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Abstract—Energy consumption has long been recognized as an
important performance metric for many real-time and embedded
systems. The traditional approach to energy-aware computing
is to dynamically scale the voltage: this results in a significant
drop in the energy consumed at the cost of a slowdown of the
computation.

In this paper, we explore a complementary approach to
energy-aware real-time computing: that of runtime architecture
configuration. As embedded real-time systems become ever more
complex, the processors used will no longer be the bare-bones
pipelines traditionally used, but rather high-end processors
capable of meeting the timing needs of increasingly demanding
applications. Also, the price of superscalar processors continues
to fall, which allows them to be considered even for relatively cost-
sensitive applications. Such high-end processors lend themselves
to dynamic architecture adaptation. We describe how to exploit
such adaptation and show that architecture adaptation when
combined with dynamic voltage scaling, provides significant
advantages over dynamic voltage scaling alone.

I. INTRODUCTION

Energy management is especially important in embedded

real-time systems. Conventionally, this has been achieved by

dynamic voltage scaling [24]. We present here a complemen-

tary approach: architecture adaptation.

Modern processors have many features whose goal is to

improve execution rate. They use large load/store queues,

multiple functional units, reorder buffers, branch predictors,

banks of registers, and other mechanisms by which to enhance

performance through speculative execution. Each of these

hardware components consumes energy and the extent to

which each of these improves performance varies from one

application to the next. This offers up an opportunity to select

individual hardware configurations for each task with the

best execution time/energy profile1. This is the architecture

adaptation approach studied in this paper.

While there has been some prior work reported on re-

configuration for real-time applications, such work is largely

confined to a study of FPGAs [3], [7], [8], [19]. The re-

configuration of conventional pipelined architectures as an

adaptation step to conserve energy in real-time applications

is a largely unexplored topic (however, some recent work has

considered procedures for selecting appropriate configurations

during processor design [2]). This is in sharp contrast to

dynamic voltage scaling, which has been the focus of intense

activity in the real-time community since the 1990s [24].

1As pointed out in [1], the baseline overheads of adaptive processors are
typically very low.

In what follows we describe an approach to select the appro-

priate architecture configuration from an available repertoire

of such configurations. We do not focus on techniques by

which the architecture can be reconfigured: these have been

described elsewhere in the computer architecture literature

(see, for example, [4], [22]).

The novel contribution of this paper consists of an algorithm

that permits architecture adaptation on top of a conventional,

dynamic voltage scaling algorithm. We are not aware of any

prior, systematic, approach to integrate the architecture adapta-

tion of general-purpose pipelines into a framework of dynamic

voltage scaling for real-time, cyber-physical, applications.

The rest of this paper is organized as follows. We start

by providing several experimental results which indicate that

there is indeed some advantage to architecture adaptation.

Then, we present a greedy offline algorithm to select the

appropriate architecture configuration for each task based on

its Worst Case Execution Time (WCET). This is followed by

a description of how to carry out online resource reclamation

if, as is usually the case, tasks do not consume their WCET.

II. SOME MOTIVATIONAL EXAMPLES

In order to obtain some concrete figures for the impact

of architecture configuration on the energy consumption,

we carried out several studies using the Simplescalar [5]

and Wattch [6] simulation framework. The following well-

known benchmarks from the Mibench suite [9] were used:

basicmath, cjpeg, crc, dijkstra, djpeg,

sha, fft, tiffmedian, patricia, mpeg2dec,

mpeg2enc, rawcaudio, and rawdaudio. The baseline

architecture configuration (against which other configurations

are assessed) and eight other configurations are shown in

Tables I and II, respectively. We vary the load-store queue

(LSQ) and the reorder buffer (ROB). These two are commonly

implemented as banked buffers requiring only simple circuitry

to power down some banks. In addition, there are three fetch

policies: one involving no fetch throttling and the other

two alternating one fetch cycle with one or two idle cycles.

