Discrete Applied Mathematics 45 (1993) 169-179 169
North-Holland

On paths with the shortest average
arc length in weighted graphs

Shmuel Wimer
IBM Science and Technology, Matam, Haifa 31905, fsrael

Israel Koren

Departiment of Electrical and Computer Engineering, University of Muassachusetts, Amherst, MA 01003,
Us4

Israel Cederbaum
Department of Electrical Engineering Technion — Israel Institute of Technology, Haifa 32000, Israel

Received 24 July 1990
Revised 17 June 1991

Abstract

Wimer, S., 1. Koren and I. Cederbaum, On paths with the shortest average arc length in weighted
graphs, Discrete Applied Mathematics 45 (1993) 169-179.

The problem of finding the path having the smallest average arc length in an acyclic digraph with a
single source and a single sink is considered in this paper. This problem arises in VLSI block placement
procedures when spreading the building blocks uniformly over the chip area is attempted. A well-
known approximation algorithm to find the path with the minimum weight-ratio in a doubly-weighted
graph can solve this problem. It combines a combinatorial algorithm with numerical iterations and its
time complexity is O(1/1° log ¥/g}, where | Ul is the number of vertices and £ is the desired accuracy. This
paper presents two new algorithms. The first, called the path length minimization algorithm, is based on
the same principles as the algorithm presented by Karp, and can also be applied te undirected graphs.
1t is purely combinatorial and has O(i /1) time complexity. We show how this algorithm for finding the
path with the minimum average arc length can be extended to solve the more general problem of finding
the path with the minimum weight-ratio in a doubly-weighted graph for which the secondary arc
weights are positive integral or rational numbers. The second algorithm, called the vertex balancing
algorithm, approximates the minimurmn average arc length path in any desired accuracy. It alse com-
bines a combinatorial algarithm with numerical iterations. Though having an expenential time com-
plexity, it has been used successfully, achieving rapid convergence in all the practical cases which have
been encountered.

Corresponrdence to: Professor I, Koren, Department of Electrical and Computer Engineering, University of
Massachusetis, Amherst, MA 01003, USA.

0166-218X/93/506.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved

170 S, Wimer et al.
1. Introduction

Let G(U, E) be a finite weighted acyclic digraph having one source and one sink,
denoted by s and ¢, respectively. This paper studies the problem of finding a path
from s to ¢ along which the average arc length is minimum among all paths from
sto . The problem of finding the path having the minimum average arc length arises
in VLSI block placement. There, in order to avoid block congestion and make the
routing of interconnections feasible, the building blocks have to be spread uniform-
Iy over the chip area. The uniform spreading problem was modeled and solved in
[1] via an acyclic weighted digraph, for which a path with a minimal average arc
length is found.

This paper presents two approaches to solve the minimum average arc length path
problem, and some extensions to find the path having the minimum weight-ratio in
doubly-weighted graphs. One is purely combinatorial, yiclding the desired path.
This algorithm follows the same principles as the algorithm presented by Karp [4]
which finds the minimum cycle mean in a digraph. The second combines a com-
binatorial algorithm with numerical iterations, and finds a path which solves the
problem for any desired accuracy, defined as follows. Let © be a path from s to
f along which the average arc length is minimal, and let £ be any real positive
number. We say that a path A from s to ¢ solves the problem with accuracy ¢ if its
average arc length satisfies

) 1@ _ "

where I(Q) and /(A4) are the lengths of £ and 4, respectively, and |2| and |4| are
their cardinalities. - . .

One way to solve the above problem is to apply the well-known approximation
algorithm for finding the path with minimum weight-ratio in a doubly-weighted
graph [2]. There, two positive weights are assigned to every arc ec E: a primary
weight denoted by /(e) and a secondary weight denoted by w(e). The problem then
is to find a path & for which the objective function z($) given by the ratio
W{P)=Y,c0 /()L cp we) is minimized. It is evident that by setting w{e)=1 for
every e E, the above problem turns out to be the minimum average arc length path
problem. The algorithm described in [2] comprises a combinatorial algorithm and
numerical iterations. Its complexity is O(|U|’ log 1/¢), where |U| is the number of
the vertices in G and ¢ is the desired accuracy.

The two new algorithms for the minimum average arc length path problem are
presented in the following order. The first algorithm is described in Section 2. It is
purely combinatorial and has O(|U|*) time complexity. Section 3 presents the se-
cond algorithm combining a combinatorial algorithm with numerical iterations.
Though having exponential time complexity, it has been found to be very efficient
for all the practical cases for which a solution of the problem has been attempted.

