
OPTIMAL ASPECT RATIOS OF BUILDING BLOCKS IN VLSI

Shmuel Wimer ‘,’ , Israel Karen 3 and Israel Cederbaum 1

1) Dept. of Electrical Engineering Technion - Israel Institute of Technology, Haifa 32000, Israel
2) IBM Israel Scientific Center, Technion City, Haifa 32000, Israel

3) Dept. of Electrical and Computer Engineering, Univ. of Mass., Amherst MA 01003,
on leave from the Technion, Haifa, Israel

ABSTRACT

The building blocks in a given floor-plan may have
several possible physical implementations yie1din.g dif-
ferent layouts. This paper discusses the problem of
selecting an optimal implementation for each building
block so that the area of the final layout is minimized.
A polynomial algorithm that solves this problem for
slicing floorplans was presented elsewhere, and it has
been proved that for general (non-slicing) floorplans
the problem is NP-complete. We suggest a bfranch
and bound algorithm which proves to be very eflicient
and can handle successfully large general non-slicing
floorplans. We show also how the non-slicing and the
slicing algorithms can be combined to handle effi-
ciently very large general floorplans.

1. INTRODUCTION AND BACKGROUND

Most of the existing algorithms for floorpla.nn.ing
require a completely defined geometry of the building
blocks. Floorplanning however, is attempted at the
very early stage of VLSI physical design, when there
is only a rough estimate of the building blocks geom-
etry. In many cases a good estimate of the building
blocks areas is available at this stage, but their exact
dimensions can still be varied in a wide range. An
example is the register file block consisting of 64 regis-
ters in a CPU. This register file can be organized as a
1 x 64, 2 x 32 , 4 x 16 or 8 x 8 array, and if we con-
sider also the two possible orientations for a single
register and the whole file, there are 14 different
implementations, as shown in Figure 1. Given the
floorplan of a chip, we wish to take advantage of the
many possible implementations of its building blocks
and search for those implementations yield.ing a
minimum area layout.

In [S] a similar problem has been solved, where it was
assumed that the dimensions of each building block
can vary continuously in some given interval while its
area is assumed to be invariant. In [3] the problem
of finding an optimal orientation of the building
blocks in slicing floorplan was discussed and an efi-
cient polynomial solution was presented. Its time and
storage requirements are O(b log b), where b is the
number of building blocks. Notice that the optimal
orientation problem (in which each building block has
tw-o possible implementations) is a special case of our
problem. Another efficient polynomial algorithm to

determine the optimum geometry of the building
blocks in slicing floorplans was presented in [2].
There, the geometry of the blocks is constrained by a
piecewise linear function, which can approximate any
smooth function. Its complexity is O(k b log b), where
k is the maximal number of breakpoints in a geometry
constraining function. It was also shown in [3] that
the optimal orientation problem for general (non-
slicing) floorplans is NP-complete, and an integer pro-
gramming method to find the minimum area layout
was presented in [7].

Consequently, the more general problem of deter-
mining the optimal dimensions (and not just the
optimal orientation) of the building blocks in non-
slicing floor-plans is NP-complete. Since non-slicing
floorplans often occur in practice, we propose in this
paper a branch and bound algorithm. The proposed
algorithm has been implemented and proved to be
efficient and capable of handling successfully large
floorplans.

2. SLICING FLOORPLANS

A common representation of a floorplan is through a
pair of dual polar graphs , called the x - graph and
the y - graph and denoted by G(Cr,E) and H(v,g,
respectively (e.g. [l], [S]). Figure 2(a) shows a
floor-plan whose vertical line segments are denoted by
u1 through u, and its horizontal line segments by v1
through v,. Figure 2(b) shows the corresponding dual
polar graphs, one drawn on the top of the other. A
vertex in G(U,E) represents a vertical line segment of
the floorplan. An arc e directed from ui to z+ exists if
there is a sub-rectangle in the floorplan whose left and
right edges lie on the corresponding vertical line seg-
ments. The source and the sink of G(U,E) correspond
to the leftmost and the rightmost vertical line seg-
ments of the floorplan, respectively. H(V,J) is defined
similarly for the horizontal line segments. A building
block is denoted by Bi , 1 5 i I b, and it is assigned a
finite set of ni possible dimensions (J$, yj), corre-
sponding to its various possible implementations. Its
area ui is invariant and thus given by
x;yj’=q, 1 s;ir?$. Given the width and height of
every building block, we assign them to the corre-
sponding arcs in G and H. Then, the width w and the
height h of the layout are determined by the length of
the longest paths in G and H, respectively.