Fetch throttling is also simple to implement, and imposes a

negligible hardware overhead. Table III shows the execution

time and energy consumed by each configuration at high

voltage (v = 1.2 V). It can be seen that there is considerable

scope for energy savings by selecting a suitable architecture

configuration, as long as sufficient time is available in the

schedule. On average, for the 13 benchmarks considered, the



Config basicmath crc djpeg sha cjpeg dijkstra

Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy

Baseline 84.080 0.366 15.261 0.106 6.221 0.048 3.506 0.022 19.340 0.120 18.344 0.116

1 85.890 0.335 15.338 0.093 6.222 0.043 3.511 0.018 19.528 0.104 18.473 0.100

2 94.346 0.341 16.206 0.089 6.228 0.041 3.538 0.018 20.863 0.101 19.046 0.096

3 85.076 0.342 15.632 0.099 6.266 0.044 3.570 0.020 19.633 0.111 18.564 0.107

4 87.088 0.312 15.705 0.087 6.266 0.040 3.575 0.017 19.804 0.096 18.696 0.093

5 94.639 0.316 16.547 0.083 6.229 0.038 3.540 0.016 20.987 0.093 19.174 0.088

6 86.593 0.334 16.411 0.098 6.730 0.044 3.585 0.020 20.232 0.109 19.035 0.105

7 88.485 0.303 16.484 0.085 6.730 0.039 3.590 0.016 20.412 0.094 19.151 0.091

8 96.125 0.307 17.326 0.082 6.731 0.037 3.616 0.015 21.531 0.090 19.631 0.086

Config fft tiffmedian patricia mpeg2dec mpeg2enc rawcaudio rawdaudio

Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy

0 50.873 0.279 47.425 0.334 99.693 0.357 41.800 0.263 38.031 0.262 17.687 0.075 13.332 0.059

1 51.678 0.248 47.632 0.297 101.119 0.331 42.748 0.230 38.345 0.235 19.295 0.066 14.825 0.053

2 56.085 0.244 57.298 0.293 110.283 0.341 47.307 0.228 42.339 0.230 22.781 0.069 18.204 0.056

3 52.402 0.261 49.109 0.318 101.160 0.338 42.221 0.247 40.655 0.242 17.681 0.069 13.333 0.055

4 53.162 0.231 49.304 0.280 102.681 0.314 43.207 0.215 41.070 0.216 19.295 0.062 14.825 0.050

5 56.958 0.227 58.385 0.275 111.568 0.323 47.673 0.212 43.014 0.213 22.781 0.065 18.204 0.053

6 54.031 0.254 51.073 0.317 102.732 0.332 42.864 0.240 46.316 0.254 17.706 0.067 13.458 0.054

7 54.782 0.224 51.292 0.275 104.059 0.306 43.876 0.208 46.645 0.223 19.294 0.060 14.816 0.048

8 58.454 0.221 60.227 0.269 112.700 0.314 48.154 0.205 47.500 0.214 22.781 0.063 18.205 0.051

TABLE III: Energy and Time at 1.2 Volts for the eight configurations

Clock rate 2 GHz
Process parameters 45 nm
Threshold Voltage 0.2398 V
Supply Voltage Range 0.75 to 1.2 V
Fetch, Issue, Decode Commit widths 4-way
Fetch queue size 16
Instruction queue size 64
Load-store queue (LSQ) size 32
Branch prediction 2K entry, bimodal
Int. functional units 4 ALU, 1 mult/div
FP functional units 4 ALUs, 1 mult/div
L1 D-cache 32 KB, 2-way, writeback
L1 I-cache 32 KB, 2-way, writeback
Combined L2 cache 256 KB, 4-way
L2 hit time 20 cycles
Main memory hit time 100 cycles

TABLE I: Baseline configuration

Config LSQ ROB Fetch

Baseline 32 64 no fetch throttling

1 32 64 fetch 1/stop 1

2 32 64 fetch 1/stop 2

3 16 32 no fetch throttling

4 16 32 fetch 1/stop 1

5 16 32 fetch 1/stop 2

6 8 16 no fetch throttling

7 8 16 fetch 1/stop 1

8 8 16 fetch 1/stop 2

TABLE II: Architecture configurations

lowest energy configuration requires 27% less energy than the

baseline configuration. Also, note that the minimum-energy

configuration varies with the application. For example, if

there is no constraint on execution time, configuration 7 is

minimum-energy for basicmath, while configuration 8 is

preferred for crc.

