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Abstract

Data flow graph dominant designs, such as communication video and audio applications, are common in
today’s IC industry. In these designs, the datapath resources (e.g., adders, multipliers) count more than
90% in area. Different datapath resources have very different properties in terms of area, delay, power
and yield. Considering yield during system level design can result in significant benefits. A Mixed Integer
Linear Programming (MILP) formulation for yield-aware architectural synthesis is presented in this paper.
The proposed approach attempts to maximize the yield of the design while satisfying other constraints like
area and delay. Through experiments on several benchmarks, we show that incorporating the yield as an
objective during architectural synthesis can significantly improve the yield compared to conventional methods.
Transistor sizing at the circuit level can also be incorporated in our method to further improve the yield.

I. Introduction

A common goal in IC industry is the reduction of the manufacturing cost. Two factors affect the die
cost: die area and die yield [1]. Considerable effort has been devoted to decreasing manufacturing cost by
minimizing the die area. Reducing the die cost through yield maximization, however, is more complex since
the relation between yield and die area is not monotonic. The sensitivity of a layout to defects is measured
through its critical area [2] and by minimizing the critical area the yield can be maximized.
Because the critical area is directly related to the layout of the design, many schemes have been developed

for reducing the critical area at the physical design level, such as during placement [3], routing [4], compaction
[5], and cell library preparation [6]. Usually, the yield is dealt with as a secondary optimization goal. Current
techniques can increase the yield by up to 10% [7].
In [8], the authors claim that somewhere below the 0.18µm technology node, the old rules-of-thumb

cease to apply. The yield drops dramatically and is severely limited by design content. As a result, the
yield should no longer be regarded as a secondary goal. To achieve additional improvements in yield it is
necessary to modify the circuit topology itself. Synthesis-based yield optimization would allow the designers
more flexibility than just layout-based changes. One of the design stages that can prove to be particularly
beneficial is high-level synthesis, which is the process to determine the block level (functional units) structure
of the circuit. Conventional architectural synthesis focuses mainly on area, delay, or power constraints, but
not on yield.
Currently, data flow graph (DFG) dominant designs such as communication video and audio devices are

very common. In these designs, the datapath resources (i.e., adders, multipliers, comparators), account for
more than 90% of the die area while the controllers in these designs are relatively small and simple. To
the best of our knowledge, very little research on improving yield at the architectural synthesis level has
been published, since yield is traditionally considered as a secondary objective. In this paper, we show that
considering yield during the system level design stage can result in significant benefits.
We present here an approach in which we represent the yield optimization problem as a mixed integer

linear programming (MILP) problem. First, we use MILP to formulate the conventional scheduling and



binding during the architectural synthesis for the delay and area constraints. Then, we incorporate the yield
objective using the Poisson yield model. Since the yield objective is non-linear, we adopt an approximate
yield cost function which is linear. Finally, we utilize a commercial linear programming solver to find the
global optimization solution for the synthesis process. Our major contribution in this paper is that the
yield is regarded as an objective at the system level. As a result, the yield is maximized under the area,
delay and power constraints. We also analyze the problem of minimizing the area with a yield constraint.
Compared to the conventional solutions which do not take yield into account, our results show substantial
yield improvements. We also show that the well-known method of transistor sizing can be incorporated into
our approach to further improve the yield even without extra area penalty.
This paper is organized as follows. In Section II, a yield model at the system level is presented and a

yield extraction tool for functional units is introduced. In Section III, the yield as a constraint is discussed
and a mathematical formulation is proposed. Both area and delay optimization problems with a yield
constraint are formulated. Our experimental results are shown in Section IV. Conclusions and future work
are presented in Section V.

II. Manufacturing yield

A. Yield model of RTL-level

Various types of defects are introduced during the manufacturing process and may result in open or short
circuits. However, not all the defects will necessarily cause a failure. It is common to quantify layout
sensitivity to defects through the critical area [9]. The critical area, Ac

i (x), is defined for a defect of type i
and diameter x as the size of the area in which the center of the defect must fall in order to cause a circuit
failure. Ac

i is defined as the critical area for a defect of type i averaged over all possible defect diameters.