Paper 5.3
25th ACM/IEEE Design Automation Conference”

66‘ CH2!340-3/88/oooo/ooss$ol.O0 0 1988 IEEE

In the case of a slicing floorplan the above graphs are
series-parallel. A series-parallel graph can be repres-
ented by a decomposition tree [4] and Stockmeyer’s
algorithm [3] is based on it. Each leaf of this tree
represents an area in which a certain block must be
placed in one of its two possible orientations. Having
b blocks, there are 2b possible configurations of the
layout. Among them we are looking for the one that
minimizes the area A = wh .

Stockmeyer’s algorithm starts at the leaves of the
decomposition tree. At each step it attempts to
combine two smaller blocks into a bigger one, called
super block . The main idea behind it is that if two
super blocks at a lower level can be implemented in
n, and n, different ways, respectively, it is unnecessary
to consider all the n, x n, possible combinations for
the resulting super block at the higher level. Instead,
it is proved that only O(n, + 4 possible combinations
are relevant to the optimal final layout. If at some
level k , 1 I k 5 log 6, of the decomposition tree we
list all the relevant possible implementations of each
super block, the total number of implementations in
this list is O(b) and the time to generate them is also
O(b), resulting in a total running time and storage
requirement of Otb log b). The super block at the
root of the decomposition tree is the entire layout,
having a list of O(b) possible implementations (each
one is a pair of possible width w and height h).
Among the elements in this list we choose the one
which minimizes the area A = wh.

The above algorithm is also valid when several pos-
sible implementations for each Bi are considered
rather than only the two orientations. Instead of
starting at a leaf with only two possible implementa-
tions, we consider Bi to be a super block having as
many as desired possible implementations, and
proceed the same way as before.

3. ALGORITHM FOR GENERAL FLOORPLANS

Our goal is to assign dimensions to the building
blocks Bi ‘S SO that A = wh is minimized. If Bi has ni
possible implementations, the space of all the assign-
ments of dimensions contains n1 x -mm x n, states, each
one yields some area A = wh. These states can be
enumerated by an enumeration tree, in which blocks
are first assigned to levels, and then at each level we
examine all the possible dimensions of the corre-
sponding block. Each node of the enumeration tree
corresponds to a partial layout. A path starting at the
root and ending at a leaf represents a complete
layout. Figure 3(a) depicts a 3-block floor-plan, where
B, , B, and B3 may have 4, 3 and 2 possible imple-
mentations, respectively. The full enumeration tree is
shown in Figure 3(b), where at each node the dimen-
sions of the corresponding block are indicated. The

areas of the partial layouts are written next to the cor-
responding nodes.

The branch and bound algorithm proceeds as follows.
First we determine which block should be considered
at a given level of the enumeration tree. Without loss
of generality we assume that Bi is considered at the
i th level, where the root of the tree is at level 0 and
the leaves are reached at level b. At the root we
assign to each arc of G and H the smallest length it
may have among all the possible implementations of
its corresponding block. Then, going downwards
from level i to level i + 1, appropriate lengths are
assigned to the arcs of G and H corresponding to Bi+,.
When going backwards, the lengths of the arcs are
reset to their initial values. At each node we calcu!ate
the width w and the height h of the partial layout.
When going downwards along a path from the root to
a leaf, A = wh is non-decreasing since w and h are
non-decreasing functions of the set of already laid out
blocks. Let A,, denote the minimum value of
A = wh achieved thus far at some leaf of the tree.
Then, the enumeration proceeds as follows:

begin (branch and bound)
A,, = 00;
Assign initial Iengths to the arcs of G and H ;
while not the root is backwards traversed do

begin if A I Ati,,
then backtrack
else if all possible implementations of the

current block are exhausted
then backtrack
else if a leaf was reached

then if A -C Atii,
then &, = A and backtrack
else backtrack

else forward step ;
end;

end (branch and bound) ;

Notice that when the above procedure is applied to
the tree in Figure 3(b), the starred nodes are not trav-
ersed. The reason ,for this is that the area of the
partial layout upon traversing their parent node is
greater than the area of some complete layout that
has been previously examined.

