Utilization-Based Resource Partitioning for
Power-Performance Efficiency in SMT
Processors

Huaping Wang, Israel Koren, Fellow, IEEE, and C. Mani Krishna, Fellow, IEEE,

Abstract —Simultaneous multithreading (SMT) increases processor throughput by allowing parallel execution of several threads.
However, fully sharing processor resources may cause resource monopolization by a single thread or other misallocations, resulting
in overall performance degradation. Static resource partitioning techniques have been suggested, but are not as effective as dynamic
ones since program behavior does change over the course of its execution.

In this paper, we propose an Adaptive Resource Partitioning Algorithm (ARPA) that dynamically assigns resources to threads according
to changes in thread behavior. ARPA analyzes the resource usage efficiency of each thread in a given time period and assigns more
resources to threads which can use them more efficiently. Its purpose is to improve the efficiency of resource utilization, thereby
improving overall instruction throughput. Our simulation results on a set of 42 multiprogramming workloads show that ARPA outperforms
the traditional fetch policy ICOUNT by 55.8% with regard to overall instruction throughput and achieves a 33.8% improvement over Static
Partitioning. It also outperforms the current best dynamic resource allocation technique, Hill-climbing, by 5.7%. Considering fairness
accorded to each thread, ARPA attains 43.6%, 18.5% and 9.2% improvements over ICOUNT, Static Partitioning and Hill-climbing,
respectively, using a common fairness metric.

We also explore the energy efficiency of dynamically controlling the number of powered-on reorder buffer entries for ARPA. Compared
with ARPA, our energy-aware resource partitioning algorithm achieves 10.6% energy savings, while the performance loss is negligible.

Index Terms —Simultaneous multithreading, resource partitioning, power-performance efficiency

g

INTRODUCTION

Simultaneous multithreading (SMT) is an increasingly
popular technique for improving overall instruction
throughput by effectively countering the impact of both
long memory latencies and limited available parallelism
within a single thread [9], [12], [21], [26]. Through pro-
cessor resource sharing, SMT takes advantage not only
of the existing instruction level parallelism (ILP) within
each thread but also thread level parallelism (TLP)
among threads. In an SMT processor, all the resources
can be shared among threads, except for some resources
related to the architectural state which are separated to
maintain the correct state of each logical processor.
Traditionally, a fetch policy [23] determines which
threads enter the pipeline to share available resources.
Threads compete for resource access and there are no
individual restrictions on the resource usage of threads.
Unfortunately, some threads may occupy a dispropor-
tionately large share of system resources, and slow down
others. Statically partitioning resources among threads
has been suggested as a way to prevent a single thread
from clogging resources [18]. However, such techniques
are limited by the fact that different threads have dif-
fering requirements, and that these can vary with time.

o Huaping Wang, Israel Koren and C. Mani Krishna are with the De-
partment of Electrical and Computer Engineering, University of Mas-
sachusetts, Amherst, MA, 01003.

E-mail: {hwang, koren, krishna}@ecs.umass.edu

Recently, techniques have been proposed to dynamically
partition resources [7], [8]. Such techniques can lead to
significant improvements in performance.

Resource partitioning approaches [7], [8], [18] mainly
focus on certain critical resources which significantly
impact performance if clogged by some threads. Com-
monly, they apply the same partitioning principles to
all the resources. [18] studies the effect of partitioning
the instruction queue (IQ) or the reorder buffer (ROB).
DCRA [7] separately partitions queue and register en-
tries using the same sharing model. Hill-climbing [8] par-
titions the integer rename registers among the threads,
assuming that the integer IQ and ROB will be propor-
tionately partitioned.

In this paper, we present a new Adaptive Resource
Partitioning Algorithm (ARPA) [25] which concentrates
on partitioning the following shared queue structures:
instruction fetch queue (IFQ), IQ and ROB. We do not
partition the renaming registers since partitioning ROB
can effectively control the sharing of registers. Doing so,
however, would be quite easy. The physical implemen-
tation of ROB can either be one ROB per thread [20],
[23] or a single ROB shared by multiple threads [7], [8],
[18]. We assume a shared ROB structure for consistency
with previous resource partitioning schemes [7], [8],
[18]. Moreover, the shared ROB implementation allows
a more flexible ROB usage by the threads, resulting in
greater performance benefits. However, our partitioning

1.5 -|—e—art_mcf: Weighted IPC —=8— art_mcf: Energy

1.4 || —&— fma3d_mesa: Weighted |PC —¢— fma3d_mesa: Energy
13
1.2
11

0.9
0.8 +

ROB_96 ROB_128 ROB_160 ROB_192 ROB_224 ROB_256

Fig. 1. The normalized Weighted_IPC and Energy as a
function of ROB size for two workloads

algorithm can be applied to the divided ROB structure as
well. If the ROB is physically divided, we will constrain
the ROB usage by each thread. The difference is that for
a private ROB structure, the ROB usage of each thread
cannot exceed its allocated ROB subdivision, while for
a shared ROB structure, each thread can use more than
its equally partitioned share. We do not constrain the
usage of individual queues. Instead, we impose an upper
bound on the sum of IFQ and ROB entries assigned
to each thread. The total number of instructions, in
any thread, occupying these queues should not exceed
this bound. The IQ is partitioned proportionately. Since
a thread’s usage of different hardware resources are
dependent on each other, partitioning one resource will
indirectly control the usage of the other resources.

The goal of ARPA is to use resources more efficiently,
thus improving overall instruction throughput. ARPA
analyzes the resource usage efficiency of each thread
and assigns more resources to threads which can use
them more efficiently while still avoiding resource star-
vation of any thread. Our simulation results on a set
of 42 multiprogramming workloads show that ARPA
outperforms the traditional fetch policy ICOUNT, Static
Partitioning and the current best dynamic resource al-
location technique, Hill-climbing, by 43.6%, 18.5% and
9.2%, respectively, using a common fairness metric.

Architecture adaptation [27] has been effective in sav-
ing energy in single-thread processors by adaptively
activating and deactivating hardware resources in accor-
dance with the changes in the application’s behavior [2],
[5], [16]. In this paper, we study the benefits of applying
architecture adaptation to SMT processors. To the best
of our knowledge, this is the first attempt to explore
architecture adaptation in SMTs for saving energy.

Compared to the single-thread case, resource re-
quirements of multi-threaded workloads running on
an SMT processor have a higher variability. Figure 1
illustrates the significant variations in resource require-
ments of both memory- and computation-bound work-
loads. art_mcf consists of the two memory-bound bench-
marks; fma3d_mesa consists of the two computation-
bound benchmarks. When the ROB size increases from
96 to 256 entries, the Weighted-IPC (see equation 7 below)
of art_mcf improves by almost 30%, while there is almost
no performance improvement for fma3d_mesa. However,
the energy consumption increases linearly with the ROB
size for fma3_mesa. Considering both energy and perfor-

mance, a 96-entry ROB is ideal for fma3d_mesa, while a
256 entry configuration is better for art_mcf. Therefore,
architecture adaptation may benefit SMT processors. We
therefore, incorporate architecture adaptation into ARPA
to adaptively control the number of powered-on re-
sources and partition resources among threads targeting
both performance and energy. Our experimental results
show that with architecture adaptation, ARPA achieves
10.6% energy savings, while the resulting performance
loss is negligible.

The rest of this paper is organized as follows. In the
next section, we describe related work. In Section 3 we
present our adaptive resource partitioning algorithm and
describe its implementation. Our evaluation methodol-
ogy is presented in Section 4 followed by numerical
results in Section 5. Section 6 concludes the paper with
a summary of its contributions.

2 RELATED WORK

Prior resource partitioning related work can be catego-
rized into three groups: fully flexible resource distribu-
tion [6], [10], [14], [23], static resource allocation [15], [18]
and dynamic resource partitioning [7], [8].

Tullsen et al. [23] have presented several fetch policies
that determine how threads are selectively fetched to
share a common pool of resources. RR is their simplest
policy; it fetches instructions from all threads in a Round
Robin order, disregarding the resource usage of each
thread. ICOUNT is a policy that dynamically biases
toward threads which will use processor resources most
efficiently, thereby improving processor throughput. It
outperforms RR and is easy to implement. However,
ICOUNT cannot prevent some threads with a high L2
miss rate from being allocated an excessive share of
resources. STALL and FLUSH [22] are two techniques
built on top of ICOUNT to ameliorate this problem.
STALL prevents a thread with pending L2 misses from
entering the pipeline. FLUSH, an extension of STALL,
flushes all instructions from such a thread: this obviously
has an energy overhead. FLUSH++ [6] combines FLUSH
and STALL. Instead of preventing all threads with long-
latency loads from entering the pipeline, the Memory-
Level Parallelism (MLP)-aware fetch policy [30] assigns
as many resources as needed to MLP-intensive threads
in order to fully exploit the high level of MLP and only
prevents threads with isolated long-latency loads from
being allocated more resources.