III. REVIEW OF RELATED WORK

Over the last decade, a few authors have considered archi-

tecture adaptation [1], [18], [21], [29]. These works largely

focus on general-purpose applications. In addition, there has

been the work on reconfigurable FPGA-based hardware, as

mentioned earlier.

By contrast, there have been only a few studies focusing on

the architecture adaptation of pipelined processors for real-

time systems. Hughes, et al., studied its use in multimedia

applications [10]. The architecture was varied by changing

the issue width, the instruction window size and the number

of functional units.

Recently, a more generally applicable, but static, approach

has been proposed by Zeng, et al. [26]. In this approach,

the choice of the configuration and voltage level is made by

solving an integer programming problem and using informa-

tion gained by prior (to system operation) profiling of the

workload under consideration. This is a static approach: the

choice is made by running the optimization algorithm over a

hyper-period equal to the least common multiple (LCM) of

the periods of the individual tasks comprising the workload.

The architecture was varied by changing the branch prediction

algorithm and, the cache size and organization.

The work presented in this paper assumes that task deadlines

are hard, i.e., that missing a deadline is not acceptable. Further,

it is a dynamic approach, which is able to reclaim time released

from tasks which finish earlier than their worst-case execution

time, in order to improve the efficiency with which other tasks

are run.

IV. FINE-GRAINED VOLTAGE SCALING

In this section, we assume that any desired voltage level, in

the range (vT , vH ], can be applied to the processor, where vH
and vT are the high (baseline) voltage and threshold voltage,

respectively. From basic voltage scaling theory, the voltage at

which a given slowdown, σ, can be attained is given by:

v =
(2vTσ + λ) +

√

(2vTσ + λ)2 − 4v2Tσ
2

2σ
(1)



where λ = (vH − vT )
2/vH . The energy consumed in running

the entire task at this voltage is the fraction (v/vH)2 of the

energy consumed in running it at voltage vH .

For each configuration c (c = 0, 1, · · · 8), we can obtain by

profiling experiments the associated execution time and energy

consumption of each task, T , at voltage vH , as was done in

Table III. Let Ei,c(τ) denote the energy consumption of task

Ti when using configuration c and at a voltage vi,c(τ) which

sets its execution time to τ (the energy function is only defined

for those values of τ for which there exists some voltage in

(vT , vH ] under which c can execute task Ti in time τ ). Then,

we have the following result, the (easy) proof of which is

omitted due to space restrictions.

Observation 1: Consider any two configurations, c and d,

and some task, Ti. If there exists time τ such that vi,c(τ) <
vi,d(τ) and Ei,c(τ) > Ei,d(τ), then for all t > τ , we will

have Ei,c(t) > Ei,d(t).

Observation 1 allows us to prune out configurations from

consideration. If, for any execution time τ , we have vi,c(τ) <
vi,d(τ) and Ei,c(τ) > Ei,d(τ), it follows that configuration

c for task Ti is dominated by d for all times t > τ . In

other words, if configuration d takes less energy to execute

a particular workload in τ seconds than configuration c does,

and if configuration c requires a higher supply voltage than d
in order to execute in the same time, then d is to be preferred

for all times beyond τ as well.

To illustrate this, consider the rawdaudio benchmark. In

Table IV, we present the energy consumption of each configu-

ration for selected execution times. Row j of the table consists

of the energy consumption for the various configurations at

the high-voltage execution time of configuration j. The rows

are sorted in order of increasing execution times. Consider

the row corresponding to configuration 3. Its execution time

at high voltage is 13.3326 and the corresponding energy is

0.0553. The energy consumed at the same execution time by

configuration 0 is 0.0593. Moreover, configuration 0 consumed

this energy while running at a lower voltage than vH (since

its high-voltage execution time is less than this time). Hence,

beyond 13.3326, configuration 0 is always dominated by con-

figuration 3 and can be pruned out from consideration over this

interval. Consider the row corresponding to the high-voltage

execution time of configuration 2. Here, we have configuration

2 consuming 0.0562 which is greater than the minimum of

items to the left of it on that row. Hence, we cannot use

Observation 1 to prune out configuration 2 at this time; we

have to wait until the subsequent row (corresponding to the

high-voltage execution of configuration 5) before pruning it

out.

