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ABSTRACT 

The building blocks in a given floor-plan may have 
several possible physical implementations yie1din.g dif- 
ferent layouts. This paper discusses the problem of 
selecting an optimal implementation for each building 
block so that the area of the final layout is minimized. 
A polynomial algorithm that solves this problem for 
slicing floorplans was presented elsewhere, and it has 
been proved that for general (non-slicing) floorplans 
the problem is NP-complete. We suggest a bfranch 
and bound algorithm which proves to be very eflicient 
and can handle successfully large general non-slicing 
floorplans. We show also how the non-slicing and the 
slicing algorithms can be combined to handle effi- 
ciently very large general floorplans. 

1. INTRODUCTION AND BACKGROUND 

Most of the existing algorithms for floorpla.nn.ing 
require a completely defined geometry of the building 
blocks. Floorplanning however, is attempted at the 
very early stage of VLSI physical design, when there 
is only a rough estimate of the building blocks geom- 
etry. In many cases a good estimate of the building 
blocks areas is available at this stage, but their exact 
dimensions can still be varied in a wide range. An 
example is the register file block consisting of 64 regis- 
ters in a CPU. This register file can be organized as a 
1 x 64, 2 x 32 , 4 x 16 or 8 x 8 array, and if we con- 
sider also the two possible orientations for a single 
register and the whole file, there are 14 different 
implementations, as shown in Figure 1. Given the 
floorplan of a chip, we wish to take advantage of the 
many possible implementations of its building blocks 
and search for those implementations yield.ing a 
minimum area layout. 

In [S] a similar problem has been solved, where it was 
assumed that the dimensions of each building block 
can vary continuously in some given interval while its 
area is assumed to be invariant. In [3] the problem 
of finding an optimal orientation of the building 
blocks in slicing floorplan was discussed and an efi- 
cient polynomial solution was presented. Its time and 
storage requirements are O(b log b), where b is the 
number of building blocks. Notice that the optimal 
orientation problem (in which each building block has 
tw-o possible implementations) is a special case of our 
problem. Another efficient polynomial algorithm to 

determine the optimum geometry of the building 
blocks in slicing floorplans was presented in [2]. 
There, the geometry of the blocks is constrained by a 
piecewise linear function, which can approximate any 
smooth function. Its complexity is O(k b log b), where 
k is the maximal number of breakpoints in a geometry 
constraining function. It was also shown in [3] that 
the optimal orientation problem for general (non- 
slicing) floorplans is NP-complete, and an integer pro- 
gramming method to find the minimum area layout 
was presented in [7]. 

Consequently, the more general problem of deter- 
mining the optimal dimensions (and not just the 
optimal orientation) of the building blocks in non- 
slicing floor-plans is NP-complete. Since non-slicing 
floorplans often occur in practice, we propose in this 
paper a branch and bound algorithm. The proposed 
algorithm has been implemented and proved to be 
efficient and capable of handling successfully large 
floorplans. 

2. SLICING FLOORPLANS 

A common representation of a floorplan is through a 
pair of dual polar graphs , called the x - graph and 
the y - graph and denoted by G(Cr,E) and H(v,g, 
respectively (e.g. [l], [S]). Figure 2(a) shows a 
floor-plan whose vertical line segments are denoted by 
u1 through u, and its horizontal line segments by v1 
through v,. Figure 2(b) shows the corresponding dual 
polar graphs, one drawn on the top of the other. A 
vertex in G(U,E) represents a vertical line segment of 
the floorplan. An arc e directed from ui to z+ exists if 
there is a sub-rectangle in the floorplan whose left and 
right edges lie on the corresponding vertical line seg- 
ments. The source and the sink of G(U,E) correspond 
to the leftmost and the rightmost vertical line seg- 
ments of the floorplan, respectively. H( V,J) is defined 
similarly for the horizontal line segments. A building 
block is denoted by Bi , 1 5 i I b, and it is assigned a 
finite set of ni possible dimensions (J$ , yj), corre- 
sponding to its various possible implementations. Its 
area ui is invariant and thus given by 
x;yj’=q, 1 s;ir?$ . Given the width and height of 
every building block, we assign them to the corre- 
sponding arcs in G and H. Then, the width w and the 
height h of the layout are determined by the length of 
the longest paths in G and H, respectively. 
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In the case of a slicing floorplan the above graphs are 
series-parallel. A series-parallel graph can be repres- 
ented by a decomposition tree [4] and Stockmeyer’s 
algorithm [3] is based on it. Each leaf of this tree 
represents an area in which a certain block must be 
placed in one of its two possible orientations. Having 
b blocks, there are 2b possible configurations of the 
layout. Among them we are looking for the one that 
minimizes the area A = wh . 