Section 4 concludes the discussion.

Path with the shortest average arc length 171
2. The path length minimization algorithm

Let us number the vertices of the acyclic digraph G as follows. First, every vertex
is ranked according to the maximal cardinality (number of arcs) of some path from
s to the vertex. Clearly, s has rank 0, ¢ has the highest rank, and no two vertices
of the same rank lie on a common path. Next we number the vertices according to
their rank, starting with s, then the vertices of rank 1 (in an arbitrary order), then
the vertices of rank 2 and so on. This way s is numbered by 1, f is numbered by
|U| and for every arc e(u,v) the vertex u is assigned a smaller number than the
vertex v (see for example the st-numbering in [3]}.

Let u be a vertex on a path from s to ¢. Obviously, among all the paths connecting
s with u# and having the same cardinality, only the shortest one (if there are several,
choose one arbitrarily) can be a part of the shortest average arc length path from
s to t. With every vertex u € U we associate a real-valued vector L(x) of length |U|
whose elements are defined as follows. The jth element of L{x), denoted by L;(u),
0<j<|U| -1, is the minimum length of any path from s to ¥ whose cardinality is
exactly j. Let IT(u) denote a path yielding that minimum length (there may exist
several ones). Clearly, the cardinality of a path cannot exceed |U| — 1 since G{U, E)
is an acyclic digraph. If for some cardinality there exists no path from s to u, an
infinite length is assigned. We also associate with u a vector P(u) of length |U],
whose jth element, denoted by P,(u), indicates the last vertex preceding # on
IT(u), i.e., the vertex v for which L;_,(v)+e(v,u)) =Ly(u}. If Lj(u)=oo, we set
Piu) = 9.

The algorithm proceeds iteratively. Starting from s, in each iteration a new vertex
is marked until 7 is reached. When a new vertex # is marked we know the length
of the shortest path from s to u for every cardinality between 0 and |U/| — 1. In the
following algorithm 7"™(x) and I"®* () denote the sets of arcs entering and leaving
u € U, respectively.

Step 0: Initialization. Set Ly(s)=0 and Li(s)=o, 1<j<|U|-1. Mark s and set
T=U—{s}. For every ueT set Li(u)=c0, 0<j<|U|- 1. For every ue U define
Piuy=¢, 0<j=<|U|~1.

Step 1: New vertex selection. Find a vertex u e T for which all the tail vertices of
the arcs in I"™(u) are already marked. Such a vertex must exist since G(E, U) is an
acyclic digraph with a single source and a single sink whose vertices are numbered
as described above.

Step 2: Updating the minimum path lengths. Determine the shortest path length
vector L(u) by considering every vertex v for which e(v, u) e '™(u) as follows.

Liu)=min{L;_, (") +le(v,u)) |e(vu)eM™w)}, 1=j=<|U[-1. (2

Let v* be the vertex obtained when solving (2) for given u and j. Then, set
Piu)=v*
Step 3: Updating the set of marked vertices. Mark u and set T=T—{u}.

172 S. Wimer el al.

Step 4: Termination test. If u=1t then go to Step 5, else go to Step 1.

Step 5: Retrieving the minimum average arc length path. Upon termination, every
Li(f)<oe is the length of the shortest path from s to ¢ among all the paths of car-
dinality j. For every j satisfying L(t)= o there exists no path of cardinality j from
s to ¢. Evidently, min{L,(¢)/j | 1=<j<|U|—1} yields the minimum average arc
length for any path from s to ¢. Let j* be the cardinality of the path for which the
minimum average arc length was obtained. Then, the desired path is retrieved by
traversing backwards from ¢ to s as follows. We start from ¢ and go backwards to
the vertex stored in p;+(¢). We then go backwards to the vertex stored in Pio_ | [Pyo(D)]
and continue in the same manner until s is reached.

Let us calculate the time complexity of the above algorithm. Notice that in order
to find L(u) and P(u) for a vertex ue U, we have to find for each Liu), 1=j=
[U]| -1, the minimum of a set of /()| expressions of type (2). This requires
O([U||™™(u)]) operations. Since |J, ., 7" (u)=F, the total time complexity is
O(|U||E|), which in the worst case may be equal to O(|U|?). Notice that the above
algorithm is applicable also to undirected graphs. Let ['(#) denote the set of the
edges incident to #. Then, one has only to replace ™(u) by (1) in Step 1.