When a certain amount of time to run a task has been

assigned, we select a configuration by comparing the energy

cost of all available configurations (that have not been pruned

out) at the voltage associated with the configuration and

assigned execution time, and selecting the least expensive such

configuration.

The key performance measure is the ratio of the energy
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Fig. 1: Energy Ratio of DVSAA to DVS for Selected Tasks

(45 nm technology)

consumed by the combination of dynamic voltage scaling

and architecture adaptation (DVSAA) to that consumed by

dynamic voltage scaling (DVS) alone. This is plotted as

a function of the normalized execution time, which is the

execution time divided by the execution time of the baseline

configuration at high voltage. Figure 1 contains the ratio for

some selected programs. Figure 2 provides this ratio for each

of the 13 tasks, over a small range of normalized execution

time. Sharp drops in the curves indicate that a new, more

energy-efficient, configuration is available for the indicated

execution time. At the end, for large normalized execution

times, the ratio rolls off again. This reflects the fact that the

baseline configuration, for those execution times, is already

being executed at its lower voltage limit. As a result, increasing

the available execution time beyond that point does not save

the baseline configuration any energy. However, since the high-

voltage execution times of the other configurations are greater,

their low-voltage execution times are also greater than that of

the baseline. There is therefore an interval over which making

available more execution time does not lower the baseline

configuration energy consumption but does reduce it for one

or more other configurations. Overall, the reduction in energy

due to the use of DVSAA vs. DVS can be as high as 25%.

Note that the energy savings arise from reconfiguring the

hardware; using a different technology is not expected to

change the energy ratios by much (obviously, the absolute

energy levels will be different). For example, consider an old

0.18 micron technology, using a voltage range of 0.9 to 2 Volts

and a threshold voltage of 0.5V. Figure 3 shows the results for

a selected subset of the workload considered earlier. These

results are relevant since older technology is often used in

embedded applications for two reasons: cost and robustness.

Older technology is significantly cheaper, and that can make

the difference in a highly cost-sensitive consumer application.

More mature, larger feature-sized, technology also makes for

an intrinsically lower susceptibility to soft upsets and tends to

exhibit a lower transient failure rate.

Finally, we should point out that the number of reconfigu-



Config time Energy Consumption

Config 0 Config 3 Config 6 Config 7 Config 1 Config 4 Config 2 Config 5 Config 8
0 13.3320 0.0593
3 13.3326 0.0593 0.0553
6 13.4582 0.0586 0.0546 0.0537
7 14.8155 0.0516 0.0481 0.0473 0.0482
1 14.8248 0.0516 0.0481 0.0473 0.0482 0.0526
4 14.8254 0.0516 0.0481 0.0473 0.0482 0.0526 0.0497
2 18.2039 0.0399 0.0372 0.0365 0.0369 0.0403 0.0381 0.0562
5 18.2041 0.0399 0.0372 0.0365 0.0369 0.0403 0.0381 0.0562 0.0531
8 18.2046 0.0399 0.0372 0.0365 0.0369 0.0403 0.0381 0.0562 0.0531 0.0514

TABLE IV: rawdaudio Energies for Various Configurations
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Fig. 2: Energy Ratio of DVSAA to DVS: Detail (45 nm

technology)

rations is likely to be quite small during the execution of any

given task. Reconfiguration happens only when an opportunity

to do so occurs due to some task completing ahead of its

estimated worst-case execution time. The number of reconfig-

urations that occur during the execution of a task is therefore

related to the number of such early task completions that are

nested between the start of that execution and its completion.