Stockmeyer’s algorithm starts at the leaves of the 
decomposition tree. At each step it attempts to 
combine two smaller blocks into a bigger one, called 
super block . The main idea behind it is that if two 
super blocks at a lower level can be implemented in 
n, and n, different ways, respectively, it is unnecessary 
to consider all the n, x n, possible combinations for 
the resulting super block at the higher level. Instead, 
it is proved that only O(n, + 4 possible combinations 
are relevant to the optimal final layout. If at some 
level k , 1 I k 5 log 6, of the decomposition tree we 
list all the relevant possible implementations of each 
super block, the total number of implementations in 
this list is O(b) and the time to generate them is also 
O(b), resulting in a total running time and storage 
requirement of Otb log b). The super block at the 
root of the decomposition tree is the entire layout, 
having a list of O(b) possible implementations (each 
one is a pair of possible width w and height h ). 
Among the elements in this list we choose the one 
which minimizes the area A = wh. 

The above algorithm is also valid when several pos- 
sible implementations for each Bi are considered 
rather than only the two orientations. Instead of 
starting at a leaf with only two possible implementa- 
tions, we consider Bi to be a super block having as 
many as desired possible implementations, and 
proceed the same way as before. 

3. ALGORITHM FOR GENERAL FLOORPLANS 

Our goal is to assign dimensions to the building 
blocks Bi ‘S SO that A = wh is minimized. If Bi has ni 
possible implementations, the space of all the assign- 
ments of dimensions contains n1 x -mm x n, states, each 
one yields some area A = wh. These states can be 
enumerated by an enumeration tree, in which blocks 
are first assigned to levels, and then at each level we 
examine all the possible dimensions of the corre- 
sponding block. Each node of the enumeration tree 
corresponds to a partial layout. A path starting at the 
root and ending at a leaf represents a complete 
layout. Figure 3(a) depicts a 3-block floor-plan, where 
B, , B, and B3 may have 4, 3 and 2 possible imple- 
mentations, respectively. The full enumeration tree is 
shown in Figure 3(b), where at each node the dimen- 
sions of the corresponding block are indicated. The 

areas of the partial layouts are written next to the cor- 
responding nodes. 

The branch and bound algorithm proceeds as follows. 
First we determine which block should be considered 
at a given level of the enumeration tree. Without loss 
of generality we assume that Bi is considered at the 
i th level, where the root of the tree is at level 0 and 
the leaves are reached at level b. At the root we 
assign to each arc of G and H the smallest length it 
may have among all the possible implementations of 
its corresponding block. Then, going downwards 
from level i to level i + 1, appropriate lengths are 
assigned to the arcs of G and H corresponding to Bi+,. 
When going backwards, the lengths of the arcs are 
reset to their initial values. At each node we calcu!ate 
the width w and the height h of the partial layout. 
When going downwards along a path from the root to 
a leaf, A = wh is non-decreasing since w and h are 
non-decreasing functions of the set of already laid out 
blocks. Let A,, denote the minimum value of 
A = wh achieved thus far at some leaf of the tree. 
Then, the enumeration proceeds as follows: 

begin (branch and bound) 
A,, = 00; 
Assign initial Iengths to the arcs of G and H ; 
while not the root is backwards traversed do 

begin if A I Ati,, 
then backtrack 
else if all possible implementations of the 

current block are exhausted 
then backtrack 
else if a leaf was reached 

then if A -C Atii, 
then &, = A and backtrack 
else backtrack 

else forward step ; 
end; 

end (branch and bound) ; 

Notice that when the above procedure is applied to 
the tree in Figure 3(b), the starred nodes are not trav- 
ersed. The reason ,for this is that the area of the 
partial layout upon traversing their parent node is 
greater than the area of some complete layout that 
has been previously examined. 

The efficiency of the above branch and bound proce- 
dure is affected by the following factors: 

1. The value of &,. It is desirable to reduce it as 
soon as possible, resulting in earlier backtracks. 

2. The area A = wh of the partial layout at a node is 
a lower bound on the area of a complete layout 
obtained at any leaf reachable from this node. 
Therefore, if we succeed to raise this lower bound, 
a backtrack will occur sooner. 
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3. The order in which the possible dimensions of a 
block are examined at the corresponding level of 
the tree. 

In the following we discuss each of the above items in 
greater detail. 

