
Technology Mapping for Reliability Enhancement in Logic Synthesis

Zhaojun Wo and Israel Koren
Department of Electrical and Computer Engineering

University of Massachusetts,Amherst,MA 01003
E-mail: {zwo,koren}@ecs.umass.edu

Abstract— Reliability enhancements are tradition-

ally implemented through redundancies at the system

level or through the use of harden-cell-designs at the

circuit level. Reliability is commonly ignored during

the logic synthesis step. A major reason for this is

the fact that constructing a cost function to measure

sensitivity to faults at the logic synthesis level is com-

plex. The work presented in this paper addresses one

important aspect of synthesis for high reliability. It

focuses on the problem of mapping a technology in-

dependent circuit to a technology specific one, using

gates from a given library, with Fault Sensitivity [3]

as an optimization metric. We believe that the diffi-

culty in obtaining accurate metrics of fault sensitivity

at the technology independent level makes it hard to

optimize at this level, thus technology dependent map-

ping offers a direct method to improve reliability. In

this paper, we present a concept named “effective fault

area” for mapping onto library gates. Along with this

concept, we adopt a Markov-model based analytical

method to accurately estimate fault sensitivity during

mapping with a low computational overhead. Several

benchmark results show that the average reliability

improvement is about 20.7% at the cost of 12.1% in-

crease in delay.

I. Introduction

Transient faults are the most common type of failures
in digital systems. The rate of transient faults due to
high-energetic particles is called Soft Error Rate (SER).
Alpha-particles and neutrons constitute more than 97%
of the total high-energetic particle hits [1]. Reducing the
effects caused by these two types of particles is desirable
in order to reduce the rate of transient faults, and thus,
increase the system reliability.

A typical digital system contains three parts: combina-
tional logic, latches and memory units. In [2], the SER
for these three parts with the technology scaling trend
is predicted. It is concluded that the SER for memories
stays roughly the same with technology scaling, the SER
for latches increases linearly with scaling, while the SER
for logic increases exponentially with scaling. As a result,
decreasing the sensitivity to faults of combinational logic
is highly desirable.

The need for high reliability circuit design is being ac-
tively addressed at several levels. At the system level,
spatial or temporal redundancy techniques are used to
improve system reliability. At the circuit level, robust
cells and latch designs are studied. At the device level,
work is being done to reduce the peak voltage generated
by particle hits. To the best of our knowledge, no re-
search on improving reliability at the logic synthesis level
has been published mainly due to the lack of metrics for
fault sensitivity at this level.

In this paper, we attempt to establish a metric for fault
sensitivity based on a previously introduced “Fault Sen-
sitivity (FS)” metric [3]. A concept of “effective fault
area” is presented and a corresponding fault sensitivity
cost function is described. Then, a mapping algorithm
targeting the reduction of the effect of transient faults in
combinational logic is presented. Based on our experi-
mental results on the ISCAS85 benchmark suits, we con-
clude that about a 20.7% reduction in fault sensitivity can
be achieved at the expense of a 12.1% increase in delay
compared with minimal delay solutions.

II. Fault Model

A. Traditional Device to Transistor Level Particles-hit
Model

Alpha-particles and neutrons are the main sources for
high energy particle hits. Several transient models for
faults have been proposed for high energetic particles.
The hit mechanism for alpha-particles or neutrons can
be illustrated in Fig.1. Only source and drain of active
region are sensitive to particles hit (Fig.1(a)). The high
energetic particles cross through PN junctions, ionizing
movable charges. The charges are collected by the junc-
tions (Fig.1(b)). As a result, leakage current is collected
by the substrate. Transistor level fault simulation meth-
ods [4] are commonly used to analyze the efect of the
particle hits. An input stimulus vector is related with
primary input probability(p), charge injection volume(q),
charge injection time(r), and injection node(N) [4]. For
each stimulus vector, a transient current source, denoted
by Iinj , is added at drain or source node in a transis-
tor (Fig.1(c)). The current model for alpha-particles and
neutrons is given in (1) [2, 5]