The efficiency of the above branch and bound proce-
dure is affected by the following factors:

1. The value of &,. It is desirable to reduce it as
soon as possible, resulting in earlier backtracks.

2. The area A = wh of the partial layout at a node is
a lower bound on the area of a complete layout
obtained at any leaf reachable from this node.
Therefore, if we succeed to raise this lower bound,
a backtrack will occur sooner.

Paper 5.3
67

3. The order in which the possible dimensions of a
block are examined at the corresponding level of
the tree.

In the following we discuss each of the above items in
greater detail.

3.1 Fast Reduction Of A,,

Reaching a leaf with a lower A,,, we may consider it
as a good starting point for a heuristic search in
which we attempt to further reduce the area as much
as possible, applying a non-enumerative search. The
following search procedure attempts to find a local
minimum of the area of a complete layout in the sense
that no further reduction can be achieved by changing
the dimensions of a single block.

begin (further reduction)
while reduction do

begin for i = 1 to b do
find (~j , JJJ, 1 <j < ni, which minimizes A ;
if A < Amin

then Ati,, = .4 ;
end ;

.

end (further reduction) ;

The above heuristic search must terminate after a
finite number of steps since G and W are finite graphs
whose arc lengths are selected from a finite set of pos-
sible values. When this procedure ends, the search in
the branch and bound algorithm continues from the
leaf where the further reduction procedure has been
invoked. This guarantees that the global minimum
can still be achieved.

3.2 Lower Bound On A

In the following we calculate a lower bound on the
area that must be added to the partial layout as a
result of placing the yet unplaced blocks in their
appropriate regions in the floorplan, regardless of the
specific dimensions they will be assigned. Then, if in
the branch and bound procedure the statement
if A 2 A,” is replaced by if (A + bound) 2 A,, ,

the backtrack will occur earlier.

Suppose that the algorithm has reached some node at
the level i (the dimensions of B, through B,, are
determined while Bi is currently considered). Let
GieI and H,, denote the graphs corresponding to the
partial layout of the first i - 1 blocks, whose width
and height are denoted by wiel and h,-, , respectively.
For i sj I 6, let 4 be the length of the longest path in
Gi-1 from the source to the vertex representing the
vertical line segment supporting the left edge of Bi,
and let 5 be the length of the longest path in Gi-,
from the vertex representing the vertical line segment
supporting the right edge of B, to the sink. Similarly
we denote by f and bi the length of longest paths in

Hi-, corresponding to the vertices representing the top
and the bottom horizontal line segments supporting
Bj . The area available in the partial layout for the
placement of a.ny yet unplaced block Bj , regardless of
its final implementation, is given by (wiel -5 -4) x
(h,-! -b. -tj> . If aj > (wi-, -rj -a,> x (hi-, -bj -5) , the
embedding of Bi (in any of its possible implementa-
tions) requires at least Uj - (wi-, -rj -4) x (hi-, -bj -5)
additional area in the complete layout. Therefore, a
lower bound on the total additional area required to
complete the layout is given by:

0, ai - (Wi-1 -9 -4) x (hi-1 -bj -5)).
j=i

This additional area provides a very effective bound
that can be calculated at any downwards traversed
node of the search tree.

3.3 Ordering The Possible Implementations Of The
Blocks

We first derive a backtracking condition which can be
invoked in the general implicit enumeration scheme.
Let v be some downwards traversed node of the tree,
let Bi be the building block considered at v (with some
implementation (xi, yi)) and let T(v) denote the
subtree rooted at v. The branch and botind algorithm
enumerates (implicitly) all the paths of T(v). For a
node p E T(v) we denote by G@) and iY(& the graphs
corresponding to the partial layout at this node, and
by T(p) and A(& their longest paths, respectively.
(For the sake of clarity we assume that the longest
paths are unique, but the following discussion holds
also for multiple critical paths.) Then, the following
lemma provides a backtracking condition.