Static resource partitioning [15], [18] evenly splits
critical resources among all threads, thus preventing
resource monopolization by a single thread. However,
this method lacks flexibility and can cause resources to
remain idle when one thread has no need for them, even
if other threads could benefit from additional resources.

DCRA [7] is a dynamic resource sharing algorithm.
Threads are assigned resource usage bounds and these
are changed dynamically. The bound is higher for
threads with more L1 Data cache misses. However,

Running a fixed

Equally Partitioned epoch Sze

Sart

Resources

\A 4

Adaptive

Resource Utility partitioning

. New Partition
Analysis

Fig. 2. A high-level description of the ARPA algorithm

DCRA does not work well for applications with high
data cache miss rates and extremely low baseline per-
formance. Allocating more resources to such threads
improves their performance by very little and comes at
the expense of decreased performance of other resource-
starved threads. Hill-climbing [8] uses performance feed-
back to direct the partitioning. This learning-based algo-
rithm starts with equal partitioning, then moves an equal
amount of resources from all the other threads to a “trial”
thread, where each one of the existing threads serves as
a "trial” tread at its turn. Hill-climbing appears to be the
best resource partitioning technique currently available.
Like DCRA [7] and Hill-climbing [8], our algorithm,
ARPA [25], partitions resources dynamically. However,
ARPA’s analysis of program behavior results in a more
effective use of resources.

Architecture adaptation [27] techniques which have
been proposed for single-thread processors to save en-
ergy are usually applied to power-hungry hardware
components such as IQ, Load-Store Queue (LSQ), ROB,
register file and caches. Energy savings are achieved at
the cost of a small performance degradation. We com-
bine in this paper architecture adaptation with resource
partitioning, targeting both performance and energy.

In [5], [11], the authors examine the power saving
potential of an adaptive 1Q structure. They divide the IQ
into separate equal-sized chunks, allocated/deallocated
dynamically according to the prevailing ILP. Power
savings are achieved by turning off unused chunks.
Abella ef al. [1] propose a power-efficient adaptive resiz-
ing scheme for the IQ and register file. Their scheme is
based on monitoring how much time instructions spend
in both the IQ and ROB and limits their occupancy
based on these statistics. Ponomarev et al. [16] present
a mechanism to dynamically and independently resize
the IQ, ROB and LSQ. Downsizing is driven by directly
using sampled estimates of their individual occupancies.
Upsizing is more aggressive using the relative rate of
blocked dispatches to limit the performance penalty.

In [20], the authors propose an adaptive ROB scheme
for SMT processors. Allocation/Deallocation of the ROB
entries to a thread is based on whether the thread
is in a commit-bound or an issue-bound phase. The
purpose of ROB adaptation is to prevent threads from
clogging shared resources thus improving performance.
In contrast, our architecture adaptation of ARPA aims to
reduce the energy consumption in addition to improving
the performance.

3 ARPA: ADAPTIVE RESOURCE PARTITION-
ING ALGORITHM

Existing dynamic resource allocation techniques con-
sider indirect feedback (e.g., L1 data cache misses [7];
pressure on shared resources [20], etc) to optimize per-
formance or are based on periodic “trials” to select
the best partitioning [8]. Instead of using indirect feed-
backs [7], [20] or exhaustive “trials” [8], ARPA allocates
resources based on the resource usage efficiency of each
thread. By assigning more resources to threads which
can use them more efficiently, ARPA can not only im-
prove the overall resource usage efficiency, but also ame-
liorate different kinds of clogging, thereby improving the
overall instruction throughput.

3.1 Framework

Figure 2 shows a high-level flowchart of ARPA. We
divide the whole program execution into fixed-sized
epochs (measured in processor cycles) and start with
equally partitioned resources among the threads. After
each epoch, the system analyzes the current resource
usage to determine whether the threads have used their
allocated resources efficiently in this epoch. Its resource
partitioning decision is driven by these analyses. The
analysis and partitioning process is repeated every epoch
until the end of the program.

3.2 Resource Utilization Analysis

Our resource utilization analysis is carried out at the end
of each epoch and is based on the following metric.

3.2.1 Metric of Usage Efficiency

We use Committed Instructions Per Resource Entry
(CIPRE) to represent the usage efficiency of processor
resources in each epoch. CIPREs in successive epochs
are similar to each other if there are no significant
program phase changes. The CIPRE metric can express
two different characteristics: (a) the usage efficiency of
all processor resources and (b) the usage efficiency of
only the resources that are allocated to a specific thread.

Note that a thread with a higher CIPRE does not
necessarily have a higher IPC. Consider, for example,
two threads A and B that run simultaneously with 50
and 20 queue entries, respectively, and suppose that
thread A commits 2000 instructions and thread B com-
mits 1000 instructions during an epoch of length 1000
cycles. Therefore, the IPC of thread A is 2 and that of
thread B is 1. The CIPRE of thread A is 2% = 40 while

Y v Aggregate with adjustment
Y, +Y, +A(71——2) -
1 2 R
@ LR A e S
S L(X1+A)— - > |
g X, R |
2 Thread1 .7~ =~ Aggregatd with
= YVW—-——- — g
3 1 AX, | I no adjustI ent
é L / e — : |
5 v K 7T I |
o X*Z(X2+A)_"_';.,' 7.) : | :
2
“Threadz) || !
X, =D X; Xy Xy +A x1+X2> X
Resources

Fig. 3. An example illustrating the CIPRE changes after
epochn +1

the CIPRE of thread B is 133° = 50. Because the CIPRE
of B is greater than that of A, we say that thread B
is more productive in this epoch. Resources allocated
to B contribute more per unit to system performance
than resources allocated to A although the IPC of A is
greater than that of B. Therefore, giving more resources
to the higher-CIPRE thread does not necessarily mean

allocating the high-IPC thread more resources.

3.2.2 The Partitioning Process

ARPA follows an adaptive partitioning strategy and
adjusts the number of resources allocated to threads
based on their CIPRE metric. In every epoch a thread
with a greater CIPRE value will take some resources
from a thread with a lower CIPRE until the CIPREs
of the two threads are close to each other. Through
adaptive resource tuning, all threads will use their allo-
cated resources with approximately equal efficiency, thus
improving the usage efficiency of all resources. However,
there is a possibility that threads with lower CIPRE
values will lose most of their resources but their CIPREs
will still be lower than that of the most efficient thread,
resulting in resource starvation. ARPA avoids this situ-
ation by assigning each thread a minimum number of
resources no matter what its CIPRE is.

In order to explain ARPA better, we use a two-thread
example to illustrate the tuning process. Figure 3 shows
the change in the CIPRE value when a program com-
pletes epoch n + 1. X; and X, are the numbers of
resource entries allocated to threads 1 and 2, respectively,
during epoch n. Y; and Y5 are the numbers of committed
instructions of threads 1 and 2, respectively, during
epoch n. A is the number of resource entries that a
thread can transfer to another thread in any one epoch.
The CIPREs of threads 1 and 2, and the CIPRE of all
processor resources at the end of epoch n are as follows.

Y,

CIPRE; =
X;

i=1,2 1)

CIPRE™ Vit Y

=12 2
overall Xl +X2 ()

Assuming that CIPRE, > CIPRE in this example,
it is easy to show that

CIPRE, < CIPRE"")

erall

< CIPRE; ©)

Since thread 1 achieves a more efficient usage of the
allocated resources in epoch n, ARPA will transfer to it A
resources from thread 2 in the next epoch. That is to say,
thread 1 will be assigned X; + A resource entries while
thread 2 will be restricted to X» — A entries in epoch
n + 1. If both threads still use their allocated resources
with the same efficiency as in epoch n, the CIPRE of the
total resources in epoch n + 1 will be:

NAh AR -F)
X1+ X5
Compared with the no-adjustment case which has the

same CIPRE as in (2) after epoch n+ 1, the CIPRE of all
resources is increased by

CIPRE™Y) —

overall —

CIPRE"V 1+ % (i~ x2) ()

overall Xl +X2 - Xl +X2

As long as CIPRE; is greater than CIPREj, re-
sources continue to be transferred from thread 2 to
thread 1 in subsequent epochs subject to the constraint
that each thread has at least its specified minimum allo-
cation. The overall CIPRE keeps increasing and getting
ever closer to CIPRE; (but will never exceed CIPRE7).
That is to say, the line for Aggregate with adjustment is
getting ever closer to the line for Thread; in Figure 3.

As thread 1 obtains more resources, its resource usage
efficiency, i.e., CIPRE;, will tend to decrease. At the
same time, CIPRE, will increase gradually (as the
number of resources allocated to a thread reduces, the
usage efficiency of the remaining resources will increase).
In one situation, CIPRFE;, CIPRE> and CIPRFE will be
getting ever closer (the lines for T'hread,, Threads and
Aggregate with adjustment in Figure 3 will nearly overlap).
Both threads can use the allocated resources at the same
efficiency and the CIPRE of all resources reaches its
optimal value. Another situation is that the CIPRE value
of thread 1 is still greater than that of thread 2 even
when thread 1 already took all the resources it could
from thread 2. As mentioned previously, ARPA assures
each thread a certain minimum number of resources to
avoid resource starvation or under-utilization.