Ac
i =

∫

Ac
i (x)fd(x)dx (1)

where fd(x) is the defect size probability density function.
Then, di is defined as the average number of defects of type i per unit area. Finally, the average number

of faults in the circuit, denoted by λ, is:
λ =

∑

i

Ac
i · di (2)

For a given circuit block b with an average number of faults λb, the yield is expressed using the Poisson
model as [9]:

Yb = exp(−λb) (3)

We assume that, at the architectural level, all the blocks are statistically independent, and the defects are
uniformly distributed. Thus, for a system which has N functional blocks, the yield can be expressed as:

Ysystem =
N
∏

k=1

Yk (4)

where Yk is the yield for block k.
¿From (3) and (4), we have:

Ysystem = exp(−
N

∑

k=1

λk) (5)
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B. Yield simulation package

Our goal is to maximize the yield by selecting functional units from the library while satisfying given
constraints. Conventional libraries characterize the area, delay and power properties of their cells/functional
units. The yield value is not included and had to be calculated for our purposes. To this end, we use the
EYES

TM

(Edinburgh Yield Estimator Sampling) simulator [10] for calculating the yield of the various
functional units. EYES implements a sampling based methodology for critical area estimation and then
calculates the yield, based on the layout of the design. The procedure is shown in Figure 1.

C. Yield of library units

Adders and multipliers are the main units optimized in architectural synthesis of signal processing designs.
There are various types of adders and multipliers, each with different area, delay and power characteristics.
In order to compute the yield for functional units such as adders and multipliers, we generated the layout
for each functional unit we needed. In our examples, we prepared a RTL-verilog file [19] for the different

implementations of the functional units, synthesized to gate-level using Synopsys Design Compiler
TM

and
then used standard logic cell design methodology to generate the layout. The Cadence Silicon Ensemble

TM

(Qplace+Wroute) has been adopted for this task. After the layout generation, EYES was used to estimate
the yield as well as the area. The delay is estimated by the DC compiler in the gate level netlist. The detailed
flow is shown in Figure 2. All the data are obtained from the TSMC 0.25 µm standard cell technology.
In our functional unit library, we implemented two different adders and two different multipliers. The two

adders are the Ripple Carry Adder (RCA) and the Carry Look Ahead adder (CLA). The two multipliers are
the Overturned-Stairs (OS) multiplier and the Balanced-Tree (BT) multiplier [18]. The measured results
are shown in Table I. Column 2 shows the results of the Synopsys Design Compiler after logic synthesis to
the gate level netlist. Column 3 and 4 show the results reported by EYES. Note that all inputs and outputs
are 16 bits long.
It is not always the case that the smaller the area, the higher the yield. The yield value is highly related

to the circuit structure as well as to the physical routing style. For example, the OS multiplier has a smaller
delay (12.43ns) compared to the BT multiplier (15.94ns). The OS multiplier also has a smaller area (986
um2 vs. 1025 um2), however, it has an irregular structure and needs more routing tracks. Since the number
of routing tracks between cell rows is limited, more tracks means that more routing layers are needed. As a
result, for the OS multiplier, 3 layers are needed to complete the routing, while only 2 layers are needed for
the BT multiplier. The yield value we obtained for the BT multiplier (0.966) is larger than that for the OS
multiplier (0.946).



TABLE I
Area, delay and yield value for adders and multipliers in our library.

Resources delay(ns) area (×10−6cm2) yield (%)

RCA adder 5.91 90 99.0

CLA adder 1.90 196 97.5

OS multiplier 12.43 986 94.6

BT multiplier 15.94 1025 96.6

register 0.46 55 99.4

III. MILP for yield constrained architectural synthesis

A. Problem definition

A data-flow graph (DFG) is a polar directed acyclic graph G(V,E), where the set V = {vi : i = 0, 1, ...n}
is the vertex set, and E = {(Vi, Vj) : i, j ∈ 0, 1, ..., n} is the edge set. The vertex set represents the operators,
and the edge set represents the data dependencies between operators. Given an unscheduled DFG, with
available resources as shown in Table I, we have to find a yield-enhanced high-level synthesis such that the
delay and area constraints are met and the overall system yield is maximized.

• application: DFG dominant designs (i.e., the datapath consumes most of the circuit area compared
to the control logic), such as communication video and audio algorithms.

• inputs: Unscheduled DFG, with available resource library (functional units) to provide delay, area
and yield properties.

• outputs: Scheduled DFG with binding information, such that the delay and area meet the constraints
and the overall yield is maximized, or the delay and yield are constrained while the area is minimized.