Further, each reconfiguration action is quite lightweight. For

example, changing from the baseline configuration to Config-

uration 1 only requires that we turn on fetch throttling. For

this reason, the overhead of reconfigurations is likely to be

negligible, and is not modeled in this paper.
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0.18 Micron Technology

A. Architecture Configuration and Voltage Scaling Scheme

We now turn to the issue of how to incorporate architectural

reconfiguration into a voltage-scaling scheme. The overall

framework is assumed to be the Earliest Deadline First (EDF)

algorithm and the deadlines of the periodic tasks are assumed

to equal their periods. It is well-known that the necessary

and sufficient condition for EDF-schedulability is that the

total utilization be bounded above by 1 [15], [17] where the

processor utilization for a given task is defined as the task’s

WCET divided by its period. EDF is used in this paper as one



of the two most widely used real-time scheduling algorithms.

The same approach can equally well be used for any other

scheduling algorithm, such as the Rate Monotonic algorithm.

Similarly, the assumption that the relative deadline of a task

equals its period is used for concreteness; the same approach

can be used in any setting where it is possible to evaluate the

task-set schedulability.

Our approach has offline and online components. The

offline component assumes that all tasks run to their worst-

case execution times and uses a greedy strategy to select

the configurations to be used. The online component allows

the reclaiming of time from tasks that do not consume all

their assigned time and adjusts the allocation of other tasks

appropriately.

1) Offline Algorithm: The assignment of execution times

to each task is a nonlinear optimization problem. The greedy

offline heuristic that we consider for this purpose is shown in

Figure 4. It starts by checking if the task set is schedulable at

the fastest configuration for each task and at high voltage. If

not, the user is notified that the task set is not schedulable and

the algorithm exits. If it is schedulable, then we can proceed

to assign the execution times and architecture configurations

for each task. The starting point is the execution time at

high voltage of the baseline configuration; as additional time

is provided to the task, more degraded (and economical)

configurations may become feasible.

We then greedily augment utilization to each task until

the worst-case task set utilization becomes 1. At this point,

we have the final offline time assignment for all tasks. For

each task, given its time assignment, we can choose the

configuration that minimizes the energy consumed. This time

and configuration assignment is the output of the offline

algorithm. The stepsize, namely the unit in which additional

time increments are assigned, has an impact on the output, as

we shall see later.

We present numerical examples for the 45 nm technology

parameters. The task sets used are Set A comprising

basicmath, dijkstra, crc, sha, cjpeg,

djpeg, fft, and Set B consisting of tiffmedian,

patricia, mpeg2dec, mpeg2enc, rawcaudio,

and rawdaudio. In addition, we considered a task set

generated by the union of Sets A and B. The task periods

in this example are selected to be such that the utilizations

of all these tasks are equal. Under our offline scheduling

algorithm and assuming that each of the tasks runs to its

worst-case execution time, the ratio of the DVSAA energy

consumption to that of traditional DVS is shown in Figure 5.

As utilizations increase, the number of available architecture

configurations capable of meeting task deadlines decreases;

as a result, when utilization approaches 1, the benefit from

architecture adaptation disappears.

The impact of the step size on the performance of this

algorithm is shown in Figure 6 for a range of step sizes over

which the algorithm performs well; step sizes should therefore

be kept small. Small steps allow fine adjustments to be made to

the time allocations to the various tasks; bigger steps allow one

// time(task, n, v) is the time taken to run

// the specified task under configuration n

// and voltage v.

// totUtil() is the total utilization of the

// system assuming the prevailing time

// assignment

// delta is a prespecified constant which

// controls the step size of the greedy search

// minTask() returns the task which, under

// some configuration, yields the greatest

// savings in energy if provided with an

// additional utilization of utilStep

// minConfig(task,time) returns the configuration

// under which the given task running for the

// WCET<=time consumes the least energy

for (task=0; task<numberOfTasks; task++)

timeAssigned[task]=time(task,baseline,vH);

if (totUtil() > 1.0)

return failure;

// Increment time assignments until the processor

// is fully utilized under worst case execution

// times.

while (totUtil() < 1.0) {

utilStep = min(stepSize, 1.0-totUtil());

chosenTask = minTask(utilStep, timeAssigned);

timeAssigned[chosenTask] +=

utilStep*period[chosenTask];

chosenConfig =

minConfig(chosenTask,timeAssigned);

}

Return configuration and time assignments

to each task corresponding to the lowest

energy consumption found;

Fig. 4: Offline Assignment Algorithm

to leap over local minima. The greedy algorithm is sufficiently

fast that one can afford to make a search over a number of step

size values to select the best. Beyond this range of step sizes,

the performance of the offline algorithm degrades quickly.