2.1, Minimum weight-ratio in doubiy-weighted graphs

As stated in the introduction, finding the minimum average arc length path is a
special case of a more general problem in doubly-weighted graphs, of finding the
path from s to ¢ for which the ratio between the primary and the secondary path
weights is minimized. In the following we propose an alternative to the algorithm

presented in [2], by showing how the previous algorithm can be generalized to handle
doubly-weighted graphs for which the secondary weights are nonnegative integral
or rational numbers.

Assume first that the secondary weights are integral numbers. Let 2’ and ©2” be
two different paths connecting s with some vertex u, such that the secondary weights
satisfy ¥, _ wl(e) = L, w(e). Obviously, if the corresponding primary weights
satisfy ¥ . o He}> X, .o I(e), 2’ cannot be a part of any path from s to ¢ for
which the ratio between the primary and the secondary path weights is minimized.
If ¥,.0 /€)=Y, o I(e) we can arbitrarily discard one of @’ and £2”, since their
effect on the weight-ratio of the paths passing through u is identical. Let W be the
maximal secondary weight of any arc, i.e., W=max{w(e) _ ee E}. Clearly, the total
secondary weight of any path from s to any vertex cannot exceed (|U]| - 1)W. The
above observations lend themselves to an extension of the former algorithm in
which we associate with every vertex we U a real-valued vector L{x) and a vector
P(u) both of length (|U|— 1)W+ 1. For any index j, 0=<;=<(|U| - 1)W, L;(1) is the
minimum primary weight of any path £ from s to u satisfying ¥, ceo W@ =4. Let
I1{(u) denote the path yielding the minimum primary weight. If for some j there ex-
ists no path from s having that secondary weight, an infinite primary weight is

Path with the shortest average arc length 173

assigned. The jth element of P(x) indicates the last vertex preceding & on fI;(u),
i.e., the vertex v for which LAu)=L;_ ey, (v} + {(e(v, u)).

It is clear now how to apply the path length minimization algorithm to this prob-
lem. We will not elaborate on that and only remark that instead of dealing with path
cardinalities one should consider their secondary weights, and change the range of
the index j from 0=<j=<|U|—1 to 0=j=<{|U| - 1)¥ accordingly. In particular, the
retrieval of the optimal path in Step 5 is started from ¢ and goes back to the vertex
stored in P;«(¢f). Then, we go backwards to the vertex stored in Pjs_ p,., n[P;+(1)]
and so forth, until s is reached. Since in every iteration of the algorithm we have
to consider all the possible secondary weights, it turns out that its worst-case time
complexity is O(W |U)3).

Notice that the above algorithm is applicable also if all the secondary arc weights
are a product of an integral positive number and a real positive constant, since such
a multiplication preserves the path with the minimum weight-ratio. Consequently,
the algorithm works also for the case of rational positive secondary weights. One
has only to find the minimal common denominator of all the secondary arc weights
and then specify it as the multiplicative factor.

3. The vertex balancing algorithm

This section describes an algorithm that yields an approximated solution to the
shortest average arc length path problem. Although it has an exponential time com-
plexity, in practice, it solves the problem in O(|U _Mv steps, as compared to the
O(|U|%) steps required by the first algorithm. This algorithm proceeds iteratively,
where in every iteration the length of G’s arcs is modified by considering its vertices
one by one, in such a way that the length of every path from the source s to the
sink ¢ is invariant. We call this operation a balgncing cycle. Let G, denote the
graph obtained after the zth iteration, and let /,(¢) be the length of an arc e in G,,.
We shall prove that the series {/,(e)} converges uniformly for every arc e € E, thus
resulting in a limit graph denoted by G,. Moreover, G, possesses the property
that for each of its vertices except 5 and {, the length of the shortest entering arc
is equal to the length of the shortest leaving arc. We then show how this property
vields the path having the minimum average arc length.

We first present some notations and definitions. Let a(#)} and S(u) denote the
shortest length of any entering and any leaving arc of a vertex u, respectively, i.e.,

a(u) = min{l(e) | ee M)}, uelU-{s}, (3a)
Au) = min{i(e) | ee I (1)}, ueU—{s}. (3b)

We define u(#) to be the imbalance of the vertex u,

p(u) = plu)y—afu), wel-—{st}. (30)

174 S. Wimer et al.

e,(u), f.(u) and p,(u) are defined similarly for G,. The graph G is said to be
balanced if

i) =0, YuelU-{st}. 4)

The iterative algorithm described below transforms the original & into an infinite
series of isomorphic graphs {G, } converging to a balanced graph denoted by G...
In contrast to the previous algorithm which required the vertices to be numbered,
their order in the following algorithm can be arbitrary. However, to simplify the
convergence proof we first assume that they are numbered as before, and then we
show that the algorithm is valid for any ordering.