+
-

-
-

-

+

+

+

P
+

N

+

+

+

+

+
+
+
+
 +
+
+

+

+

+

-
 -
 -
 -
 -
 -

I
inj

Substrate

V (V+dV)

(b)

I
inj

(c)

fault-sensitive

Interconnect

fault-insensitive
Drain/Source

(a)

particles

Fig. 1. (a) The sensitive and insensitive area of a PMOS node (b) particle hit on the drain of PMOS transistor (c) The circuit model for
particle-hit

Iinj =





Qinj

τ2−τ1
(e−

t
τ2 − e−

t
τ1) for α-particles

K
Qinj

τ

√
t
τ e−

t
τ for neutrons

(1)

where Qinj is injected charge, τ1, τ2, τ are time constants
and K is technology dependent parameter.

B. Fault Sensitivity

In [3], a Fault sensitivity metric was presented for mea-
suring the potential effect of faults. It is defined as:

FS ≡
∑

Yj∈PO

N∑

i=1

Ai ∗ { 1
p · q · r

∑
p,q,r

E(i,Yj)(p, q, r)} (2)

where Ai is the sensitive area of node i. i.e., the area of
the source and drain active regions since only these are
sensitive to particle hits. E(i,Yj)(p, q, r) is the outcome of
a fault injection experiment and is given by

E(i,Yj)(p, q, r) =





1 if the injection into node i results
in a fault at primary output Yj

0 otherwise
(3)

where p is the number of input combinations in the ex-
periments, q is the number of particle injection levels con-
sidered, r is the number of time instances at which faults
are injected, and N is the number of nodes in the circuit.
The unit of FS is area.

Simulation-based methods are generally used to calcu-
late FS [4]. Alpha-particles and neutrons are the main
sources for high energy particle hits. A total of p∗q∗r∗N
simulation runs are needed at the transistor level. A tran-
sient current source, denoted by Iinj , is added at the drain
or source node in a transistor. The current model for
alpha-particles and neutrons is shown in (1).

A circuit simulator such as SPICE is called for each
simulation run making this approach too time consuming

even for relatively small circuits. In our technology map-
ping scheme, we adopt the above transient circuit models
for basic gates such as NAND2. Using exhaustive SPICE
simulations we extract the effective fault areas (we will
introduce it later.) for these basic gates. As shown be-
low, the FS metric is a simple linear combination of the
input signal patterns and the effective fault areas.

C. Effective Fault Area

To calculate FS from (2), we have to perform charge
injection simulations at the transistor level. In Fig.2(a),
the Nand2 gate has to be simulated for 5 different nodes.
We notice that for static CMOS design, the NMOS and
PMOS components are fully separated by the output
node. It is also noticed that a particle hit in NMOS will
always lower the voltage of the injection node. Similarly,
a hit in PMOS will always increase the voltage of the
injection node. Equivalently speaking, considering the
gate output, a hit in NMOS can only generate a negative
glitch while a hit in PMOS can only generate a positive
glitch. These effects motivate us to make the following
equivalence: If all the NMOS part hits (Iinj from node to
ground) are averaged to one digital pulse hit at the output
(the negative pulse width equals to the sum of the injec-
tion effects 1,2 and 3 in Fig.2.), and all the PMOS part
hits (Iinj from V DD to the node) are averaged to one
digital pulse hit in the output (the positive pulse width
equals to the sum of injection effects 4 and 5.). We further
make a simplifying assumption that the output of a gate
has two types of “glitches” (see Fig.2(b)) corresponding
to positive and negative glitches due to particle hits in
PMOS and NMOS, respectively. Each type of glitch is
unit-width pulse. There is a “weight” assigned to each
type of glitch (the unit of this weight is area) and we call
this weight “effective fault area”.