2) Online Time Reclamation Methodology: Two possible

approaches exist for online time reclamation. The first is to

only adjust the voltage online while using the configuration
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that has been selected by the offline assignment. In such a case,

one of the many published dynamic voltage scaling schemes

can be used.

The second approach is to carry out an online voltage

scaling and an architecture reconfiguration. We present here a

methodology by which this can be done within the framework

of any conventional dynamic voltage scaling algorithm. This

methodology applies to any workload that satisfies the fol-

lowing uniform scaling assumption (we indicate below how

to extend the methodology to cases in which this assumption

does not hold).

Denote by t(i, S, v, c) the time taken by configuration c
running at voltage v to execute any segment S of task Ti. Then,

our uniform scaling assumption is that for all v ∈ (vT , vH ],

t(i, S1, v, ca)

t(i, S1, v, cb)
≈

t(i, S2, v, ca)

t(i, S2, v, cb)
(2)

for any configurations ca, cb and any segments S1, S2 of task

Ti. This assumption states that the relative advantage of one

configuration over another with respect to any given task is

preserved across all segments of that task. That is, we do

not have a situation in which the relative advantage of the

configurations varies depending on which part of T ′

i s code we

are executing. In other words, no one task consists of multiple

phases, with the relative advantage of the various architectural

configurations varying from one phase of that task to the next.

(To avoid potential confusion, we stress that this restriction

does not apply across tasks, only to different segments of the

same task.)

In what follows, assume that we have some online voltage

scaling algorithm, A, to handle resource reclamation. Every

time we have a task arrival or completion, this algorithm

outputs the frequency at which each task must be run. This

frequency can be updated at every task arrival or departure

point. Note that A is a conventional DVS algorithm that does

not take account of architecture reconfiguration; it assumes

that the baseline architecture configuration is used all the time.

Fitting architecture reconfiguration into this framework is
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Fig. 7: Equivalent Frequencies for Various Configurations

simple. At any given frequency, different configurations gen-

erally consume differing amounts of time to execute any given

task; conversely, if they are to execute it in the same time, they

must be run at different frequencies. Consider Figure 7, which

plots the energy against execution time for some given task

under two architectural configurations 0 and 1 that complete

the task in exactly the same time τ but at two different clock

frequencies f0 and f1, respectively, However, configuration

1 consumes less energy than configuration 0 for the same

amount of work. From this, we have the observation that for

any τ and any nonempty time interval I , configuration 0 does

the same amount of computational work over I when running

the task at frequency f0 as does configuration 1 running at

frequency f1.

For convenience, we express this equal computational

progress by saying that that (f0, c0) and (f1, c1) are in the

same equivalence class with respect to the given task. Note

that equivalence classes are defined with respect to individual

tasks, and will vary from one task to another depending on

the particular need of each task for the various architectural

modules.

This yields the following approach for incorporating archi-

tecture adaptation into a DVS-resource reclaiming framework:

Suppose the DVS resource reclaiming algorithm

assigns some task to execute over a given interval

I at frequency fb under the baseline architecture

configuration. Then, if (fc, c) is in the same equiva-

lence class for this task as (fb, baseline), assigning
frequency fc to this task in I under configuration c
will ensure that all task deadlines are met.

This leads to our methodology for integrating reconfigura-

tion into any DVS resource reclaiming algorithm: use the DVS

algorithm to specify a frequency for the baseline configuration

but use (if it exists) an equivalent frequency and configuration

under which less energy is consumed.

