the face of atmospheric disturbances
– to retain its location (vertical and horizontal) and body po-
sition (rotation, pitch and yaw angle). The quadcopter has 6
degrees of freedom. There are 12 state variables: x,y,z indi-
cating the location of the quadcopter; vx,vy,vz indicating the
rate of change, i.e., speed, along these axes; �,�, indicating
the body position and l,q,r indicating the rotational speed of
the quadcopter along its three axes. The first three groups of
variables are with respect to the earth frame; the last group
of variables are with respect to the quadcopter’s body frame.
The rotation speed along body axis can be transformed into
the body position change rate using a simple transition ma-
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trix.
Quadcopter dynamics can be fairly accurately linearized

at the desired state with its continuous-time state equation
being given by ẋ(t) = Ax(t) + Bu(t) where A and B are
sparse 12 × 12 and 12 × 4 matrices, respectively [16].

The quadcopter has four propellers; each propeller is sep-
arately controlled. Its motion is managed by applying dif-
ferential controls to these; i.e., the actuators are the motors
driving the propellers. The execution of the control task per
propeller takes 5 ms. Model predictive control is used; the
control tasks seek to adjust controls to minimize the distance
of the actual plant state from the desired state, for that instant
in time [17]. The matrices A and B are:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −0.5 0 0 0 9.81 0 0 0 0
0 0 0 0 −0.5 0 −9.81 0 0 0 0 0
0 0 0 0 0 −0.5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0.06 0.06 0.06 0.06
0 0 0 0
0 0 0 0
0 0 0 0
1.5 0 −1.5 0
0 1.5 0 −1.5
0.1 −0.1 0.1 −0.1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In this case study, a neural network classifier is used to
determine the SSS and S1, S3 spaces; the approach taken
is the same as in [13]. The frame period is 5 ms, i.e., all four
control tasks have this period.

In the training of the deep Q-learning agent, the state
of the system includes the physical state of the quadcopter
as well as the latest control signals produced by the control
tasks, i.e. 16 variables. The neural network used here has
three hidden layers with size 16, 32 and 16, respectively.

The operating environment subjects the quadcopter to
disturbances which arrive as a Poisson process; the quad-
copter has to counteract these to retain its hovering position.
The value of each element in the disturbance is statistically
independent of the others and follows a normal distribution
with mean equal to half the peak amplitude and standard de-
viation set to 1∕6 of the peak amplitude. The disturbance
can be modeled as additive to the control applied to to the
quadcopter (both the control from the controller and the dis-
turbance are vectors of the same dimension, and the sum

Figure 2: TAAF Improvement

Figure 3: Energy Saving

is element wise.) In Figures 2 and 3, the legend eXrY in-
dicates an environmental disturbance peak amplitude (i.e.,
maximum value) of X with a Poisson process arrival rate of
Y per second. For example, e1r2 means a disturbance of
peak amplitude 1 arriving as a Poisson process with arrival
rate 2 per second.

Figure 2 shows the improvement in TAAF for the cores,
over the baseline algorithm. The x-axis indicates the envi-
ronment in which the controlled plant operates. We obtain a
9% to 11% improvement in lifetime; we stress that this is
added improvements to that already experienced with the
adaptive fault-tolerant baseline algorithm. The total energy
consumption savings over the baseline are shown in Figure 3.

In Figure 4, we compare the Integrated Squared Track-
ing Error exhibited by (a) the present algorithm and (b) the
baseline adaptive algorithm. The smaller this quantity the
better the quality of control. We can see that this algorithm
provides a noticeable improvement in control quality com-
pared to the baseline approach (while still reducing thermal
stress on the processors). For example, in the e1r1 case, al-
most 100% of the time, we have ISTE below 3 m2s, while
the corresponding number for the baseline algorithm is just
over 70%.

Overall, the present machine learning algorithm shows
performance advantages over the baseline algorithm. This
baseline, as we have pointed out, was itself shown to be a sig-
nificant improvement, with respect to energy consumption
and thermal stress, over the traditional non-adaptive fault-
tolerance approach for cyber-physical systems.
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Figure 4: (a) Distribution of QoC using Deep Q-learning (b) Distribution of QoC using control period based classifier

5.4. Case Study 2: Adaptive Cruise Control
This case study is adaptive cruise control (ACC) in a car

(called the following car) trying to maintain a safe distance
from the car immediately in front of it (called the leading
car) with varying speed. The Constant Time Gap (CTG)
algorithm is used [18]. CTG seeks to keep the distance be-
tween cars equal to a constant time gap multiplied by the car
speed, so that the inter-car separation linearly increases with
speed; such an approach is known to have advantages with
respect to keeping traffic flow smooth [19].

We follow the CTG cruise control model from [18]. Un-
der CTG, the desired acceleration of the following car, a, is
given by

a = −1
ℎ
(ṡ + s + ℎv) (1)

where ℎ is the time gap (input to ACC), s is the observed
separation between successive cars, and v the speed of the
following car. This acceleration is invoked when the follow-
ing condition is satisfied:

s ≥ ℎv + l + ṡ
2D

(2)
where l is the length of the leading car andD is the deceler-
ation during coasting (no throttle and no braking).

In this case study, we assume that the maximum acceler-
ation of the car is 3m∕s2 (maximum throttle) and −10m∕s2
(maximum braking). The following car should be able to
stop at least 10 meters behind the car in front if the latter
comes to a stop. For the Q-learning algorithm, the relevant
state of the following car is the current inter-car separation
from the one in front and its speed. Available periods for the
ACC task are 100 ms, 500 ms, and 1000 ms.

As before, the safe state space and S1, S3 subspaces areobtained from offline analysis and a classifier is used by a car
to rapidly identify which subspace it is in. The subspaces for
this case are shown in Figure 5.

Figure 6 shows a case where the leading car brakes hard
from 25 m/s to 11 m/s (before accelerating again). The ACC
task in the following car responds and quickly cuts its own
speed to maintain a safe inter-car separation (Figure 6(a)).
During the key period of its response, the TAAF improve-
ment of the current algorithm over the baseline ranges from

Figure 5: Case Study ACC: SSS and S1 volume

12% to 25% (Figure 6(b)). As the demands on the ACC
task drop with time, this improvement also dies away, as ex-
pected.

6. Conclusion
The current approach in CPSs is to update most actua-

tor settings at a constant period. However, this can result
in wasteful computation, releasing tasks for execution even
when these do not result inmeaningful improvements in plant
performance.

We have presented an algorithmwhich usesmachine learn-
ing techniques to adaptively dispatch control tasks in a cyber-
physical system to reduce thermal-induced aging of the pro-
cessors while retaining levels of application safety and per-
formance.

A machine intelligence approach allows the system to
adapt to fault-tolerant requirements that varywith the progress
of the controlled plant through its state-space. It has the ad-
vantage of not requiring accurate prior knowledge of the op-
erating environment since it uses experience to adapt its be-
havior. Experimental results have shown that this approach
provides additional savings on top of that achieved by using
adaptive fault-tolerance.
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