B. MILP formulation for concurrent scheduling and binding

The parameters used in our MILP model are defined as follows. Let xil denote a binary variable indicating
that operator i is scheduled at time frame l, where 1 ≤ i ≤ nops, and 1 ≤ l ≤ L, where nops is the number
of operators and L is the system latency. There are nres resources (some may belong to the same functional
unit) available. For each resource k, there are ak implementations, each with delay Dk and area Ak. The
binary variable bir indicates the binding of operator i to resource r, where 1 ≤ i ≤ nops, and 1 ≤ r ≤ nres.
The mixed integer programming for concurrent scheduling and binding is shown in Figure 3 where A is

the total area and di is the actual resource delay for implementation of operator i. Expression (6) is the
unique slot scheduling constraint for each operator [11]. (7) is the unique resource binding constraint for
each operator. (8) is the actual implemented delay for operator i. (9) is the data dependency relationship of
the DFG [11]. (10) means that at most ar copies of resource r are available. (11) is the total area constraint.
(12) states that xil and bir are binary variables. Finally, (13) indicates that the intermediate variable ai

should be an integer (N denotes the integer set) between 0 and nops.
Note that (10) is nonlinear. Since both variables xil and bir are binary, the product of xil and bir is also

binary. There is a common technique [12] for linearizing the product by introducing another intermediate
binary variable kilr, defined such that kilr = 1 if operator i is scheduled at time step l and is bound to the
resource r, otherwise kilr = 0. Then, (10) can be rewritten as:











∑nops

i=1

∑l
m=l−di+1 kimr ≤ ar ∀r ∈ [1, nres], l ∈ [1, L]

xil + bir − 1 ≤ kilr ∀i, l, r

(14)



L
∑

l=1

xil = 1 ∀i ∈ [1, nops] (6)

nres
∑

r=1

bir = 1 ∀i ∈ [1, nops] (7)

di =
nres
∑

r=1

Dr · bir ∀i ∈ [1, nops] (8)

L
∑

l=1

l · (xjl − xil)− dj ≥ 0 {i, j : (vi, vj) ∈ E} (9)

nops
∑

i=1

l
∑

k=l−di+1

xik · bir ≤ ar ∀r ∈ [1, nres], l ∈ [1, L] (10)

nres
∑

r=1

arAr ≤ A (11)

xil, bir ∈ {0, 1} (12)

0 ≤ ai ≤ nops, ai ∈ N ∀i ∈ [1, nops] (13)

Figure 3. MILP Formulation for concurrent scheduling and binding.

B.1 Mixed Integer Linear Programming for Area constrained yield optimization

¿From (5), the yield maximization problem can be converted to the following:

minimize

nres
∑

r=1

arλr (15)

The Mixed Integer Linear Programming model consists of (15), subject to (6)-(9), (11)-(14).

B.2 MILP for yield constrained area minimization

In this problem, the yield constraint is obtained from (5):

nres
∑

r=1

arλr ≤ − log(Ybound) (16)

where 0 < Ybound < 1, is a parameter preset by the users. Again, the optimization objective is:

minimize

nres
∑

r=1

arAr (17)

subject to(6)-(9),(12)-(14) and (16).

IV. Experimental results

GAUT [17] was used to generate unscheduled DFG. We solved the MILP problems using a commercial
MILP solver CPLEX [13]. The AMPL [13] language was used to model the formulations listed above.

A. Verification of area-constrained maximal yield synthesis

In this section, we illustrate the benefits of the proposed approach by comparing the results of the area-
constrained maximal yield optimization with the conventional minimal area synthesis. Figure 4 shows the
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Figure 4. Two schedules for FIR16 benchmark with L=19. (a) minimal area solution: five fast OS multipliers are needed and
the total yield is 0.716. (b) yield driven solution with a constrained area: the total yield is 0.760.