Step 0: Initialization. Set Gy=G and a=0.

Step 1. Defining a new iteration. Set n=n+ 1.

Step 2: Performing a balancing cycle. For every u e U~ {s, 1} repeat the following
process in the order defined by the vertex numbering. Calculate first the imbalance
() and then update the length of all its entering and leaving arcs as follows:

I(e) = le) +3u(u), VYeel™(u);

(e} = le)—tu(u), Veel™(u). ©
Denote by G, the resultant graph after processing all the vertices in the nth itera-
tion, n=0,1,2,..., and by u,(1) the imbalance of a vertex ue U—{s,#} in G,,.
Step 3: Termination fest. Let § be a real positive parameter controlling the ac-
curacy of the solution. Then, if max {| g, (#)||ue U—{s,t}} <J go to Step 4, else go
to Step 1. . . — e
Step 4: Retrieving the minimum average arc length path A. For each ue U—{s}
let R(u) denote the vertex in G,, for which the length of the arc (R (), #) is minimal
among all the arcs ee I'™(u), i.e., L(R(u), u)=a,(t). Then, the desired path is
retrieved by traversing backwards from / to s as follows. We start from ¢ and go
backwards to the vertex R(f). Then we go backwards to the vertex R(R(?)) and con-
tinue in the same manner, until 5 is reached.

3.1. Convergence of the algorithm

We still have to show that the convergence assumption of the infinite series {G,}
in Step 3 is always true, and that the path retrieved in Step 4 achieves the minimum
average arc length for any desired accuracy. We prove first the convergence.

Lemma 3.1. The infinite series of graphs {G,} resulting from the vertex balancing
algorithm by ignoring the termination test of Step 3 converges to a graph G,
satisfying

Uo(W) =0, VuelU-{st}. (6)

Path with the shortest average arc length 175

Proof. Define
fn = max{}u, ()| [u€ U= {s,1}}. U]

Let g be the maximal number of vertices along a path from s to ¢ {excluding s and ¢}.
We show next that there exists a real nonnegative number 0<y<1—1/27 such that

1Sy, n=01,2,.... (8)

The validity of (8) implies that the imbalance of each vertex uniformly converges
tO Zero, SINCe 4| < Vi<Vl 1 <<y iy,

To prove (8) notice that the vertex balancing operation in Step 2 of the algorithm
equally shortens (lengthens) the length of every entering arc, and equally lengthens
(shortens) the length of every leaving arc. Also, recall that during a balancing cycle
the imbalance of every vertex is reset to zero once, and later on in this cycle it may
become unbalanced when an adjacent vertex is balanced. In principle, the balancing
of a vertex 1 may affect only the imbalance of its adjacent vertices, which may in-
crease in the worst case by half of u’s imbalance. Recall that the vertices are
numbered and let ey, v)e I °"(x). Then, the imbalance of v immediately after
balancing ¥ is increased by at most 1u,, i.e., its imbalance is bounded by u,+
Ly, =14u,. Let e(v, w) e 7°"'(v). Then, the imbalance of w immediately after the
balancing of v takes place, is increased by at most 3u,, i.e., it is bounded by
fy + {1ty + 51,)= 13u,. The effect of balancing a vertex on the remaining vertices
propagates along the paths passing through it. Consequently, only those vertices
lying on paths passing through ¥ may be affected by the balancing of . Moreover,
this effect decreases in integral powers of 4+ with the distance from .