Although the objective of ARPA is to improve the effi-
ciency of resource utilization, thereby improving overall
instruction throughput, our experimental results (in Sec-
tion 5) show that ARPA also provides a good balance
between throughput and fairness.

3.3 Architecture Adaptation in ARPA

The CIPRE metric used by ARPA to drive the resource
partitioning is a “relative” concept (compared to other
threads sharing the resources). It is possible that the
absolute resource usage is very low. In such cases, those

additional resources do not contribute to performance
and can be powered off in order to save energy. In this
section, we incorporate architecture adaptation [27] into
ARPA to adaptively control the number of powered-on
resources and partition resources among threads target-
ing both performance and energy.

We focus on the dynamic instruction scheduling logic
(IQ, LSQ, ROB and renaming registers) to perform ar-
chitecture adaptation, since these are the most power-
hungry components, consuming between them about
55% of the total power dissipation [28]. In some designs
like Pentium III, the ROB is integrated with the phys-
ical registers to support register renaming. The ROB'’s
power consumption can be more than 27% of the total
power [17]. Adaptation techniques can be applied either
to only one resource such as IQ [5] or ROB [17], or
to multiple resources simultaneously [1], [16] to reduce
energy consumption. We attempt to control the number
of powered-on ROB entries which act as the renaming
registers as well. By adaptively tuning the number of
ROB entries, instructions can be fetched as needed.
This not only reduces the resource competition among
threads but also achieves significant energy savings in
units like IQ logic by avoiding unnecessary wake-up and
selection operations.

3.3.1 Multi-banked Structure

We assume a shared ROB structure for consistency with
previous resource partitioning schemes [7], [8], [18] al-
though our scheme can be applied to the divided ROB
structure as well. The assumed shared ROB implementa-
tion is a single buffer with multiple pairs of head and tail
pointers, one pair for each thread. Instructions for each
thread are dispatched to the free ROB entries after that
thread’s tail pointer in program order and are committed
starting from its head pointer, thus maintaining logical
correctness. The occupied ROB entries are marked with
thread IDs which are needed for the commit logic to
distinguish among the different threads. The commit
logic checks the entries after each thread’s head pointer
to identify whether to commit the instructions or not.
Although the commit complexity of a shared-ROB imple-
mentation is higher than that of a divided ROB, it allows
a more flexible ROB usage by the threads, resulting in
greater performance benefits.

In order to dynamically control the number of
powered-on ROB entries to save energy, a large ROB
is partitioned into independent banks. Each bank has
its own precharger, sense amplifiers and input/output
drivers and can be powered on or off to save energy
according to changes in program behavior. To power
off a bank, its bypass switch is turned on and the
power supply to the bank is disabled; to power on a
bank, the bypass switch is turned off and the power
supply is enabled. Note that a bank can be powered off
only after all the instructions residing in it have been
committed. We define the power-off latency of a bank as
the time duration from receiving the deallocation signal

to when the power supply is disabled. Once a bank
has been deallocated, instructions cannot be dispatched
to it anymore. A detailed hardware implementation is
described in [16].

Banks can be selected for deallocation in two ways.
The approaches in [16], [20] deallocate banks from the
highest to the lowest index sequentially. Such an in-
order policy may have high power-off latencies. We can
also deallocate banks according to their expected power-
off latencies. It is obvious that an empty bank has the
shortest power-off latency while a bank with tail pointers
has the longest latency since it must wait until the tail
moves out of the bank and all the instructions in it have
been committed. Here, we deallocate banks according to
their expected power-off latencies. Our first choice is to
power off empty banks. If none can be found, we pick
a bank with only head pointers. If neither category is
available, we power off a bank with no pointers. If none
of these is available, we choose banks with tail pointers.
On average, it costs tens of cycles to power-off a bank
after receiving the deallocation signal. We have in our
experiments taken this overhead into consideration.

3.3.2 ROB Adaptation

The architecture adaptation in ARPA consists of upsizing
and downsizing the available ROB space as outlined
below.

Upsizing: During each epoch, we count the number
of full ROB occupancy cycles. If the ROB is fully oc-
cupied in most cycles, it means that threads may face a
shortage of ROB entries and we then turn on a powered-
off bank and allocate additional entries to the thread
with the highest CIPRE since this thread can use the
resources more efficiently.

Downsizing: When the number of full ROB occu-
pancy cycles is low in an epoch, it does not necessar-
ily mean that resources are redundant and should be
downsized. Some threads may still need the available
resources to improve performance. We coordinate with
other hints to decide whether to downsize or only repar-
tition resources.

Although ARPA’s goal is to assign more resources to
the thread with the highest CIPRE, it is possible that this
thread already holds enough resources, and additional
resources will not be used as efficiently and can instead
be powered off to save energy. To determine this we
check whether it is rare for the in-flight instructions (the
instructions in the IFQ and ROB) of this thread to use
up all the allocated entries. If this is the case, we will
not allocate additional resources to this thread even if its
CIPRE value is the highest among all the threads. These
resources will instead be powered off to save energy.

3.4 The Algorithm

Figure 4 presents the pseudocode of ARPA. The code in
the shaded box has been added for architecture adap-
tation. We can see that the architecture adaptation is

#define num

#define Cominsts(x)

#define max(A,n)

#define A

#define NumOffBank

#define Bank_size

For every epoch cycle{
for(tid = 0; tid < num; tid ++)

CIPRE[tid] = ComInsts(tid);

Ref tid = max(CIPRE, num); /* select reference thread */
if(full_ROB >= Thresholdl && NumOffBank >=1){

Number of running threads

Compute CIPRE[x]

Get index of the max vauein array A[0:n]
Number of queue entries moved at each epoch
Number of powered-off banks

Number of ROB entries per bank

/* compute CIPRE of each thread */

NumOffBank --; /* power on a ROB bank */
Partition[Ref_tid] += Bank_size;}
else{ /* power off a ROB bank */

if(full_ROB < Threshold1 && full_in_flight[Ref_tid] <= Threshold2){
for(tid = 0; tid < num; tid ++)

if(tid = Ref_tid)
Partition[tid] -= Bank_size/(num-1);
NumOffBank ++;}
elsg{ /* resource reallocation */

for(tid = 0; tid < num; tid ++){
Partition[Ref_tid] += A;
Partition[tid] -= A; }}}}

Fig. 4. Pseudo-code of ARPA with architecture adaptation

independent of the basic ARPA algorithm and can be
easily integrated into ARPA in order to save energy.

The Comlnsts function in Figure 4 computes the CIPRE
value of each thread at the end of an epoch: this is the
number of committed instructions divided by the total
number of IFQ and ROB entries allocated to the thread
in the current epoch. We then compare the CIPRE of each
thread and select the thread with the largest CIPRE as
the reference thread (if the CIPREs of two threads are
equal, we randomly select one of them).

Whether architecture adaptation or only resource
repartitioning (basic ARPA) is performed, is determined
by two metrics: full ROB, which is the number of cy-
cles when the ROB is fully occupied during an epoch,
and full_in_flight for the reference thread, which is the
number of cycles when the in-flight instructions of the
reference thread fully occupy all the allocated entries
during an epoch. If full ROB is equal to or greater
than Thresholdl and there are still powered-off banks,
upsizing is performed. The new ROB entries will be
allocated to the reference thread since it can use addi-
tional resources most efficiently. If full ROB is less than
Thresholdl and full_in_flight of the reference thread is
less than or equal to Threshold2, the algorithm turns
off the ROB entries which would be allocated to the
reference thread. We set the total number of entries taken
from other threads to be equal to the bank size (For a 2-
thread workload, a number of Bank_size entries from the
non reference thread will be powered off. For a 4-thread
workload, integer part of Bank_size/(num-1) resource
entries are taken from each non reference thread and
the still remaining entries are randomly taken from any
non reference thread). In other cases, the basic ARPA will
be performed: the reference thread can take A entries of
IFQ and ROB from every other thread. IQ entries are
also proportionately reassigned.

Reorder Buffer
Fetch Queue
Decode, ROB
AT e |-
|
PR S 4 2N v

Reading Old Partitioning Value

Undatina New Partitionina Value

Fig. 5. An implementation of ARPA with architecture
adaptation

3.5 Implementation of ARPA

Figure 5 shows the required processor modifications for
implementing ARPA with architecture adaptation. The
top layer in Figure 5 is the baseline SMT processor
structure used in our study. We do not modify this part.