Lemma 1: Let M be the set of nodes which have been
reached from v such that no further forward step was
taken at them (the nfrontn of the traversed portion of
T(v)), and let p E M be a terminating node of a path
starting at v. Assume also that for every p E M the
pair (ei &) of dual arcs corresponding to Bi (whose
length at v is given by (xi ,J$)), satisfies
ei 4r(cO and A BAG4 - Then, the remaining imple-
mentations of Bi at v need not be further considered,
and backtracking at Y can be performed. m

The proof is found in [6]. Lemma 1 states that if the
result obtained by examining T(v) is independent of
the specific implementation (xi ,& of Bi which is
considered at v, then the examination of all the sub-
trees whose roots are the remaining implementations
of Bi , cannot yield further reduction of Lo. Notice
that all the subtrees rooted at the nodes corresponding
to different implementations of Bi are isomorphic,
except the roots themselves.

Paper 5.3
68

The backtracking condition established in Lemma 1 is
independent of the order in which the possible imple-
mentations of a building biock are examined.
However, a particular order of examination may yield
an earlier backtracking. In what follows we suggest
such an ordering.

A series of pairs (x1 , y&,(x,, ,y,J is said to be in an
increasingly interlaced order if xi I .yi for odd i and
for all j > i , and pi 5 -vj for even i and for all j > i.
For example, the series (1,64), (64,1), (2,32), (32,2),
(4,161, (16941, (898) is in an increasingly interlaced
order. Following the same arguments as in Lemma 1,
we can derive the following backtracking condition.

Lemma 2: Let the series of Bis implementations be in
an increasingly interlaced order, and let v be a node
corresponding to an odd (even) numbered implemen-
tation of Bi . Let M be the set of nodes which have
been reached from v such that no further forward step
was taken at them. Assume that for every p E M
there exists J #A(p) (ei $I(&). Then, the remaining
implementations of Bi at v need not be further consid-
ered, and a backtrack at v can take place. H

The backtracking conditions established in Lemma 2
can be easily checked upon traversing a node back-
wards. Notice that when the series of blocks’ imple-
mentations is in an increasingly interlaced order, the
conditions of Lemma 2 provide a stronger backtrack
criterion than Lemma 1 does, since the existence of
the conditions in Lemma 1 imply the existence of
those in Lemma 2.

4. COMBINING THE GENERAL AND THE
SLICING ALGORITHMS

Stockmeyer’s algorithm [3] is very efficient, but fails
to handle general floorplans. On the other hand,
although the branch and bound algorithm as previ-
ously presented is general, it is time consuming for
floorplans with many blocks. Therefore, we propose
to combine them and devise an algorithm which can
handle very large general floor-plans. To this end, we
first decompose G into its maximal series-parallel
components. This can be done in linear time as
described in [4]. A maximal series-parallel compo-
nent sa tisfres:

Lemma 3: Let Gi , 1 I i I q, be a maximal series-
parallel component of G, and let Hi be its corre-
sponding portion of H. Then, the pairs
(G[,Hi) , 1 I i r; q, correspond to the maximal slicing
portions of the floorplan given by (G,H). 1

Let b, be the number of arcs in Gi and Hi, 1 4 i I q .
To each of the components Gi we apply Stockmeyer’s
algorithm, thus obtaining a list of O(6,) relevant pos-

sible implementations. We may look now at each
slicing component as a super block having several
possible implementations. Next, we replace Gi and Hi
by a single arc in G and H, respectively. We then
apply the branch and bound algorithm to the new
G and H , in which the number of arcs has been
reduced from b = b, + a.- + bq to q.