The effective fault area A0
g, A

1
g for gate g is defined

A

B

injection 5

injection 4

injection 3

injection 2

injection 1

unit negative

glitch injection

unit positive

glitch injection

PMOS hit

NMOS hit

Fig. 2. (a)Five injection experiments needed in transistor-level simulation (b)Two unit width glitches from
output, “fault sensitive area” equals the fault-sensitivity value

as:
{

A0
g =

∑
i∈NMOS

{ 1
p.q.r

∑
p,q,r E(i)(p, q, r)} ∗Ai

A1
g =

∑
i∈P MOS

{ 1
p.q.r

∑
p,q,r E(i)(p, q, r)} ∗Ai

(4)

Eq(4) allows us to move from transistor level to gate
level simulation. Given A0,1

g , we inject digital pulses only
at the gate’s output and find out if a primary output
error happens. The factors q, r,N in (2) are no longer
needed. As a result, the number of total possible simula-
tion runs is reduced. This greatly reduces the simulation
time, not only because fewer nodes are simulated but also
because fast logic simulators can be used instead of circuit
simulators. A0,1

g can be pre-characterized by exhaustive
simulations for given library gates.

Using the effective fault area definition, eq(2) can be
rewritten as:

FS =
∑

Yj∈PO

∑
gi

(P (gi → Yj){P (gi = 1) ∗A1
gi

+ P (gi = 0) ∗A0
gi

)}

(5)

where P (gi → Yj) is the probability that a glitch prop-
agates from gi’s output to the primary output Yj and
P (gi = 0), P (gi = 1) is the probability that gi = 0 and
gi = 1, respectively. The later are called signal probabili-
ties.

D. Analytical fault sensitivity (FS) computation

We intend to use eq(5) as the cost function for our low
Fault Sensitivity mapping algorithm. The question is how
to effectively compute the two probabilities during each
mapping decision. We use a zero gate delay assumption

to simplify the computing of the probability. It means
that the glitches generated by the difference of the gate
delay is ignored. Under this assumption, for any Directed
Acyclic Graph (DAG)-like structure, the signal probabil-
ity for each node is determined by its logic expression
only.

D.1 Signal probability computation

The difficulty in determining the signal probability for
DAG-like structure is due to the existence of fanout re-
convergent paths [6]. Re-convergent fanout paths intro-
duce functional dependency and statistical correlations
among the signals. The Markov-based chain-correlation
approach is a suitable one for our task. We adopt the
MCP [6] algorithm to compute each node’s signal proba-
bility. The computing complexity is O(NS) where N is
the number of total gates and S is the number of wires.

D.2 Minimal fault sensitivity tree-mapping

From eq(5), each gate has its own contribution to FS. Our
goal is to select an optimal combination of gates from a
given library. Optimal DAG-cover-mapping is a NP-hard
problem. However, if we limit the DAG to tree-cover-
mapping, it always has an optimal solution [7].

Suppose a netlist can be split into trees (Fig.3). Our
goal is to optimize FS in eq(5). For each gate gi, we
need to compute the path probability P (gi → Yj). This
is difficult because of the presence of fanout re-convergent
paths. We avoid computing P (gi → Yj) directly. Suppose
a tree Ti is the target tree to be optimized. We denote by

Tree 1

Tree 2

Tree 3

Tree 4

a

b

c

d

Fig. 3. Tree structure of a netlist

a

b

c

d
 e

f

g

Fig. 4. FS computation for a tree structure

FSTi
the Fault-Sensitivity measured for the tree Ti. We

have the following claim:
Lemma : For a tree-cover-mapping optimizing a global

fault sensitivity FS, reducing the local fault sensitivity
FSTi also reduces FS.

Proof: eq(5) can be re-written as :
FS =

∑
Yj

∑
Ti

P (Ti → Yj) ∗ FSTi

The logic function from the tree Ti to any primary output
Yj is independent of the mapping of the tree, i.e., the logic
function F (Ti → Yj) is fixed. Under our zero delay gate
model, P (Ti → Yj) in eq(5) is fixed. Thus, the global
fault-sensitivity FS is reduced by reducing FSTi

•

Based on our claim, our cost function FS is further
simplified to FSTi for each individual tree. For example,
in Fig.3, the netlist contains 4 trees and therefore,

FS = FSa ∗ P (a → d) + FSb ∗ P (b → d) + FSc ∗ P (c → d) + FSd

(6)

It is equivalent to optimizing 4 trees (FSa ∼ FSd) in-
dividually. Fig.4 is an example of a tree. It no longer has
fanout-reconvergent paths for each gate. For example:

P (a → g) = P (bdf) = P (b).P (d).P (f).Cb,d.Cb,f .Cd,f

(7)
where Ci,j [6] is the correlation factor for the two nodes
i, j. Fig.5 shows our tree-based minimal fault-sensitivity
mapping algorithm.