More formally, denote as before by Ei,c(τ) the energy



// e_i: WCET of T_i

// P_i: Period of T_i

select_frequency():

Use the lowest frequency f such that

U_1+U_2+...+U_n <= f/f_max;

upon task_release(T_i):

Set U_i = e_i/P_i;

select_frequency();

upon task_completion(T_i):

Set U_i to k/P_i;

// k is the actual time used

select_frequency();

Fig. 8: Pillai-Shin Algorithm for EDF

Task Period Config x Config y

WCET Energy WCET Energy

1 200 90 5 110 3.5

2 150 75 3 100 2

vH = 1.2 V, vT = 0.2398 V, clock= 2 GHz at vH
WCET = Worst Case Execution Time at high voltage

Relative task deadline equals its period

TABLE V: Example Parameters

consumed while executing task Ti under configuration c for

an overall task execution time of τ and let fi,c(τ) denote

the associated clock frequency. Suppose now that the DVS

algorithm calls for running task Ti for duration w under

frequency f
(DV S)
i . Denote by θi the entire execution time

of task Ti when run at frequency f
(DV S)
i under the baseline

configuration. Clearly, w ≤ θi. Find the configuration, cmin,

for which Ei,c(θi) would be minimized. Run Ti for w seconds

under this configuration and clock frequency fi,cmin
(θi).

We turn now to relaxing the uniform scaling assumption.

If the assumption does not hold across the entire task, then

the task must be divided into multiple phases of execution

such that the scaling assumption holds (to a reasonable

approximation) in each phase. These phases can be found by

profiling (by recording the average number of instructions

per cycle over segments of the program under each of the

configurations). The same approach as above can now be

implemented with respect to the individual task phases.

Example: To illustrate our approach, we show how to integrate

architecture reconfiguration into the Pillai-Shin DVS resource

reclaimer [20]. This algorithm (slightly modified for an in-

finitely tunable frequency and voltage) is shown in Figure 8.

It determines the appropriate frequency every time a task

is released or completed. The voltage is assumed to be set

at the minimum available level needed to sustain this clock

frequency.

Suppose we have a two-task system with the characteristics

shown in Table V. We make the usual assumption that the

relative task deadlines equal their respective periods. At time

0, we release the first iterations of both T1 and T2. From

the WCETs, we can determine the equivalent frequencies.

Consider configuration x running at clock frequency f0. Under

configuration y, the same rate of progress in executing task 1

will be possible if it is running at frequency 110
90 f0 = 1.22f0,

and in executing task T2 at frequency 100
75 f0 = 1.33f0.

The baseline utilization is 90/200+75/150 = 0.95. Clearly,

we cannot run configuration y for either task to begin with:

there is not enough time, but we can run configuration x
under a slowdown of 1/0.95, i.e., at a clock rate of 1.9 GHz

(corresponding to a supply voltage of 1.79 V). If it were to run

to its worst-case time, it would take a total of 75/0.95 = 78.94
units of time.

At time 0, the first iterations of both tasks are released.

Task T2 has priority over task T1 since its deadline of 150 is

earlier. It starts running at a clock rate of 1.9 GHz. Suppose

it completes at time 50, i.e., much earlier than its worst-

case time. At this point, the DVS algorithm recomputes the

frequency in order to reclaim the time released. The utilization

calculation is now 50/150 + 90/200 = 0.783. The baseline

frequency is now set at 2×0.783 = 1.567 GHz, corresponding

to a supply voltage of 1.025 V. The equivalent frequency for

T1 running under configuration y is 1.22 × 1.567 = 1.915
GHz; the supply voltage to attain this frequency is 1.157 V.

At these frequencies, the energy required for the worst-

case execution of T1 under configuration x (the baseline) is

1.314µJ and under configuration y is 1.170µJ . Hence, we

select configuration y, set the supply voltage to 1.949 V and

the clock rate to 1.915 GHz.

The system keeps running at this setting until the next

iteration of T2 is released at time 150. At this time, we recalcu-

late the frequencies: we go back to the baseline configuration

running at 1.9 GHz, and so on.

We now calculate the ratio of the energy consumption up

to time 150 under DVSAA and DVS. First, we calculate

the equivalent relative capacitance of both configurations.