3.1 Fast Reduction Of A,, 

Reaching a leaf with a lower A,,, we may consider it 
as a good starting point for a heuristic search in 
which we attempt to further reduce the area as much 
as possible, applying a non-enumerative search. The 
following search procedure attempts to find a local 
minimum of the area of a complete layout in the sense 
that no further reduction can be achieved by changing 
the dimensions of a single block. 

begin (further reduction) 
while reduction do 

begin for i = 1 to b do 
find (~j , JJJ, 1 <j < ni, which minimizes A ; 
if A < Amin 

then Ati,, = .4 ; 
end ; 

. 

end (further reduction) ; 

The above heuristic search must terminate after a 
finite number of steps since G and W are finite graphs 
whose arc lengths are selected from a finite set of pos- 
sible values. When this procedure ends, the search in 
the branch and bound algorithm continues from the 
leaf where the further reduction procedure has been 
invoked. This guarantees that the global minimum 
can still be achieved. 

3.2 Lower Bound On A 

In the following we calculate a lower bound on the 
area that must be added to the partial layout as a 
result of placing the yet unplaced blocks in their 
appropriate regions in the floorplan, regardless of the 
specific dimensions they will be assigned. Then, if in 
the branch and bound procedure the statement 
if A 2 A,” is replaced by if (A + bound) 2 A,, , 

the backtrack will occur earlier. 

Suppose that the algorithm has reached some node at 
the level i (the dimensions of B, through B,, are 
determined while Bi is currently considered). Let 
GieI and H,, denote the graphs corresponding to the 
partial layout of the first i - 1 blocks, whose width 
and height are denoted by wiel and h,-, , respectively. 
For i sj I 6, let 4 be the length of the longest path in 
Gi-1 from the source to the vertex representing the 
vertical line segment supporting the left edge of Bi, 
and let 5 be the length of the longest path in Gi-, 
from the vertex representing the vertical line segment 
supporting the right edge of B, to the sink. Similarly 
we denote by f and bi the length of longest paths in 

Hi-, corresponding to the vertices representing the top 
and the bottom horizontal line segments supporting 
Bj . The area available in the partial layout for the 
placement of a.ny yet unplaced block Bj , regardless of 
its final implementation, is given by (wiel -5 -4) x 
(h,-! -b. -tj> . If aj > (wi-, -rj -a,> x (hi-, -bj -5) , the 
embedding of Bi (in any of its possible implementa- 
tions) requires at least Uj - (wi-, -rj -4) x (hi-, -bj -5) 
additional area in the complete layout. Therefore, a 
lower bound on the total additional area required to 
complete the layout is given by: 

0, ai - (Wi-1 -9 -4) x (hi-1 -bj -5)). 
j=i 

This additional area provides a very effective bound 
that can be calculated at any downwards traversed 
node of the search tree. 

3.3 Ordering The Possible Implementations Of The 
Blocks 

We first derive a backtracking condition which can be 
invoked in the general implicit enumeration scheme. 
Let v be some downwards traversed node of the tree, 
let Bi be the building block considered at v (with some 
implementation (xi, yi) ) and let T(v) denote the 
subtree rooted at v. The branch and botind algorithm 
enumerates (implicitly) all the paths of T(v). For a 
node p E T(v) we denote by G@) and iY(& the graphs 
corresponding to the partial layout at this node, and 
by T(p) and A(& their longest paths, respectively. 
(For the sake of clarity we assume that the longest 
paths are unique, but the following discussion holds 
also for multiple critical paths.) Then, the following 
lemma provides a backtracking condition. 

Lemma 1: Let M be the set of nodes which have been 
reached from v such that no further forward step was 
taken at them (the nfrontn of the traversed portion of 
T(v) ), and let p E M be a terminating node of a path 
starting at v. Assume also that for every p E M the 
pair (ei &) of dual arcs corresponding to Bi (whose 
length at v is given by (xi ,J$)), satisfies 
ei 4r(cO and A BAG4 - Then, the remaining imple- 
mentations of Bi at v need not be further considered, 
and backtracking at Y can be performed. m 

The proof is found in [6]. Lemma 1 states that if the 
result obtained by examining T(v) is independent of 
the specific implementation (xi ,& of Bi which is 
considered at v, then the examination of all the sub- 
trees whose roots are the remaining implementations 
of Bi , cannot yield further reduction of Lo. Notice 
that all the subtrees rooted at the nodes corresponding 
to different implementations of Bi are isomorphic, 
except the roots themselves. 
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The backtracking condition established in Lemma 1 is 
independent of the order in which the possible imple- 
mentations of a building biock are examined. 
However, a particular order of examination may yield 
an earlier backtracking. In what follows we suggest 
such an ordering. 