The middle layer lists the counters and compara-
tors we add to the processor for each thread: these
will be used for resource partitioning and architecture
adaptation. The counters needed for resource partition-
ing are marked with dashed-line boxes. We need Re-
sources_Occupancy_Counters per thread to monitor the
in-flight instructions (overall IFQ and ROB occupancy)
and IQ occupancy for each thread. To monitor the in-
flight instructions of a thread, the counter will be in-
cremented as instructions are fetched and decremented
as instructions are committed. To monitor the IQ usage,
the counter will be increased as instructions are dis-
patched into IQ and decremented as instructions leave
the 1Q. The Committed_Instructions_Counters are used to
count the committed instructions for each thread in
the current epoch. A Committed_Instructions_Counter will
be reset to zero at the start of each epoch while an
Resources_Occupancy_Counter will not be reset during
the execution of a thread. We use two comparators per
thread to determine if the current resource usages of the
thread have already exceeded its specified bound; if so,
a throttling signal will be generated to throttle further
fetching for this thread.

The counters in the solid-line boxes have been added
for architecture adaptation. We need a Full-ROB_Counter
to monitor the full ROB usage rate in an epoch. This
counter will be incremented by one whenever the dis-
patch stage notices that the ROB is full in that cycle.
The Full-in-flight_Instructions_Counters are used to count
the number of full occupancy of in-flight instructions for
each thread. If the comparator shows that the number
of in-flight instructions of the thread exceeds its bound,
the Full-in-flight_Instructions_Counter of this thread is
incremented by one.

The bottom layer is the implementation of the al-
gorithm. At the end of each epoch, we execute the
architecture adaptation or allocation steps. The resources
upper bound assigned to each thread is saved in its
Partition Register. At the start of the program, this bound

TABLE 1

Baseline parameters

[Parameter [Value
IFID,IS Width 8-way
Queue size 32 TFQ, 80 1Q, 64(128) LSQ

Functional Units

6 Int, 4 FP, 4 Id /st
2 Int Mul/Div, 2 FP Mul/Div

Physical Registers

256 Int, 256 FP

Reorder Buffer size

256 entries

BTB

2048 entries, 4-way associative

Branch Prediction

4K entries gshare,
10-bit global history

L1 D-cache

128KB, 4-way, writeback

L1 T-cache

128KB, 4-way, writeback

Combined L2 cache

1MB, 4-way associative

L2 Cache hit time

20 cycles

Main memory hit time

300 cycles

is set to be equal for every thread. In every epoch, the
Partition Registers will be read and the CIPRE computed
for each thread. Based on this value, a new partition
will be generated and the Partition Registers updated.
As was done in [8], we suggest to implement this in
software. At the end of each epoch, an interrupt signal
can be sent to one of the application threads, using its
hardware context to execute the partitioning algorithm.
The overhead of running the algorithm is taken into
account in this paper in the same way as was done in [8].

4 EVALUATION METHODOLOGY
4.1 Configuration

Our simulator is based on Simplescalar [4] for the Alpha
AXP instruction set with Wattch [3] power extensions.
We modified SimpleScalar to support SMT processors.
Moreover, we have decoupled the centralized Register
Update Unit structure adopted by SimpleScalar and have
separate IQ, ROB and physical registers. Our baseline
processor configuration is shown in Table 1. We assume
64 LSQ entries in the baseline architecture. In order to
demonstrate the efficiency of ARPA’s ROB adaptation,
we also increase the number of LSQ entries to 128 to
ensure that the ROB entries are not a redundant resource
compared to others. A resource sensitivity analysis is
presented in Section 5.4.2. Other detailed features are
based on the SMT architecture of Tullsen et al. [23].
Wattch is used to measure the energy consumption and
has been retuned for state-of-the-art technology scaling
parameters; we use a 45nm, 4GHz, 1.2v process.

Our simulator adds support for dynamic partitioning
of the IFQ and ROB. We keep counters for the number
of in-flight instructions per thread, allowing a thread to
fetch instructions as long as its in-flight instructions have
not exceeded its assigned limit. The counter for in-flight
instructions is similar to that in [23] for implementing
the ICOUNT fetch policy. When the number of in-flight
instructions exceeds the assigned bound, we apply fetch
throttling [13], [24] to this thread until it releases some

TABLE 2
22 SPEC CPU2000 benchmarks used in this study.

App #skipped | Type App #skipped | Type

(in (in

millions) millions)
mcf 4000 | MEM || gcc 1000 | ILP
lucas 2000 | MEM || wupwise 2500 | ILP
applu 500 | MEM || vortex 0.5 | ILP
equake 3400 | MEM || gap 65 | ILP
twolf 400 | MEM || mesa 250 | ILP
vpr 1150 | MEM || perlbmk 500 | ILP
art 2900 | MEM || gzip 40 | ILP
swim 250 | MEM || crafty 10 | ILP
parser 250 | MEM || bzip2 200 | ILP
ammp 2600 | MEM || eon 3 | ILP
apsi 30 | ILP fma3d 3000 | ILP

of its entries or is allocated more resources. The IQ is
partitioned proportionately.

In order to support architecture adaptation, we main-
tain a counter for the number of cycles during which
the ROB is full and another for the number of cycles
when in-flight instructions fully occupy the allocated
resources per thread. We modified Wattch to calculate
the energy consumption of this adaptive ROB structure.
We use the ICOUNT fetch policy to fetch instructions.
Other parameters are set as shown in Table 1.

4.2 Workloads

Table 2 lists the benchmarks used in our simulations.
All benchmarks are taken from the SPEC2000 suite
and use the reference data sets. We use the pre-
compiled alpha binaries produced by Weaver (source:
www.simplescalar.com); these binaries are built with the
highest level of compiler optimization. From these 22
benchmarks, we created multiprogrammed workloads
following the methodology proposed in [7], [8], [22].
SPEC benchmarks are first categorized into memory-
bound and computation-bound programs (represented
by MEM and ILP, respectively, in Table 2). Based on
the MEM or ILP character of different benchmarks, we
created our multiprogrammed workloads with 2-thread
and 4-thread combinations as shown in Table 3. All
the workloads are labelled to indicate the character and
number of threads, as well as an index to distinguish
one workload from another. MIX workloads select half
of their threads from ILP and the other half from MEM.
We selected simulation regions of different benchmarks
following the approach proposed in [19] as shown in
Table 2 and stopped simulations after running 400 mil-
lion instructions. This simulation methodology is widely
used by other researchers [7], [8].

4.3 SMT Performance Metrics

Measuring the performance of a single thread is simple,
but for multithreaded workloads things become more
complicated. We need to consider not only the overall

TABLE 3
Benchmark combinations based on cache behavior of threads.

Name Combinations Name Combinations Name | Combinations

MEM.2.1 | applu, ammp MIX2.1 | applu, vortex ILP2.1 | apsi, eon

MEM.2.2 | art, mcf MIX.2.2 | art, gzip ILP2.2 | fma3d, gcc

MEM.2.3 | swim, twolf MIX.2.3 | wupwise, twolf ILP2.3 | gzip, vortex

MEM.2.4 | mcf, twolf MIX.2.4 | lucas, crafty ILP2.4 | gzip, bzip2

MEM.2.5 | art, vpr MIX.2.,5 | mcf, eon ILP2.5 | wupwise, gcc

MEM.2.6 | art, twolf MIX.2.6 | twolf, apsi ILP2.6 | fma3d, mesa

MEM.2.7 | swim, mcf MIX.2.7 | equake, bzip2 ILP2.7 | apsi, gcc

MEM4.1 | ammp, applu, art, mcf MIX4.1 | ammp, applu, apsi, eon ILP4.1 | apsi, eon, fma3d, gcc
MEM.4.2 | art, mcf, swim, twolf MIX.4.2 | art, mcf, fma3d, gcc ILP4.2 | apsi, eon, gzip, vortex
MEM.4.3 | ammp, applu, swim, twolf | MIX.4.3 | swim, twolf, gzip, vortex | ILP4.3 | fma3d, gcc, gzip, vortex
MEM.4.4 | mcf, twolf, vpr, parser MIX.4.4 | gzip, twolf, bzip2, mcf ILP4.4 | gzip, bzip2, eon, gcc
MEM.4.5 | art, twolf, equake, mcf MIX.4.5 | mcf, mesa, lucas, gzip ILP4.5 | mesa, gzip, fma3d, bzip2
MEM.4.6 | equake, parser, mcf, lucas MIX4.6 | art, gap, twolf, crafty ILP4.6 | crafty, fma3d, apsi, vortex
MEM.4.7 | art, mcf, vpr, swim MIX.4.7 | swim, fma3d, vpr, bzip2 ILP4.7 | apsi, gap, wupwise, perlbmk

instruction throughput of the processor but also the fair-
ness accorded to each thread running on the processor.
Several metrics have been proposed to measure SMT
performance [8], [14], [22], [29]. In order to provide a
comprehensive comparison of the different algorithms,
we show in our paper the throughput and fairness
results quantified by each of the following four metrics.

S IPC;
T

The Avg_IPC metric [8], [14] only quantifies the overall
throughput and does not take fairness into considera-
tion. Therefore, using this metric may boost the overall
IPC by starving some threads.