III. experimental results

To illustrate our mapping procedure, we present an
example of a single tree. In Fig.6, all the nine pri-
mary inputs are assumed to have equal signal probabil-
ities (P (i) = 0.5). Signals “1” and “5” are dependent
(C1,5 = 2). The other signals are mutually independent

Minimal Fault Sensitivity mapping Algorithm{
INPUT: Technology independent synthesized logic function

and library.
OUTPUT: Mapped netlist with minimal Fault

Sensitivity (FS).
1. Decompose to nand2/inv based subject graph.
2. Split DAG at each multi-fanout node, decompose subject

graph to trees.
3. DFS-sort trees of subject graph, assign levels to these trees.
4. For each sorted trees, find out each possible match within

the tree.
5. Calculate each tree’s primary input’s probability and signal

correlations.
6. Compute each node’s signal probability and each pair’s

signal correlation using MCP algorithm.
7. Compute each node’s path probability to the tree primary

output.
8. Use dynamic-programming to obtain min FS mapping

in this tree.
9. Repeat steps 4-8 until all the trees are mapped.
10. compute final FS.

}

Fig. 5. Minimal FS mapping algorithm

TABLE I
Fault Sensitivity compared by two methods

Circuit FS by [4] FS by (5) Error
Fig.6 8.0 8.3 3.8%
C17 2.85 2.82 -1.1%
C432 59.0 61.4 4.1%

(Ci,j = 1). The mapped result is shown using dashed
frames.

Table I compares the calculated values of the fault sen-
sitivity for three circuits. Column 2 is the exhaustive
transistor-level simulation method [3, 4]. Column 3 is the
result of the simulation based on eq(5). The accuracy of
out mathod is within 5%.

Our minimal Fault Sensitivity program is written in C.
It consists of about 6 thousand lines of codes. A dynamic
programming technique similar to SIS [7] minimal area
mapping algorithm is followed. We use TSMC 0.18um
static CMOS library in our experiments. Our experimen-
tal library is smaller than the commercial library. It con-
tains only 12 cells. We first use SIS to perform technology
independent logic synthesis and technology decomposition
to a Nand2/Inv based subject graph. Then the subject
graph is converted to a DAG structure and the minimal
Fault Sensitivity program is called. Finally, we use our
simulation-based scripts [4] to verify the improvement of
the metric. We ran this program on the circuits from
the ISCAS85 benchmark suits. The results are shown in
Table II.

In order to evaluate our mapped results, we generated
three sets of results and compared with each other. Each
set has three metrics: FS, area and delay. Set 1 is the
result of our minimal FS synthesis. Sets 2 and 3 are min-

TABLE II
FS tree-mapping results for ISCAS85 benchmarks

Benchmarks minimal FS minimal Area minimal delay

FS area delay FS area delay FS area delay

C17 2.82 28 0.2 2.82 28 0.2 2.82 28 0.2
C432 61.4 1147 8.0 69.0 1069 8.6 83.5 1213 6.8
C499 204.5 2128 17.8 209.3 1920 20.7 254.6 2132 16.8
C880 136.8 1786 16.3 148.0 1648 18.5 151.6 1901 13.6
C1908 190.0 2238 19.5 208.3 2058 22.3 252.2 2275 18.6
C2670 297.4 4233 26.0 327.4 3861 29.6 403.7 4478 23.9
C3540 549.8 11477 51.3 661.5 10273 63.7 812.1 13059 41.4
C5315 685.4 7876 43.3 727.9 7268 57.2 893.5 9023 38.0
C6288 1281.8 14173 101.5 1401.5 13521 143.0 1683.3 16174 89.4

Bench-marks minFS VS minA (%) minFS VS minDly (%) minA VS minDly (%)