scheduled DFG for the FIR16 [17] benchmark, with the latency requirement of 19 cycles using the resource
library specified in Table I. The left part is the minimal area solution which uses a fast adder (CLA) and
five fast multipliers (OS). We assume that each functional unit (adder, multiplier) mapped needs a 16-bit
register. The total area of this design is 6226 units and the total yield is 0.716. The right part of Figure
4 shows the result of the maximum yield synthesis with an area constraint of 120% of the minimal area
solution. A fast adder (CLA), two fast multipliers (OS) and three slow multipliers (BT) are used. The total
yield of this design is 0.760, improving the yield by 6.0% at the expense of a 4.5% extra area.
In order to verify our yield driven architectural synthesis, we generated the final layout for the above

example and then used the EYES tool for final yield evaluation. The left part of Figure 5 is the layout we
manually generated according to the scheduled DFG result in Figure 4. The right part is the critical area
map reported by EYES. In this case, the reported yield value for Figure 4 is 0.717 for the minimal area
solution and 0.773 for the yield driven solution. These are quite close to the predicted values, and indicate
a possible increase of 7.8% in the yield. Note that the layout we generated ignores the controller.
Another example is shown in Figure 6. FFT is widely used in compression and decompression algorithms

[17]. Our latency requirement is 13 clock cycles. The yield for the minimal area solution is 0.656, using two
CLA adders and six OS multipliers. The yield for our yield-driven solution is 0.738, using two CLA adders
and six BT multipliers. The relative yield improvement is 12.4% at an expense of 7.9% extra area.

B. Results for area-constrained maximal yield synthesis

We have selected several architectural synthesis examples [16] to evaluate our approach. We first performed
a minimal area synthesis disregarding the yield (Algorithm B.2 without Equation (16)). Then, we generated
an area constrained maximal yield synthesis (Algorithm B.1). For each example, 3 to 5 points were selected
with different latency requirements. We set the area constraint to be 1.2 times the minimal area. Figures
7 and 8 show the detailed synthesis results with respect to the different latency requirements for the AR
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filter. Figure 7 shows the area for both the minimal area solution and the constrained area maximal yield
solution. As expected, the required resource numbers decrease because of the increase in latency. Figure 8
shows a steady improvement of the yield.
Figure 9 shows the maximal yield improvement relative to the yield of the minimal area solution. The

area is also normalized to its value for the minimal-area solution. From the figure, we see that the yield can
be improved by as much as 12.4% with an area penalty of 7.9% (FFT). Note that for the Elliptic benchmark
circuits, the minimal area solution and the area-constrained yield driven solution are the same, since only
adders are used in this circuit. In our library (RCA,CLA), the RCA adder is better in terms of both area
and yield. The solution which reduces the area will also improves the yield, and as a result, the synthesis
solutions are the same.

C. Transistor sizing effect in library design

Transistor sizing can not only change the delay and area, but also affect the yield. For example, by
carefully sizing the RCA adder we can pay little in terms of the area and yield and greatly improve the
delay, as shown in Table II.
From the table above, the sized RCA 2 adder makes a trade-off between the original RCA 1 adder and

CLA adder. By slightly sizing the transistors, the delay can be reduced by half with the yield only slightly
affected. We incorporate the sized RCA adder into our resource library and re-synthesize the Elliptic circuit.
Table III shows the results. In both latency cases, the yield is further improved (2.5% to 3.2%) because of
the newly introduced resources while the area can be reduced by as much as 38.6%. We may conclude that
by carefully sizing the resources, the yield can be further improved even without extra area penalty.

V. Conclusions and Future work

We have formulated in this paper the yield optimization problem as an MILP problem during the ar-
chitectural synthesis procedure. In contrast to previous publications, the yield is optimized prior to the
conventional circuit or layout design stages. From our experimental results, the yield can be improved by
as much as 12.4% with an area penalty of 7.9%. The yield may be further improved by incorporating the
conventional method of transistor sizing.



TABLE II
Area, delay and yield for transistor sizing of the RCA adder.

Resources delay(ns) area (×10−6cm2) yield (%)

RCA 1 5.91 90 99.0

RCA 2 3.0 107 98.9

CLA adder 1.90 196 97.5

TABLE III
Yield improvement by transistor sizing for the Elliptic circuit with area constrained minimal yield

synthesis.

Latency no sizing sizing change

L=11
Area 898 631 -29.7%

Yield 0.909 0.932 2.5%

L=12
Area 792 486 -38.6%

Yield 0.918 0.947 3.2%

An important concern that may arise when using MILP is that the number of variables grows exponentially
as the problem size increases. However, in some recent papers, relaxing the MILP problem to a linear
programming (LP) problem is presented [14, 15] resulting in a polynomial rather than exponential growth.
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