When the imbalance of a vertex is considered, one entering and one leaving arc
are determined (see equation (3)). Suppose that the vertices along the maximal car-
dinality path are numbered u,, i, ..., 4, (s and £ are excluded). Then, the maximal
number of balancing operations during a balancing cycie that may affect the im-
balance of u, is g— 1. Therefore, the maximal quantity that can be added to the
imbalance of %, during cycle n+1 is

faGh 4+ 417297 = 1, (1-1/297Y), ©)

and the total imbalance of u, prior to its balancing in cycle n+ 1 is bounded by
1#,(2—1/29""), Thus, after the imbalance of u, was reset to zero in this cycle, the
imbalance of u,_, is bounded by (1 - 1729 u,,. The inequality (8) follows by setting
y=1-1/29,

The convergence of the graph series {G,} follows now immediately. First, the
topology of the graph is invariant during the whole algorithm. Secondly, during a
balancing cycle the length of each arc can be changed at most twice, once upon the
balancing of its tail vertex and once upon the balancing of its head vertex. Since the
maximal magnitude of a single change in the length of any arc during the {z# + 1)th
balancing cycle is not greater than half of the actual imbalance, which is bounded

176 S. Wimer et al.

by u,, the overall change in any arc length cannot exceed #,,, which has been proven
to converge to zero, (O

We show now that the path A retrieved in Step 4 achieves the minimum average
arc length for any desired accuracy.

Lemma 3.2. Let ¢ be the desired accuracy of the solution to the problem of finding
the minimum average arc length path. The parameter § in Step 3 can be chosen suf-
Jiciently small such that the path A retrieved in Step 4 of the algorithm solves the
problem with accuracy e, i.e., inequality (1) is satisfied.

Proof. Let 2 be the path obtained by applying Step 4 of the algorithm to G,
{Lemma 3.1 proved that G, exists). According to Lemma 3.1 all the imbalances in
G, are zero. Therefore, the arc lengths along 2 in G, are the same. Moreover,
their length is minimal among the arc lengths in G,. Otherwise, there would exist
an arc e ¢ 2 having smaller length than the length of the arcs along §2. Since the im-
balance of a vertex is determined by its shortest entering and leaving arcs, and in
G, the imbaiances are zero, one could then construct a distinct path from s to ¢ for
which the arc lengths are all equal, and are smaller than those of £2. This contradicts
the fact that the construction of §2 in Step 4 started with the shortest arc in 7'™(#).
Consequently, €2 solves the problem in G,.. Since the lengths of isomorphic paths
from s to ¢ are identical in G and G, it follows that the average arc length along
paths from s to f is invariant, and hence € solves the problem in G, too.

We now set the termination parameter & =¢/2!Y1~! and show that in G, {and as
stated above, in G, too) inequality (1} is satisfied. It has been shown in the proof

of Lemma 3.1 that the magnitude in which any arc length can be changed during
a balancing cycle is not greater than the product of 1 —1/27 and the maximal im-
balance after the previous balancing cycle, Therefore, the difference between the
length of any arc when the algorithm terminates (due to the condition stated in Step
3), and its length in &, cannot exceed

==
£
6§ Y (1-1/29y =295=2WI-25 =2 (10)
r=0 2
Let the path A that was retrieved in Step 4 of the balancing algorithm consist of
the arcs e, ..., €, and the minimum average arc length path Q consist of the arcs

@, ..., 4y. The fact that when the algorithm terminates the imbalance is smaller
than &, and the way A was constructed, imply that the lengths of the arcs e, e,_),
€y _5, ..., €], in G, do not exceed the values /,{e), /,(e)+ 6, ,(e)+26,...,1,{e,) +
(k—1)d, respectively. Therefore,

14y L) & Lled+k-i)d k

= = <l {e)+—2. 1

Since in Step 4 of the balancing algorithm the arc e, was selected as the arc of

Path with the shortest average arc length 177
minimal length among all the arcs in 77°(¢) (to which a,, belongs too), the follow-
ing is true:

NaAN\L = ?AQEW. A—Nu

According to (10), the difference between the length of an arc in G, and its
length in G, is bounded by &/2. Hence,

e I8 ¢ Q) ¢
} =ly o=t =—d4—. 13
(@) =lalay,) 2= el 727 a2 (13)
Finally, the minimality of £ implies that
@) 1) (14)
2] 4]
Combining equations (11)-(14) vield the following inequalities
(A} k kK N2y kK, ¢ Ay k_ ¢

t|mimi+.N.mm~=Aa5v+lmm|+lw.+|.n|+lm+| (15a)

4] 2 7@ 270 27 ja) 2 27
which in turn implies that
k
*MW|mm|wm¢mwm¢Ww+m%+m. (15b)
Consequently,
i4) ()

k U
m|m+MAhPm+mAp (15¢)
27722 772

which proves that the path A solves the problem in accuracy . [l

It can be easily verified that any order of balancing the vertices within the balanc-
ing cycle vields convergence. This follows from the fact that the coefficient y=
1-1/29<1-1/2!Y1-2 i5 an upper bound on the reduction of the imbalance from
cycle to cycle, and it is independent of the order in which the vertices are considered
during the cycles. Moreover, this order can vary from cycle to cycle, as long as each
vertex is balanced once in every cycle. In general, convergence is guaranteed for an
arbitrary balancing scheme, as long as the period between two consecutive
treatments of any vertex is uniformly bounded.