Avg _IPC = (6)

IPC;
Z SzngleIPC
— 7 ¢

The Single_ WIPC metric [8], [14] weighs the IPC of
each thread when running on an SMT with respect to
its IPC if run alone, and reflects the fairness accorded to
each thread. The drawback of this metric is that it does
not assign any importance to the overall throughput
and may bias against a thread with very low IPC. For
example, consider thread A with single thread IPC of 3.0
and thread B with single thread IPC of 0.1 running simul-
taneously, with thread A achieving IPC=1.5 and thread
B IPC=0.09 with the ICOUNT fetch policy, while Static
Partitioning achieves IPC=2.1 and IPC=0.06, respectively.
The Single. WIPC of Static Partitioning is lower by 7.1%
than that of ICOUNT although the overall throughput
of Static Partitioning is much better.

Single WIPC =

T

HMean_WIPC = SEDEA ®)

I1PC;

The HMean_WIPC metric [8], [14] is an efficient com-
plement to the Single_ WIPC metric. It takes both overall
throughput and fairness into consideration.

Z IPCrew,i
TPCyqsetine,i

Baseline_ WIPC = T

)

The Baseline_ WIPC metric [22] weighs the IPC of each
thread with respect to its IPC in the baseline or reference
scheme. It reflects the change in IPC of each thread for
the optimized scheme compared to the baseline scheme.
Regardless of how each thread would run in a single
thread mode, Baseline_ WIPC benefits from any thread
running faster.

5 RESULTS AND ANALYSIS

We first illustrate the adaptive nature of ARPA through
an example. Then, we compare ARPA with other
schemes using the above four metrics across the 42 work-
loads; we also show the energy and performance benefits
of integrating architecture adaptation into ARPA. Finally,
we provide a sensitivity analysis of ARPA to its main
parameters and the number of queue entries.

—&—twolf
1200 —®—apsi
1000 - - -
W 800
£ o0
G 400
200
o ‘
1 10 19 28 37 46 55 64 73 8 91 100
epoch
8 300
£ 250
3 200
T 150
< 100
o
e 50
2 o
1 10 19 28 37 46 55 64 73 8 91 100
epoch
(®)

Fig. 6. An example illustrating the adaptive nature of
ARPA for epochs 1 to 100.

5.1 Adaptivity of ARPA

Figure 6 illustrates the adaptive nature of the resource
partitioning by the basic ARPA (without architecture

CIPRE

1501 3001 4501 6001 7501 9001
epoch

10501 12001

Num of Queue Entries

10501 12001

1 1501 3001 4501 6001 7501 9001
epoch

®)

Fig. 7. An example illustrating the adaptive nature of
ARPA.

adaptation). twolf, a memory-bound thread, and apsi, a
computation-bound thread, are running simultaneously.
Figure 6(a) displays the CIPRE changes for these two
threads for epochs 1 to 100 when using ARPA, while
Figure 6(b) shows the resulting partitioning of queue
entries between the two threads.

In the first epoch, we equally partition resources to
twolf and apsi, as indicated in Figure 6(b). The CIPRE
of apsi is higher than that of twolf in this epoch, and
consequently in epoch 2, apsi takes A = 2 queue entries
from twolf. We can see that the CIPRE of apsi is larger
than that of twolf until epoch 49. Therefore, apsi takes 2
queue entries from twolf at each epoch until epoch 49.
The allocated number of queue entries of apsi increases
linearly while the allocated number of queue entries of
twolf decreases linearly during this time period. Now the
CIPREs of the two threads have become close to each
other in epoch 49. In other words, the two threads are
using their allocated resources with similar efficiency.
Between epoch 49 and 63, a small number of queue
entries move back and forth between the two threads.
At epoch 64, the number of queue entries allocated to
twolf reaches its minimum of 36. Although the CIPREs
of apsi are higher than those of twolf most of the time
after epoch 64, apsi cannot take additional resources from
twolf in order to prevent resource starvation. The number
of queue entries becomes stable for each thread and the
resources allocated to each thread will remain in this
setting if no program phase changes occur.

Figure 6 illustrates the tuning process over a short time
period (100 epochs). In order to understand the resource
adaptation process during a long program execution
time, we show in Figures 7(a) and 7(b), respectively,
the CIPRE changes and the corresponding resource al-
locations of these two threads for the entire program
execution that lasts 12206 epochs.

The transitions from one stable phase to the next only
take a few tens of epochs and there are different stable

resource allocation phases during the execution of the
workload combination of twolf and apsi as indicated in
Figure 7. The first stable phase comes after the resource
tuning process shown in Figure 6, and is short. The
second stable phase is also short compared to the fol-
lowing five phases; during this phase, the numbers of
resources allocated to each thread are close to each other.
In the third tuning process phase, the CIPREs of twolf
are higher than those of apsi in most epochs, allowing
twolf to own more resources to improve resource usage
efficiency. Similar tuning processes happen at the start
of the next three stable phases. In the final stable phase,
although the CIPRE of apsi is larger than that of twolf all
the time, resource allocations are fixed since the number
of queue entries of twolf has reached the low-bound
limit. Clearly, a static resource partitioning can not satisfy
these varied program phases. ARPA retunes the resource
allocation whenever program phase changes occur.

5.2 Performance Results

Figure 8 compares the Single WIPC of ARPA without
architecture adaptation to those of other schemes across
the 42 workloads listed in Table 3. ICOUNT [23] is a
traditional fetch policy and is therefore suitable as a
baseline scheme for comparison. Static Partitioning [18]
assigns resources equally to each thread for the entire
program execution. We compare ARPA with it to see
the benefits of an adaptive scheme over a non-adaptive
one. Hill-climbing [8] has been so far the best resource
partitioning scheme achieving significant improvements
over previous schemes like STALL/FLUSH++ [6], [22].
To avoid a cluttered figure, we only choose ICOUNT,
Static Partitioning and Hill-climbing for comparison. The
epoch size we used in these experiments is 32K cycles
and the A size is 2 queue entries. ARPA is not sensitive
to the size of the epoch and A as long as they are
not too large. The number of LSQ entries we used is
64. We allow each thread to keep at least a quarter of
the equally partitioned queue entries to avoid resource
starvation. (We ran experiments varying the minimum
number of resource entries that each thread should keep
and concluded that 25% of the equally partitioned queue
entries is a good choice).

From Figure 8 we see that ARPA outperforms
ICOUNT and Static Partitioning significantly in MEM
and MIX workloads. For some workloads like MIX.2.5
and MIX.4.2, the improvement of ARPA over ICOUNT
and Static Partitioning is more than 50%. The ICOUNT
policy gives priority to threads which move faster
through the pipeline, i.e., threads which have an effi-
cient resource usage. However, ICOUNT cannot con-
strain threads from clogging resources, resulting in poor
performance when this happens. Because the memory-
bound threads in MEM and MIX workloads more read-
ily clog resources than do computation-bound threads
in ILP workloads, we can see from Figure 8 that the
improvement in MEM and MIX workloads is much

10

\ O ICOUNT

| Satic O Hill-Climbing O ARPA ‘

mSatic OHil-Gimbing OARPA ‘

Fig. 8. Single_WIPC of different schemes for 42 workloads.

greater than that in ILP workloads for both 2-thread
and 4-thread workloads. Static Partitioning can prevent
resource monopolization by a single thread. This charac-
teristic benefits especially resource-tight situations, since
the possibility of resource monopolization increases
when the number of resources reduces. From Figure 8
we can see that Static Partitioning achieves higher im-
provement over ICOUNT in 4-thread workloads than in
2-thread workloads. However, Static Partitioning does
not consider program phase changes and the needs of in-
dividual threads. As a result, the performance improve-
ment of ARPA over Static Partitioning is considerable.

Hill-climbing [8] is the best-performing published par-
titioning algorithm. From Figure 8, we can see that Hill-
climbing significantly outperforms ICOUNT and Static
Partitioning in MIX workloads. Using the Single. WIPC
metric, Hill-climbing achieves an 8.1% improvement
over ICOUNT (close to the results published in [8]).
However, Hill-climbing does not analyze the behavior of
individual threads and makes its decisions based only on
periodic trials. As with any periodic search procedure,
Hill-climbing not only takes considerable learning time,
especially if the number of shared threads is big, but
also may get stuck in local maxima if multiple peaks
exist. ARPA assesses the resource usage efficiency of
each thread and directly shifts resources to the right
thread, thus achieving better performance compared to
Hill-climbing. As shown in Figure 8, ARPA outperforms
Hill-climbing in all but 8 of the 42 workloads. Out of
these eight workloads, ILP.2.7 (consisting of the gcc and
apsi threads) exhibits the highest benefit of Hill-climbing
vs. ARPA. In this workload, both threads have a high
ILP but apsi needs a much larger number of resources
(than gcc) to fully exploit its ILP and has relatively
low CIPRE values compared to gcc most of the time.
As a result, ARPA prefers to allocate more resources
to gcc, being unaware of the potentially high CIPRE
values that apsi can achieve once it accumulates a large
number of resources. In contrast, Hill-climbing does not
analyze the individual threads and randomly attempts
different allocations of resources managing to try out
an allocation with a much higher number of entries
assigned to apsi rather than gcc and achieves a better

overall performance.