The following example demonstrates the effectiveness
of the combined algorithms. We shall see how the
size of the search tree is significantly reduced.
Example 1: Figure 4(a) depicts a 20 block general
floorplan, where the thick lines enclose the maximal
slicing portions (corresponding to the maximal series-
parallel components in G and H). Let each building
block have 8 possible implementations. The entire
problem cannot be solved by Stockmeyer’s algorithm.
Employing the branch and bound algorithm. a tree
having 820 -1018 leaves must be considered. If we first
apply Stockmeyer’s algorithm to the slicing compo-
nents, we obtain about 32 possible implementations
for each super block that are relevant for further con-
sideration. Then, applying the branch and bound
algorithm to the super blocks, a tree with only
325 .Y~O’-~ will have to be considered. I

In the above discussion we combined the two algo-
rithms hierarchically. At the lower level we employed
Stockmeyer’s algorithm to the maximal slicing compo-
nents and then at the higher level we employed the
branch and bound algorithm Sometimes it may
happen that such a hierarchy does not exist. An
example is the floorplan given in Figure 4(b). Here, it
is impossible to find any slicing components at the
lower level. However, the thick lines define a slicing
structure at the higher level and we wish to take
advantage of this structure. As in the former dis-
cussion, we shall employ the two algorithms hierarchi-
cally, but in this case the branch and bound at the
lower level and Stockmeyer’s algorithm at the higher
level. To establish this hierarchy more formally, some
detinitions are in order. Let G, and Gz be floor-plan
graphs with sources s, and s, , respectively, and sinks
t, and t2 , respectively. We say that G is a series COM-
position of G, and G, if t,(tJ and &,) are identified.
G is called a parallel composition of G, and GZ if si is
identified with s, and t, is identified with tz . Obvi-
ously, the result of series or parallel composition of
floorplan graphs is a new floorplan graph. A
floor-plan graph is called elementary non series-parallel
if it cannot be obtained as a series or parallel compo-
sition of floor-plan graphs. Following Lemma 3, ,we
may prove that

Lemma 4: Let Gi , 1 5 i 5 q, be a maximal elementary
non series-parallel component of G, and let Hi be its
corresponding portion in H. Then, the pairs (Gi ,HJ,
correspond to a maximal elementary non slicing
portions of the floor-plan given by (G,H). n

Paper .5.3
69

Lemma 4 suggests decomposing of G and H into their
maximal elementary non series-parallel components,
employ the branch and bound procedure to each com-
ponen t individually and then proceed with
Stockmeyer’s algorithm for the series-parallel struc-
ture at the higher level. The following example shows
the advantage of this approach.
Example 2: Let each building block in Figure 4(b)
have 8 possible implementations. The entire problem
cannot be solved by Stockmeyer’s algo&hm.
Employing the branch and bound algorithm, a tree
having 820 z lOI must be examined. If we first
employ the branch and bound algorithm to the
maximal elementary non series-parallel components
(enclosed by the thick lines), we shall consider a tree
of 85 =104.5 leaves for each component. We next
employ Stockmeyer’s algorithm to the combined
structure in which there are four blocks, each one has
at most 85 possible implementations (practically,, very
few complete layouts are relevant to the higher level).
Then, according to the complexity of Stockmeyer’s
algorithm, the total time and memory required at this
step is bounded by 0[4 x 8’ log(4 x 8s)] -0(105”) . n

It is not necessary for the smallest area implementa-
tion of a maximal elementary non series-parallei com-
ponent to participate in the entire layout which
occupies minimum area. However, if two different
implementations of a non series-parallel component
have width w1 and y , respectively, and height
h, and h, , respectively, satisfying w2 2 w1 and 4 2 h, ,
the latter implementation need not be considered at
the higher level. The branch and bound algorithm
presented in section 3 is slightly modified to produce
all the relevant implementations of the components at
the lower level. Its output is a list of (w,h) pairs
which are the relevant implementations. Initially this
list is empty. At every node of the enumeration tree
we check whether the width and the height of the cor-
responding partial layout dominate the width and the
height of some pair in the list. If this happens to be
the case, a backtrack takes place. Otherwise, the
algorithm proceeds in a forward step. Whenever a
leaf is reached, the corresponding pair is added to the
list, while every existing pair dominating the new pair
is deleted from the list.