3.2. Complexity of the algorithm

The complexity of the balancing algorithm is exponential in the number of ver-
tices in G. Consider first a single balancing cycle. There, every arc is treated exactly
twice: once upon the balancing of its tail vertex, and once upon the balancing of
its head vertex. Therefore, the time complexity of a balancing cycle is @(|E|) which
is @(|U?|) in the worst case.

178 S. Wimer et al.

Table 1. Number of iterations as a function of the maximal path cardinality and the desired accuracy
for uniformly distributed arc lengths

s q

20 50 100 200
107 1.8x10% 6.2x 102 1.8x10% 4.0x10?
107 §5.0%x 107 2.4x10° 8.6x 107 3.1x 104
10-10 7.2%10% 4.2%10% 1.6x10* 6.2 x 10*

To calculate the number of balancing cycles, let & be the desired accuracy and let
n denote the number of balancing cycles required to achieve this accuracy. Any im-
balance during the execution of the balancing algorithm is bounded by the largest
arc length in G. Assume for convenience that this is a unit magnitude. It has been
shown in Lemma 3.1 that the factor (1—1/2!Y1-2)~1is a lower bound on the reduc-
tion of the imbalance from cycie to cycle. Also, to obtain accuracy &, we set in Lem-
ma 3.2 the termination parameter 6 to be eqgual to e/21U1-1, Therefore, the
following equation determines the number of iterations needed to terminate the
algorithm,

sttty _ &
(1-1/2 V|NE_L_ (16)

which after some manipulations yields n H®_N_SA_ U +log(1/¢€))].

Surprisingly, in practice, for problems where |U|=0(10%), the algorithm con-
verges very fast. In contrast to the above worst-case analysis, the balancing of a
vertex may in practice, reduce the imbalance of some of its adjacent vertices, which
in turn reduces substantially the number of iterations needed to achieve a given ac-
curacy. Table 1 provides some information on the measured efficiency of the vertex
balancing algorithm. There, the number of balancing cycles is shown as a function
of the required accuracy and the largest cardinality of a path in the given graph. The
arc lengths were drawn from a uniform distribution in the interval [0, 1]. One can
see that the number of balancing iterations as a function of g grows quadratically
rather than exponentially. .

One may expect that if a zero length would be assigned to all the arcs in G except

Table 2. Number of iterations as a function of the maximal path cardinality and the desired accuracy
for 0-1 arc lengths

d q

20 50 100 200
1074 2.1 %107 8.3x 10 1.9% 10? 2.5x 107
1077 4.9%102 2.6x10% 8.9x 103 1.0x 10*

101 T.1% 107 4.3%10° 1.6x10° 5.7x10%

Path with the shortest average arc length 179

one arc in I"™(f) which would be assigned a unit length, then a much larger number
of balancing iterations will be required. This follows from the unit imbalance that
we start with and its propagation to other vertices. Tabie 2 shows the results for this
case for a graph isomorphic to that of Table 1. Surprisingly, the results are almost
the same as those for the uniformly distributed arc lengths.

4. Discussion

Although the worst-case analysis of the vertex balancing algorithm yields ex-
ponential complexity, in all the practical examples which have been encountered, a
quadratic growth in the number of balancing iterations was observed. It is in-
teresting to find out why the performance, in practice, is extremely better than the
theoretical one. Also, it might be worthwhile to construct an example for which the
number of balancing iterations approaches the worst-case complexity.

Acknowledgement

The authors would like to thank an anonymous referee for his helpful commenis
and suggestions, and the correction of the proof of Lemma 3.2.

References

[1] 1. Cederbaum, I. Koren and S. Wimer, Balanced block spacing for VLSI layout, Discrete Appl.
"Math. 40 (1992) 303-318.

[2] N. Christofides, Graph Theory-An Algorithmic Approach {Academic Press, New York, 1975) Ch. 8.

[3] S. Even, Graph Algorithms (Computer Scicnce Press, Rockville, MD, 1979).

[4] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978)
309-311.