With the Single_ WIPC metric, Static Partitioning, Hill-
Climbing and ARPA achieve 6.8%, 8.1% and 14.0%
improvements over ICOUNT. ARPA achieves a 5.7%
improvement over Hill-climbing.

Figure 9 shows the Avg IPC and HMean_WIPC im-
provements of different schemes over ICOUNT across 42
workloads. The figure shows the averages for the MEM,
MIX, ILP workloads separately in both 2-thread and 4-
thread workloads.

Avg_IPC quantifies overall instruction throughput and
HMean_WIPC takes both instruction throughput and
fairness into consideration. Static Partitioning equally
partitions resources among threads and makes threads
share resources in a fair manner. As we can see from
Figure 9, the performance improvements of Static Par-
titioning over ICOUNT measured by Avg IPC metric
and HMean_WIPC metric are close with each other,
achieving 13.5% and 15.6% improvement over ICOUNT,
respectively. However, the drawback of Static Partition-
ing is that it does not consider program phase changes
and lacks flexibility. Compared to Static Partitioning,
Hill-climbing and ARPA adjust resource partitioning
according to program behavior changes. However, their
resource sharing is not as fair as that of Static Par-
titioning. Therefore, the improvement in terms of the
HMean_WIPC metric (over Static Partitioning) is less
than that in terms of the Avg IPC metric.

From Figure 9, we can see that Hill-climbing and
ARPA achieve 48.5% and 55.8% improvements over
ICOUNT using the Avg_IPC metric, while considering
the HMean_WIPC metric, they achieve 20.8% and 29.4%
improvement over ICOUNT, respectively.

The Single_ WIPC metric ignores the overall through-
put and may bias against threads with very low IPC.
In contrast, Baseline_WIPC reflects the improvement in
IPC of each thread for an optimized resource partition-
ing scheme over a baseline scheme and it does not
depend on how well would each thread run in the
single thread mode. Figure 10 shows the Baseline_ WIPC
speedup of Static Partitioning, Hill-climbing and ARPA
over the ICOUNT baseline. ARPA achieves a better
Baseline_WIPC speedup than Static Partitioning and Hill-

11

140 O Satic @ Hill-climbing O ARPA| 920 O Static @ Hill-climbing O ARPA
i) focsc=oscccsscccadlocsessseaareass o=

100
g890-r-———-—-9@|---——-—--——-M--—-"—-""—-"—-"—-MW-—-—"—-""----
geoo--———-Q@|-———-——M-—----W--—--""-"F
- sooblb-—--M®l--———_--M-- - M| _]
2 2
:(g’ 0

O © O O © O © O © O -10
¥)) S

R S I P MU LIRS ST NG R N
X) N% & K\ N A \‘&@ @d_. \vq \“@& §§\+. \VQ K N S S

Fig. 9. Avg_IPC and HMean_WIPC improvement of different schemes over ICOUNT across 42 workloads

Baseline_WIPC
o
o Ul

‘ OICOUNT mSatic 0OHill-Climbing 0OARPA ‘

v ¥l) % © \
R P P S
¥ \\9 \\/<2 \\’Q \\9 \\f2 \\/Q

Baseline_WIPC

Fig. 10. Baseline_WIPC of different schemes for 42 workloads.

climbing for almost all workloads in the MEM and MIX
groups but the improvement in the ILP group is not as
significant. Static Partitioning, Hill-climbing and ARPA
achieve 7.8%, 32.6% and 39.1% improvements in the 2-
thread workloads, and 18.2%, 39.4% and 48.0% improve-
ments in the 4-thread workloads, respectively. Compared
to Static Partitioning, ARPA achieves a 18.5% improve-
ment in Baseline_ WIPC while compared to Hill-climbing,
it achieves a 9.2% improvement in Baseline_ WIPC.

5.3 Architecture Adaptation Results

Architecture adaptation can save chip-wide energy. It
is especially important as energy consumption becomes
a pivotal design issue. In this section we compare
the performance and energy of ARPA with architec-
ture adaptation (ARPA_AA) with other schemes (e.g.,
AdapROB [20], ARPA_ROB and ARPA (without architec-
ture adaptation)). AdapROB [20] deallocates ROB entries
from a thread when it is in the issue-bound phase and al-
locates ROB entries to a thread when it is in the commit-
bound phase. The ROB adaptation of AdapROB aims to
prevent threads from clogging shared datapath resources
and targets only performance. In order to verify that the
number of powered-off ROB banks of ARPA_AA is not
built upon overdesigned ROB entries and determine the
advantage of a dynamic scheme over a static one, we
also present the baseline results, ARPA_ROB, where the
number of available ROB banks is set to be equal to
the average number of ROB banks that are powered on
by ARPA_AA (shown in Figure 11). ARPA_ROB is the
same as ARPA, except that it uses the average number
of powered-on ROB banks of ARPA_AA. We randomly
select 30 workloads listed in Table 3; five from each

% of Power-off banks

MEM.2Avg MIX2Avg ILP2Avg MEM.4Avg MIX.4Avg ILP4Avg ALLAvg

Fig. 11. The percentage of powered-off banks for
AdapROB and ARPA_AA

‘ O AdapROB @ ARPA_ROB O ARPA_AA

MEM.2Avg MIX.2Avg ILP.2Avg MEM.4.Avg MIX.4Avg ILP4Avg ALL.Avg

Fig. 12. Avg_IPC of different schemes normalized with
respect to ARPA.

group.

Both ARPA and ARPA_AA are insensitive to the epoch
size. Since a small epoch size allows a more detailed
analysis of Threshold1 and Threshold2 (vary between 0
and epoch size) with small granularity, we use an epoch
size of 8K cycles for both ARPA and ARPA_AA. The
bank_size used in ARPA_AA and AdapROB is 8. There
are in all 32 banks since the total number of ROB entries
we used in our experiments is 256. The number of LSQ
entries we used is 128 in these experiments. We set both
Threshold1 and Threshold2 to 3K. A detailed sensitivity
analysis is presented in Section 5.4.

5.3.1 Performance Evaluation

We first show the average percentage of powered-off
banks of AdapROB and ARPA_AA for the MEM, MIX
and ILP workloads separately for the 2-thread and
4-thread workloads in Figure 11. The percentage of
powered-off banks of ARPA_AA is highest for the ILP
groups and lowest for the MEM groups for both 2-
thread and 4-thread workloads since memory-bound
workloads need more ROB entries to exploit instruc-
tion level parallelism. The percentage of powered-off
banks in 4-thread workloads is higher than that in 2-
thread workloads since 4-thread workloads have higher
thread level parallelism and need fewer ROB entries to
exploit instruction level parallelism. ARPA_AA manages
to power off, on average, 8 banks for 2-thread workloads
and 13 banks for 4-thread workloads. AdapROB powers
off fewer ROB banks than ARPA_AA since the purpose
of allocation/deallocation of ROB banks is to prevent
threads from clogging shared datapath resources and
does not target energy.

Figure 12 compares the Avg_IPC of different schemes
across the 30 workloads. It shows the averages for the
MEM, MIX, ILP workloads separately in both 2-thread
and 4-thread workloads. We normalized results with
respect to ARPA for all the schemes. The Avg IPC of
AdapROB is about 6.4% lower than that of ARPA on
average. AdapROB deallocates ROB entries of a thread
which has a high need for IQ entries to reduce the
pressure on the IQ and allocates ROB entries to the
thread which has a low need for IQ entries. However, it
is possible that allocating more ROB entries to a thread
with a high need for IQ entries results in better perfor-
mance improvements than allocating more ROB entries
to a thread with a low need for IQ entries. Differently
from AdapROB, ARPA directly takes the committed
instructions of each thread into account and assigns more
resources to a thread which uses resources in a more
efficient way. The performance improvement of ARPA
over AdapROB is significant for the benchmarks in the
4-thread MIX group.

ARPA_ROB uses on average 24 ROB banks for 2-
thread workloads and 19 banks for 4-thread workloads.
The performance reduction of ARPA_ROB over ARPA
in MEM groups is significant — a 13% degradation for
both 2- and 4-thread MEM groups. Although ARPA_AA
uses on average fewer ROB banks than ARPA_ROB in
ILP groups, it achieves similar performance to that of
ARPA_ROB. A fixed size of pre-allocated resources to
individual threads is often non-optimal for power and
performance purposes since resource requirements of
multi-threaded workloads running on SMT processors
vary significantly.

The Avg IPC of ARPA_AA is very close to that of
ARPA in most workloads. Compared to ARPA, the per-
formance loss across 30 workloads averages only 2.2%.
However, the energy savings of ARPA_AA compared
with ARPA is very significant as we will see next.