∆FS ∆A ∆Dly ∆FS ∆A ∆Dly ∆FS ∆A ∆Dly

C17 0 0 0 0 0 0 0 0 0
C432 −10.9 7.3 −7.0 −26.4 −5.4 17.6 −16.9 −11.9 26.5
C499 −2.3 10.8 −14.0 −19.7 −0.2 6.0 −17.8 −10.0 23.2
C880 −7.6 8.4 −11.9 −9.8 −6.0 19.9 −2.0 −13.3 36.0
C1908 −8.8 8.7 −12.6 −24.7 −1.6 4.8 −17.5 −9.5 19.9
C2670 −9.2 9.6 −12.2 −26.3 −5.5 8.8 −18.8 −13.8 23.8
C3540 −16.9 11.7 −19.5 −32.3 −12.1 23.9 −18.6 −21.4 53.8
C5315 −5.8 8.4 −24.3 −23.3 −12.9 14.1 −18.6 −19.6 50.5
C6288 −8.5 4.8 −29.0 −23.9 −12.4 13.5 −16.7 −16.4 60.0
average −7.9 7.8 −14.5 −20.7 −6.2 12.1 −12.0 −12.9 32.6

0

1

2

3

4

5

6

7

8

19

10

17

18

21

11

15

22

23

12

13

14
 9

20

16

0
 1

2

3
 4

5

6

7

8

9

10

11

12

13

14

AOI21

OAI21

OR2

AOI21

INV1
 NAND2

Fig. 6. A mapped result for a tree. Signal ”1” and ”5” are
dependent

imal area and minimal delay results provided by SIS [7],
respectively. We use a static-timing analysis method to
compute the critical path delay where the unit delay is
ns.

The three sets of results are then compared, two at a
time, in the right half of Table I. We first compare the
metrics for the minimal FS solutions with these of the
minimal area ones. On the average, there is a 7.9% de-
crease in fault sensitivity, 14.5% reduction in delay, at the
expense of 7.8% increase in area. We next compare the
minimal FS solutions with the minimal delay solutions.
On the average, there is a 20.7% reduction in FS, 6.2%
reduction in area at the expense of 12.1% increase in de-
lay. We finally compare the minimal area solutions with
the corresponding minimal delay solutions. On the aver-
age, the minimal area solutions have a 12.0% reduction
in FS, a 12.9% reduction in area, but a 32.6% increase in
delay.

IV. conclusion

In this paper, a tree-based technology mapping algo-
rithm targeting Fault Sensitivity is presented. A new con-
cept of “effective fault area” is presented, which allows
to use an analytical model for calculating Fault Sensi-
tivity. Dynamic programming is adopted to implement

the algorithm. Experimental results indicate that about
20.7% improvement in Fault Sensitivity can be achieved
at an extra cost of 12.1% in delay compared to the mini-
mal delay solutions.

References

[1] J.F. Ziegler, “Cosmic Ray Soft Error Rates of 16-Mb DRAM
Memory Chips,” IEEE JSSC, Vol.33, NO.2, pp. 246–252, Feb
1998.

[2] P. Shivakumar, “Modeling the Effect of Technology Trends on
Soft Error Rate of Combinational Logic,” Proc. of ICDSN, pp.
389–398, June 2002.

[3] A. Maheshwari, I. Koren and W. Burleson, “Techniques for
Transient Fault Sensitivity Analysis and Reduction in VLSI
Circuits,” IEEE International Symposium on DFT, pp. 597-
602, 2003.

[4] M. Singh and I. Koren, “Fault Sensitivity Analysis and Reli-
ability Enhancement of Analog-to-Digital Converters,” IEEE
Trans. on VLSI Systems, pp. 839–852, Nov. 2003.

[5] G.C. Messenger, “Collection of Charge on Junction Nodes
from Ion Tracks,” IEEE Trans. on Nuclear Science, pp.2024-
2031, 1982.

[6] H. Li, J.K. Antonio and S.K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” Proceedings of IEEE
Symposium on VLSI, pp.254–259, Feb 2003.

[7] E.M. Sentovich, “SIS: A System for Sequential Circuit Syn-
thesis ,” ICCAD, 1992.