A series of pairs (x1 , y&,(x,, ,y,J is said to be in an 
increasingly interlaced order if xi I .yi for odd i and 
for all j > i , and pi 5 -vj for even i and for all j > i. 
For example, the series (1,64), (64,1), (2,32), (32,2), 
(4,161, (16941, (898) is in an increasingly interlaced 
order. Following the same arguments as in Lemma 1, 
we can derive the following backtracking condition. 

Lemma 2: Let the series of Bis implementations be in 
an increasingly interlaced order, and let v be a node 
corresponding to an odd (even) numbered implemen- 
tation of Bi . Let M be the set of nodes which have 
been reached from v such that no further forward step 
was taken at them. Assume that for every p E M 
there exists J #A(p) (ei $I(&). Then, the remaining 
implementations of Bi at v need not be further consid- 
ered, and a backtrack at v can take place. H 

The backtracking conditions established in Lemma 2 
can be easily checked upon traversing a node back- 
wards. Notice that when the series of blocks’ imple- 
mentations is in an increasingly interlaced order, the 
conditions of Lemma 2 provide a stronger backtrack 
criterion than Lemma 1 does, since the existence of 
the conditions in Lemma 1 imply the existence of 
those in Lemma 2. 

4. COMBINING THE GENERAL AND THE 
SLICING ALGORITHMS 

Stockmeyer’s algorithm [3] is very efficient, but fails 
to handle general floorplans. On the other hand, 
although the branch and bound algorithm as previ- 
ously presented is general, it is time consuming for 
floorplans with many blocks. Therefore, we propose 
to combine them and devise an algorithm which can 
handle very large general floor-plans. To this end, we 
first decompose G into its maximal series-parallel 
components. This can be done in linear time as 
described in [4]. A maximal series-parallel compo- 
nent sa tisfres: 

Lemma 3: Let Gi , 1 I i I q, be a maximal series- 
parallel component of G, and let Hi be its corre- 
sponding portion of H. Then, the pairs 
(G[ ,Hi) , 1 I i r; q, correspond to the maximal slicing 
portions of the floorplan given by (G,H). 1 

Let b, be the number of arcs in Gi and Hi, 1 4 i I q . 
To each of the components Gi we apply Stockmeyer’s 
algorithm, thus obtaining a list of O(6,) relevant pos- 

sible implementations. We may look now at each 
slicing component as a super block having several 
possible implementations. Next, we replace Gi and Hi 
by a single arc in G and H, respectively. We then 
apply the branch and bound algorithm to the new 
G and H , in which the number of arcs has been 
reduced from b = b, + a.- + bq to q. 

The following example demonstrates the effectiveness 
of the combined algorithms. We shall see how the 
size of the search tree is significantly reduced. 
Example 1: Figure 4(a) depicts a 20 block general 
floorplan, where the thick lines enclose the maximal 
slicing portions (corresponding to the maximal series- 
parallel components in G and H ). Let each building 
block have 8 possible implementations. The entire 
problem cannot be solved by Stockmeyer’s algorithm. 
Employing the branch and bound algorithm. a tree 
having 820 -1018 leaves must be considered. If we first 
apply Stockmeyer’s algorithm to the slicing compo- 
nents, we obtain about 32 possible implementations 
for each super block that are relevant for further con- 
sideration. Then, applying the branch and bound 
algorithm to the super blocks, a tree with only 
325 .Y~O’-~ will have to be considered. I 

In the above discussion we combined the two algo- 
rithms hierarchically. At the lower level we employed 
Stockmeyer’s algorithm to the maximal slicing compo- 
nents and then at the higher level we employed the 
branch and bound algorithm Sometimes it may 
happen that such a hierarchy does not exist. An 
example is the floorplan given in Figure 4(b). Here, it 
is impossible to find any slicing components at the 
lower level. However, the thick lines define a slicing 
structure at the higher level and we wish to take 
advantage of this structure. As in the former dis- 
cussion, we shall employ the two algorithms hierarchi- 
cally, but in this case the branch and bound at the 
lower level and Stockmeyer’s algorithm at the higher 
level. To establish this hierarchy more formally, some 
detinitions are in order. Let G, and Gz be floor-plan 
graphs with sources s, and s, , respectively, and sinks 
t, and t2 , respectively. We say that G is a series COM- 
position of G, and G, if t,(tJ and &,) are identified. 
G is called a parallel composition of G, and GZ if si is 
identified with s, and t, is identified with tz . Obvi- 
ously, the result of series or parallel composition of 
floorplan graphs is a new floorplan graph. A 
floor-plan graph is called elementary non series-parallel 
if it cannot be obtained as a series or parallel compo- 
sition of floor-plan graphs. Following Lemma 3, ,we 
may prove that 