12

115 0O AdapROB @ ARPA_ROB OARPA_AA
11
105

0.95

[}
0.9
0.85

0.8

MEM.2Avg MIX.2Avg ILP2Avg MEM.4.Avg MIX.4Avg ILP4Avg ALL.Avg

Fig. 13. Energy consumption of different schemes nor-
malized with respect to ARPA

5.3.2 Energy Savings

Figure 13 compares the average energy consumption of
different schemes for the MEM, MIX and ILP workloads
separately for the 2-thread and 4-thread workloads. All
results are normalized with respect to ARPA. As we
can see, although AdapROB powers off deallocated ROB
banks as does ARPA_AA, the average energy savings
over ARPA are small. Its energy consumption is even
10% higher than that of ARPA for the 4-thread MIX
group because of the significant performance degrada-
tion compared to ARPA. AdapROB does not aim to
power off the maximum number of ROB entries to
save energy and ROB adaptation is only for improving
performance, which is different from ARPA_AA.

ARPA_ROB achieves significant energy savings over
ARPA by using fewer ROB entries. The energy savings in
MIX and ILP groups are much higher than that in MEM
groups since performance degradation in MIX and ILP
is not as significant as that in MEM groups when using
a small number of ROB entries. On average, the energy
savings of ARPA_ROB over ARPA are very close to that
of ARPA_AA over ARPA.

By controlling the number of powered-on ROB entries,
ARPA_AA fetches instructions just as needed. This not
only saves the static and dynamic power associated
with active ROB entries but also the dynamic power of
units like IQ logic with additional wake-up and selec-
tion operations. ARPA_AA achieves significant energy
savings over ARPA. Compared to ARPA, it achieves
8.4% and 12.8% energy savings for 2-thread and 4-thread
workloads, respectively, while keeping the performance
loss very low.

5.4 Sensitivity Analysis

In this section, we study the impact of the main param-
eters of our algorithm, namely, bank size, Threshold1
and Threshold2. Then, we compare the performance of
different schemes when the amount of resources change.
To simplify our experiments, we randomly selected 2
workloads from each group in Table 3, forming a set
of 12 workloads for the sensitivity analysis.

5.4.1 Bank Size and Thresholds

Figure 14 shows the energy savings of ARPA_AA over
ARPA as the bank size changes from 8 to 64 entries for
the 12 randomly selected workloads. As we increase the
bank size from 8 to 64, the energy savings of ARPA_AA

13

@ T10kT2:0k @ T10kT2:3k O T1:0KT2:6K
OT13kT2:0k mT1:3kT2:3k @ T1:3kT2:6k|
| | @T1:6kT2:0k O T1:6kT2:3k M T1:6kT2:6k|_

E-WIFC-R Imp (%)
(21

o

=]
MEM.23 MEM.2.

o
MIX.25 MIX.27 ILP.2.2 ILP.2.6

-5

MEM.42 MEM.46 MIX.43

MIX.4.7

Fig. 15. Energy-to-WIPC-Ratio (E-WIPC-R) improvement of ARPA_AA over ARPA for different values of Threshold1

and Threshold2 for 12 out of the 42 workloads.

25 ‘I:l 8entries @ 16 entries O 32 entries O 64 entrie:

Energy Savings (%)

<o o Vv
2 ® a2 o
R IR N A
R

Fig. 14. Energy Savings of ARPA_AA over ARPA as the
bank size changes for 12 out of 42 workloads.

over ARPA decrease for most benchmarks. It is obvious
that we can do a more fine-grained adaptation with a
smaller bank size, thereby following program behav-
ior more closely. Moreover, the energy consumption of
ARPA_AA increases significantly when the bank size
is 64. It is even higher than that of ARPA for MIX.2.5
and MIX.4.3, since a big bank size will cause greater
performance loss, thus increasing the energy consump-
tion. As the bank size decreases to a very low value, the
area needed to implement the banked ROB components
and the hardware implementation complexity of multi-
banked structure increase significantly. Since banks of
size 8, 16 and 32 do not differ greatly in energy con-
sumption, it would be better to select a size of 32.

As we have seen in Section 3.4, ARPA_AA uses the
number of full ROB occupancy cycles during an epoch
(compared to Threshold1l) and the number of cycles
when the in-flight instructions of the reference thread
fully occupy the allocated queue entries in an epoch
(compared to Threshold2) to decide whether an archi-
tecture adaptation or resource partitioning is performed.
We now examine how these two thresholds impact the
Single WIPC and energy consumption of ARPA_AA.
Combining Single. WIPC and energy consumption, we
use Energy-to-WIPC-Ratio (E-WIPC-R) as a metric.

Figure 15 shows the E-WIPC-R improvement of
ARPA_AA over ARPA as both Thresholdl (T1) and
Threshold? (T2) increase from 0K to 6K, with a step size
of 3K. As both thresholds increase, the architecture adap-
tation becomes more aggressive. As we can see, when T1
increases from 0K to 3K, the E-WIPC-R improvements
of ARPA_AA increase significantly for most T2 values.
However, as T1 increases from 3K to 6K, T2 plays a
significant role and for most benchmarks, the E-WIPC-
R improvement decreases significantly. Therefore, setting
T1 to 6K is too aggressive. Among all the tested settings,
ARPA_AA achieves the best E-WIPC-R improvements

0 AdapROB @ Hill-climbing O ARPA‘

120 64 128
Q LR

192

Fig. 16. Avg_IPC of different schemes over ICOUNT as
the size of the queues changes for 12 out of 42 workloads

for T1=T2=3K.

We also tested ARPA_AA for both T1 and T2 between
2K to 4K, with a step size of 1K. The difference is small
for the tested T1 and T2 values. This means that a
small deviation of T1 and T2 from their optimal values
has little effect on the behavior of ARPA_AA. This is a
desirable property for our algorithm.

5.4.2 Queue Entries

We now examine the impact of the size of IQ, LSQ
and ROB on the performance of different schemes. Fig-
ure 16 shows the average performance improvement of
AdapROB, Hill-climbing and ARPA over ICOUNT as we
change the number of LSQ entries from 40 to 80, and
120, the number of IQ entries from 64 to 128, and 192
and the number of ROB entries from 128 to 256, and 384.
The size of the other two queues is kept unchanged as
we change the number of one queue structure.

We can see that as the number of IQ, LSQ and ROB
entries increases, the improvements over ICOUNT de-
crease for all the schemes since the increased number
of resources mitigates the resource clogging problem
of ICOUNT. ARPA achieves better performance im-
provements over ICOUNT than that of all the other
schemes for any queue sizes. ARPA analyzes resource
usage efficiency of each thread directly and assigns
more resources to the thread which can use them more
efficiently. In contrast, Hill-climbing partitions resources
based on periodic “trials” to select the best partitioning
and AdapROB allocates/deallocates ROB entries of a
thread according to whether the allocation/deallocation
adds/reduces pressure on IQ. When the number of 1Q
entries increases to 120, the performance improvement
of AdapROB over ICOUNT decreases more significantly
than those of the other two schemes. The reason is that
as the number of IQ entries increases beyond a certain
point, the competition among IQ entries reduces, thus

weakening the advantage of AdapROB. Hill-climbing
is sensitive to the changes of ROB size and its per-
formance improvements over ICOUNT decrease signif-
icantly (compared to that of ARPA) as the ROB size
changes from 128 to 384. As the number of ROB entries
increases, the search space of Hill-climbing increases
accordingly, increasing the time spent in non-optimal
partitions.

6 CONCLUSION

This paper has presented an Adaptive Resource Par-
titioning Algorithm (ARPA) for SMT processors. This
algorithm identifies the resource usage efficiency of each
thread using the CIPRE metric and allocates more re-
sources to threads which can use them more efficiently.
The more efficient usage of processor resources greatly
improves the overall instruction throughput. Our ex-
perimental results show that ARPA improves Avg IPC
by 55.8% over ICOUNT, while Static Partitioning only
achieves a 13.5% improvement over ICOUNT. Com-
pared with the currently best-performing algorithm Hill-
climbing, ARPA achieves a 5.7% Avg_IPC improvement.

Allocating more resources to threads which can use
them more efficiently does not always mean giving
more resources to threads with a higher IPC. In fact,
ARPA is an adaptive process that allows threads to
share resources more fairly and efficiently. With respect
to the Single WIPC metric, ARPA achieves a 14.0% im-
provement over ICOUNT and attains 6.8% and 5.7%
improvements over Static Partitioning and Hill-climbing,
respectively. With respect to the Baseline_ WIPC metric,
ARPA achieves 43.6%, 18.5% and 9.2% improvements
over ICOUNT, Static Partitioning and Hill-climbing, re-
spectively. With respect to HMean_WIPC metric, ARPA’s
improvement is 29.4%, 11.0%, and 7.2%, respectively.