Power consumption when switching capacitance C across V
volts at frequency f is proportional to CV 2f ; hence the

relative capacitance of the circuit for each task under each

configuration can be written as

Crel =
Energy at vH
v2Hf ×WCET

. (3)

Based on this, the relative capacitances for Task 1

under configurations x and y are Cx,1 = 0.01929 and

Cy,1 = 0.011048, respectively; the corresponding numbers

for Task 2 are Cx,2 = 0.013889 and Cy,2 = 0.006944.

We can now write the energy consumption ratio of DVSAA
to DVS, up to time 150, as

EDV SAA

EDVS

=
Cx,2 ·1.9 ·1.2

2
· 50+Cy,1 ·1.915·1.157

2
·100

Cx,2 ·1.9·1.2
2
·50+Cx,1 ·1.567·1.025

2
·100

=0.93

Note that exactly the same amount of computational work has

been completed in both cases; we have additional savings of

energy up to this point as a result of architecture adaptation.



V. FINITE NUMBER OF VOLTAGE LEVELS

The approach we have presented above can also be used

when the number of voltage (and therefore frequency) levels is

finite. The principal difference will be the shape of the energy-

to-execution time curve for each configuration.

As an example, consider a system that is restricted to having

two voltage levels, vH and vL. For some configuration c and

task Ti, let pH,i,c and pL,i,c be the power consumption at vH
and vL, respectively. Let the slowdown factor in switching

to low voltage be σ(vL) and τH,i,c the execution time at vH .

Suppose the task is assigned τH,i,c < t < σ(vL)τH,i,c seconds

of execution time. Let αH be the fraction of time it is executed

at vH . Then, we can write

αHt+ (1− αH)t/σ(vL) = τH,i,c

⇒ αH =
τH,i,c − tσ−1(vL)

t− tσ−1(vL)

The energy consumed will now be given by

Ei,c(t) = αHpH,i,ct+ (1− αH)pL,i,ct

=
σ(vL)(pH,i,c−pL,i,c)τH,i,c+(σ(vL)pL,i,c−pH,i,c)t

σ(vL)− 1

The energy-execution time plot is therefore linear in t. It might

provide better insight into this relationship by rewriting it in

terms of energies. At time τH,i,c, we consume Ei,c(τH,i,c),
which is obtaining by profiling. We also have from the

basic voltage scaling equation that Ei,c(σ(vL)τH,i,c) =
ρEi,c(τH,i,c), where ρ = (vL/vH)2. A straight line between

these two points is the energy-execution time relationship:

Ei,c(t) = Ei,c(τH,i,c)−
(1 − ρ)Ec,i(τH,i,c)

(σ(vL)− 1)τH,i,c

(t− τH,i,c). (4)

Examination of this equation shows that the greater the value

of Ei,c(τH,i,c), the more rapidly the energy consumption falls

as additional execution time is allowed. Therefore, the gap

between the curves corresponding to different configurations

tends to narrow with increasing execution time, until the

slowdown limit for one of the curves is reached; the gap then

expands as the second line continues downwards.

Figure 9 provides an example of the difference in behavior

between the fine-grained and two-level scaling approaches for

the basicmath benchmark. To reduce clutter, results for only

three configurations are shown. As is well-known, restricting

the number of voltage levels to 2 reduces the energy gain one

can attain. On the other hand, this is a much simpler and less

expensive scheme to implement. Figures 10 and 11 provide

results for the DVSAA/DVS energy consumption ratio.

VI. CONCLUSIONS

In this paper, we have outlined a dynamic adaptation ap-

proach to energy management in real-time systems. We should

emphasize that architecture adaptation is complementary to

voltage scaling; adaptation is finer-grained than voltage scaling

and allows one to tailor the existing configuration to the

available time and the needs of the task at hand. We have

shown how to carry out such adaptation within the framework
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of a resource-reclaiming dynamic voltage scaling algorithm.

Architectural adaptation can also be combined with techniques

used to reduce static energy consumption [12], [16], [27].
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