Lemma 4: Let Gi , 1 5 i 5 q, be a maximal elementary 
non series-parallel component of G, and let Hi be its 
corresponding portion in H. Then, the pairs (Gi ,HJ, 
correspond to a maximal elementary non slicing 
portions of the floor-plan given by (G,H). n 
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Lemma 4 suggests decomposing of G and H into their 
maximal elementary non series-parallel components, 
employ the branch and bound procedure to each com- 
ponen t individually and then proceed with 
Stockmeyer’s algorithm for the series-parallel struc- 
ture at the higher level. The following example shows 
the advantage of this approach. 
Example 2: Let each building block in Figure 4(b) 
have 8 possible implementations. The entire problem 
cannot be solved by Stockmeyer’s algo&hm. 
Employing the branch and bound algorithm, a tree 
having 820 z lOI must be examined. If we first 
employ the branch and bound algorithm to the 
maximal elementary non series-parallel components 
(enclosed by the thick lines), we shall consider a tree 
of 85 =104.5 leaves for each component. We next 
employ Stockmeyer’s algorithm to the combined 
structure in which there are four blocks, each one has 
at most 85 possible implementations (practically,, very 
few complete layouts are relevant to the higher level). 
Then, according to the complexity of Stockmeyer’s 
algorithm, the total time and memory required at this 
step is bounded by 0[4 x 8’ log(4 x 8s)] -0(105”) . n 

It is not necessary for the smallest area implementa- 
tion of a maximal elementary non series-parallei com- 
ponent to participate in the entire layout which 
occupies minimum area. However, if two different 
implementations of a non series-parallel component 
have width w1 and y , respectively, and height 
h, and h, , respectively, satisfying w2 2 w1 and 4 2 h, , 
the latter implementation need not be considered at 
the higher level. The branch and bound algorithm 
presented in section 3 is slightly modified to produce 
all the relevant implementations of the components at 
the lower level. Its output is a list of (w,h) pairs 
which are the relevant implementations. Initially this 
list is empty. At every node of the enumeration tree 
we check whether the width and the height of the cor- 
responding partial layout dominate the width and the 
height of some pair in the list. If this happens to be 
the case, a backtrack takes place. Otherwise, the 
algorithm proceeds in a forward step. Whenever a 
leaf is reached, the corresponding pair is added to the 
list, while every existing pair dominating the new pair 
is deleted from the list. 

5. COMPUTATIONAL RESULTS 

Figure 5 depicts a 24 block floorplan, where the pos- 
sible implementations of each block are listed as, (x,~) 
pairs within the corresponding region. There is a 
total of 2.03 x lOi possible configurations (equivalent 
to a 50 block optimal orientation problem), and the 
algorithm proposed in this paper searches for the one 
yielding the smallest area. Summing up the areas of 
the individual blocks yields 1024 area units. Notice 
that if the blocks take the highlighted implementa- 

tions in Figure 5, the area of the resulting layout is of 
size 1024, which is obviously the desired minimum. 

The branch and bound algorithm was run four times. 
Initially, the basic algorithm without any heuristic was 
employed. In the second run, the further area 
reduction discussed in Section 3.1 was introduced. 
Next, the improved area bound discussed in Section 
3.2 was supplemented. Finally, the backtracking con- 
ditions based on the increasingly interlaced order of 
block implementations, discussed in Section 3.3, were 
incorporated. Table 1 summarized the results and 
demonstrates the effectiveness of the above heuristics. 
To reduce the dependence of the comparison on the 
specific software implementation and the computer 
system used, the results are given in terms of the ratio 
between the number of visited nodes and the total 
number of leaves in the search tree. 

6. CONCLUSIONS 

Given a general (non-slicing) floorplan and several 
possible physical implementations for each building 
block, this paper presented a practical algorithm that 
determines the implementation of each building block 
such that the area of the entire layout is minimized. 
Although this problem is NP-complete, the suggested 
branch and bound algorithm handles successfully 
large floorplans. It was shown that one can take 
advantage of the slicing structures which are usually 
found in general floorplans, by combining the branch 
and bound algorithm with the known polynomial 
algorithms for the slicing case. This combination 
further increased the size of the problems that can be 
solved. 
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Figure 1. Some implementations of a register file. 
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Figure 2. A floorplan and its graph representation. 
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Figure 3. A floorplan and its search tree. 

Figure 4. Combination of slicing and non-slicing struc- 
tures. 
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