We also explored the benefits of incorporating archi-
tecture adaptation into ARPA to adaptively control the
number of powered-on resources and partition resources
among threads for energy savings. Our experimental
results show that ARPA with architecture adaptation can
achieve 10.6% energy savings, while the performance
loss is negligible.

ACKNOWLEDGMENTS

The authors would like to thank Dr. James Donald of
Princeton University for his help in suitably modifying
the SMT simulator. This work was supported in part by
NSF under grants EIA-0102696 and CCR-0234363.

REFERENCES

[1] J. Abella and A. Gonzalez, “Power-Aware Adaptive Issue Queue
and Register File,” Proc. 10th Int’l Conf. High Performance, pp. 34-43,
Dec. 2003.

[2] D. H. Albonesi et al., “Dynamically Tuning Processor Resources
with Adaptive Processing,” IEEE Computer, vol. 36, no. 12, pp. 49-
58, Dec. 2003.

14

[3] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for
Architectural-level Power Analysis and Optimizations,” Proc. 27th
Ann. Int'l Symp. Computer Architecture, pp. 83-94, June 2000.

[4] D.C. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
2.0,” Technical Report CS-TR-1997-1342, University of Wisconsin,
Madison, June 1997.

[5] A.Buyuktosunogluy, S. Schuster, D. Brooks, P. Bose, P. W. Cook and
D. H. Albonesi, “An Adaptive Issue Queue for Reduced Power at
High Performance,” Lecture Notes in Computer Science, vol. 2008,
pp- 25-39, Jan. 2001.

[6] E.J. Cazorla, E. Fernandez, A. Ramirez and M. Valero, “Improving
Memory Latency Aware Fetch Policies for SMT Processors,” Proc.
Fifth Int’l Symp. High Performance Computing, pp. 70-85, Oct. 2003.

[7] E J. Cazorla, A. Ramirez, M. Valero and E. Fernandez, “Dynami-
cally Controlled Resource Allocation in SMT Processors,” Proc. 37th
Int’l Symp. Microarchitecture, pp. 171-182, Dec. 2004.

[8] S. Choi and D. Yeung, “Learning-Based SMT Processor Resource
Distribution via Hill-Climbing,” Proc. 33rd Ann. Int'l Symp. Com-
puter Architecture, pp. 239-251, June 2006.

[9] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm and
D. M. Tullsen, “Simultaneous Multithreading: A Platform for Next-
Generation Processors,” IEEE Micro, vol. 17, no. 5, pp. 12-19,
Sept. 1997.

[10] A. El-Moursy and D. H. Albonesi, “Front-End Policies for Im-
proved Issue Efficiency in SMT Processors,” Proc. 9th Int’l Symp.
High Performance Computer Architecture, pp. 31-40, Feb. 2003.

[11] D. Folegnani and A. Gonzilez, “Energy-effective Issue Logic,”
Proc. 28th Int’l Symp. Computer Architecture, pp. 230-239, Jun. 2001.

[12] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura,
Y. Nakase and T. Nishizawa, “An Elementary Processor Ar-
chitecture with Simultaneous Instruction Issuing from Multiple
Threads,” Proc. 19th Ann. Int’l Symp. Computer Architecture, pp. 136-
145, May 1992.

[13] S. Lee and]. Gaudiot, “Throttling-Based Resource Management
in High Performance Multithreaded Architectures,” IEEE Trans. on
Computers, vol. 55, no. 9, pp. 1142-1152, Sept. 2006.

[14] K. Luo, J. Gummaraju and M. Franklin, “Balancing Throughout
and Fairness in SMT Processors,” Proc. Int’l Symp. Performance
Analysis of Systems and Software, pp. 164-171, Nov. 2001.

[15] D. T. Marr et al., “Hyper-Threading Technology Architecture
and Microarchitecture,” Intel Technology J., vol. 6, no. 1, pp. 4-15,
Feb. 2002.

[16] D. Ponomarev, G. Kucuk and K. Ghose, “Reducing Power Re-
quirements of Instruction Scheduling Through Dynamic Allocation
of Multiple Datapath Resources,” Proc. 34th Int’l Symp. Microarchi-
tecture, pp. 90-101, Dec. 2001.

[17] D.Ponomarev, G. Kucuk and K. Ghose, “Energy-Efficient Design
of the Reorder Buffer,” Lecture Notes in Computer Science, vol. 2451,
pp- 289-299, 2002.

[18] S. E. Raasch and S. K. Reinhardt, “The Impact of Resource
Partitioning on SMT Processors,” Proc. 12th Int’'l Conf. Parallel
Architecture and Compilation Techniques, pp. 15-26, Sept. 2003.

[19] S. Sair and M. Charney, “Memory Behavior of the SPEC2000
Benchmark Suite,” Technical Report, IBM T.J. Watson Research
Center, 2000.

[20] J.]J. Sharkey, D. Balkan and D. Ponomarev, “Adaptive Reorder
Buffers for SMT processors,” Proc. 15th Int’l Conf. Parallel Architec-
ture and Compilation Techniques, pp. 244-253, Sept. 2006.

[21] D. M. Tullsen, S. J. Eggers and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” Proc. 22nd Ann.
Int’l Symp. Computer Architecture, pp. 392-403, June 1995.

[22] D. M. Tullsen and J. A. Brown, “Handling Long-latency Loads
in a Simultaneous Multithreading Processor,” Proc. 34th Int’l Symp.
Microarchitecture, pp. 318-327, Dec. 2001.

[23] D. M. Tullsen et al., “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous MultiThreading Proces-
sor,” Proc. 23rd Ann. Int’l Symp. Computer Architecture, pp. 191-202,
May 1996.

[24] H. Wang, Y. Guo, I. Koren and C. M. Krishna, “Compiler-Based
Adaptive Fetch Throttling for Energy Efficiency,” Proc. Int’l Symp.
Performance Analysis of Systems and Software, pp. 112-119, Mar. 2006.

[25] H. Wang, 1. Koren and C. M. Krishna, “An Adaptive Resource
Partitioning Algorithm for SMT Processors,” Proc. 17th Int’l Conf.
Parallel Architecture and Compilation Techniques, pp.230-239, Oct.
2008.

[26] W. Yamamoto and M. Nemirovsky, “Increasing Superscalar Per-
formance Through Multistreaming,” Proc. First Int'l Symp. High
Performance Computer Architecture, pp. 49-58, June 1995.

[27] Z. Zhu and X. Zhang, “Look-Ahead Architecture Adaptation to
Reduce Processor Power Consumption,” IEEE Micro, vol. 25, no.
4, pp- 10-19, 2005.

[28] K. Wilcox and S. Manne, “Alpha Processors: A History of Power
Issues and a Look to the Future,” Cool-Chips Tutorial, Nov. 1999.

[29] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics
for Multiprogram Workloads,” IEEE Micro, vol. 28, no.4, pp. 42-53,
2008.

[30] S. Eyerman and L. Eeckhout, “Memory-level parallelism aware
fetch policies for simultaneous multithreading processors,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 6,
no.1, pp. 1-33, 2009.

Huaping Wang received the BS and MS de-
grees in 1999 and 2002, respectively, both from
the Department of Information and Electronic
Engineering of Zhejiang University, Hangzhou,

PLACE China. In 2004, she joined the Architecture and
PHHEOF;FS Real-Time Systems (ARTS) lab in Department

of Electrical and Computer Engineering, Uni-
versity of Massachusetts, Amherst as a PhD
student and received the Ph.D. degree in 2010.
Now she is a senior software engineer in Mar-
vell Semiconductor Inc. Her current research
interests include pre-silicon power performance analysis, embedded
computing systems.

Israel Koren (M'76 - SM'87 - F'91) is cur-
rently a Professor of Electrical and Computer
Engineering at the University of Massachusetts,
Amherst. He has been a consultant to numer-

PLACE ous companies including IBM, Analog Devices,
PHOTO Intel, AMD and National Semiconductors. His re-
HERE search interests include Fault-Tolerant systems,

Computer Architecture, VLSI yield and reliability,
Secure Cryptographic systems, and Computer
Arithmetic. He publishes extensively and has
over 200 publications in refereed journals and
conferences. He is an Associate Editor of the VLSI Design Journal,
and the IEEE Computer Architecture Letters. He served as General
Chair, Program Chair and Program Committee member for numerous
conferences. He is the author of the textbook "Computer Arithmetic Al-
gorithms,” 2nd Edition, A.K. Peters, 2002, a co-author of "Fault Tolerant
Systems,” Morgan-Kaufman, 2007, and an editor/co-author of "Defect
and Fault-Tolerance in VLSI Systems,” Plenum, 1989.

C. Mani Krishna received his PhD from the Uni-
versity of Michigan in 1984. Since then, he has
been on the faculty of the department of Electri-
cal and Computer Engineering at the University

PLACE of Massachusetts. His research interests include
PHOTO real-time systems, fault-tolerant computing, per-
HERE formance evaluation, distributed computing, and

power-aware systems. He has coauthored texts
on real-time systems and fault-tolerant comput-

ing.

15