5. COMPUTATIONAL RESULTS

Figure 5 depicts a 24 block floorplan, where the pos-
sible implementations of each block are listed as, (x,~)
pairs within the corresponding region. There is a
total of 2.03 x lOi possible configurations (equivalent
to a 50 block optimal orientation problem), and the
algorithm proposed in this paper searches for the one
yielding the smallest area. Summing up the areas of
the individual blocks yields 1024 area units. Notice
that if the blocks take the highlighted implementa-

tions in Figure 5, the area of the resulting layout is of
size 1024, which is obviously the desired minimum.

The branch and bound algorithm was run four times.
Initially, the basic algorithm without any heuristic was
employed. In the second run, the further area
reduction discussed in Section 3.1 was introduced.
Next, the improved area bound discussed in Section
3.2 was supplemented. Finally, the backtracking con-
ditions based on the increasingly interlaced order of
block implementations, discussed in Section 3.3, were
incorporated. Table 1 summarized the results and
demonstrates the effectiveness of the above heuristics.
To reduce the dependence of the comparison on the
specific software implementation and the computer
system used, the results are given in terms of the ratio
between the number of visited nodes and the total
number of leaves in the search tree.

6. CONCLUSIONS

Given a general (non-slicing) floorplan and several
possible physical implementations for each building
block, this paper presented a practical algorithm that
determines the implementation of each building block
such that the area of the entire layout is minimized.
Although this problem is NP-complete, the suggested
branch and bound algorithm handles successfully
large floorplans. It was shown that one can take
advantage of the slicing structures which are usually
found in general floorplans, by combining the branch
and bound algorithm with the known polynomial
algorithms for the slicing case. This combination
further increased the size of the problems that can be
solved.

Acknowledgement: Discussions with R. Y. Pinter are
gratefully acknowledged.

REFERENCES

[l] Ciesielslci M. J. and Kinnen E., “Digraph relax-
ation for 2-dimensiooal placement of IC blocks,”
IEEE Trans. on CAD of Integrated Circuits and
Systems, Vol. 6, 1987, pp. 55-66.

[2] Otten R.H.J.M, “Efficient floorplan optimiza-
lion,” ZCCD83 - IEEE Intl. Conf. on Computer
Design, 1983, pp. 499-502.

[3] Stockmeyer. L., “Optimal orientations of cells
in slicing floorpian designs,” Information and
Control, Vol. 57, 1983, pp. 91-101.

[4] Valdes J., Tarjan R. E. and Lawler E., L.,
“The recognition of series parallel digraphs,”
SIAM J. Cornput.. 1982, pp. 298-313.

[S] Wimer S., Koren I. and Cederbaum I.,
“Floorplans, planar graphs and layouts,” to
appear in IEEE Trans. on Circuits and Systems,
March, 1988.

f3per.5.Q
70

161 Wimer S., D.Sc. thesis, Department of Elec-
trical Engineering, Technion - Israel Institute of
Technology, 1988.

-l/Z.,
2.38 x 10-l’ 5.32 x lo-‘* 1.84 x lo-‘* 4.95 x lo-l3

Table 1: Results of 24 block floorplan.

[7] Zibert K. and Saal R., “On computer aided
hybrid circuit layout,” llSCS74 - IEEE Intl.
$vmp. on Circuits and Systems, 1974, pp.
314-318.

8x8

Figure 1. Some implementations of a register file.

(4 (b)

Figure 2. A floorplan and its graph representation.

(4

70 40 56 32 63 42 64 40 48 30 45 30 63 42 45 30 36 30 66 4g 44 40 33 40

Figure 3. A floorplan and its search tree.

Figure 4. Combination of slicing and non-slicing struc-
tures.

(2.161(4.8)
(6.4)lls.n 11.55)

r2.27.5)
(2.26) (4.13 (6.5.81

(4.19.5) (5.11)
(a.6.5)(13.4)(26.2)

(6.87.6)
(1.27)

t+6,

w
(19:s.u

lB.6.Lm

~2.5.28)
(11.5)

(5.5.14) n.111

I%
(6.4.k g;y (11.7)(14.S.5)

kl,7l
(93

(14.5)
(27.1)

$.;9

ts:e

U&2.5> I
(10.2)

(5.9) (6.7.5)
(3.16) (6.8)

0.5.6)f9.51
(8.61(16,3)

Figure 5. 24 block floorplan.

