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Abstract 

The yield of a VLSZ chip depends, among other factors, on the sensitivity of the chip to 
defects occurring during the fabrication process. To predict this sensitivity, one usually 
needs to compute the so-called critical area (Ac) which re&& how many and how large 
the defects must be in order to result in a circuit failure. The main computational problem 
in yield estimation is to calculate A, efficiently for complicated, irregular layouts. A novel 
approach is suggested for this problem that results in an algorithm to solve it efficiently. 
This algorithm is compared to other yield-prediction methods, which use either the Monte- 
Carlo approach (VLASIC) or a deterministic approach (SCA), and is shown to be faster. 
It also has the advantage that it can graphically show a detailed ‘defect sensitivity map’ that 
can assist a physical designer in improving the yield of his/her layout. 

1 Introduction 
Following [2],[4],[5], the yield of a chip, Y, is computed as Y = E;. where yi io the yield 
associated with the ith step of the manufacturing process. For convenience, the subscript 
will be omitted and Y will be referred to as the yield of a single processing step. Using the 
negative binomial distribution, the yield of a single processing step is modeled as 

where d denotes the average number of defects per unit of area, a the clustering parameter 
and A, the critical area, defined by 

A, = iw A(r)D(r)dr 

A(r)  is the area in which the center of a defect of radius T must fall in order to cause a 
circuit failure. For a given circuit layout C it is defined as 

where 

(4) 
1 a defect of radius T at (z,y) causes a circuit failure 
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D ( T )  is the density function of the defect size. Experimental data on defects in many wafers 
lead to the following formula ([4],[5],[7]): 

where p and p are real numbers (typicdy p = 3, p w 1 [7]), and e is given by c = (q+ l)(p - 

The problem in yield estimation is to calculate A ,  for a complicated, irregular layout. 

Deterministic Approach: Compute A(T) for several values of T by either the scan-line 
method ([8],[9]) or shape-expansion ([3],[6]). Equation (2) is then used to approximate 
A,, and equation (1) is used to predict the yield. 

l ) / (p  + P) PI. 
Existing yield-prediction algorithms are based on one of the following methods: 

Monte-Carlo A p p ~ ~ c h  (e.g.,[lO],[ll]): Draw a largenumber of defects, with their radii 
distributed according to D(T) ,  check for each defect if it causes a fault, then divide the 
number of defects causing circuit failures by the total number of defects. 

Algorithms based on the deterministic approach are usually faster, while the Monte-Carlo 
approach yields more precise results, but needs substantially more CPU time. Hence, 
neither method is suitable as a precise interactive design tool. In this paper a new analytic 
approach is suggested that leads to  a faster algorithm for computing A,. 

The rest of the paper is organized as follows: Section 2 includes the suggested analytic 
approach, Section 3 describes the algorithm and in Section 4 some numerical and graphic 
results are presented. 

2 

2.1 Computing the Critical Area 

In general, A(T) is an area measure, and hence can be expressed as an integral, for a given 
cell C, as was shown in Equations (3) and (4) above. 

Critical Area Analysis - A New Approach 

Let us denote by U an ordered set of coordinates (5, y). Thus 

Note that U is a twcrdimensional point; hence d u  is an infinitely s m d  area unit. The two 
integrations are independent, so their order can be changed: 

Let us denote by S ( U )  the internal integral. In fact, S(u)  is the defect-sensitivity at point 
U ,  i.e., the probability of a circuit fault caused by a defect at point U ,  and is given by 

S(u) = Jm G(u,r)D(r)dr 
r=O 

We then have 
(9) 
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Let us assume that ~ ( u , T )  i s  monotonic in T ;  that is, if a defect of size T at point n results 
in a circuit fault, then a defect of size r’ > r at the same point will also result in a circuit 
fault. Further, let rC(u) denote the critical radius at point U, i.e., the minimal size of a 
defect causing a circuit fault at point U .  

This will simplify the formula for S(U) resulting in 

S(U) = D ( T ) ~ T  

By now the problem of calculating the critical area A, has been reduced to that of 
calculating the critical radius at each point of the layout, since the integralin equation (10) 
can be pre-calculated for several values of T,. In practice, if a simple formula like ( 5 )  is 
used, then its integral can be represented in a closed form. 

In order to be practical, let us consider the area of the layout as a set of grid points, each 
of which may be either empty or belong to a shape in the layout. The grid resolution is 
y,  which has to be small enough to cover all significant shape variations. If our layout has 
width W and height H, then there are W H / y 2  points in it. The layout is described as a 
set of shapes L = {Pi, Pz, . , . , Pk} where the P’s are sets of points, and b is the number of 
shapes in the layer under consideration. In what follows ‘points’ has the meaning of ‘grid 
points’. 

Based on the above analysis one can employ a naive algorithm for calculating ~ , ( p ) ,  as 
depicted in Figure 1. The problem with ALGl is its high complexity. There are WH/7’ 
points, and for each point we need to scan all the other points (in the worst case, when there 
are only 2 small polygons near the edge of the area). Hence, the complexity of running 
ALGl on the whole cell is 0 (WA/72)2 For example, if the layout is 1OOp X loo@, and we 
set y = 0 . 1 ~ ~  then we need 0(1Oi2) computation steps. 

2.2 

Let us first discuss the ‘short-circuit’ type faults. In this context, rC(u) is the minimal 
radius of a circle around U that intersects more than one shape. A defect with such a 
radius will cause a short-circuit. 

We denote by IU - U’[ the distance between the points U and U’. (Although we use the 
Euclidean distance in this paper, the theory holds for other measures as long as the triangle 
inequality holds.) Also, we denote by T ~ ( u )  the distance from U to the ith nearest shape of 
the layout; clearly rc(u) = T Z ( U ) .  

The corollary of the following theorem states that the critical radii of two points cannot 
differ by more than the distance between these points. 

Theorem 1 : Assume that U and U’ are two points of the layout. Then 

Computing re(.) Efficiently - A Ring Theorem 

vi E {1,2} : \Ti(.) - T;(U‘)I 5 1% -U’/ 

Corollary 1 : Any polygon that may affect T,(u) should intersect either the ring 

{V I T i ( 0 ’ )  - IU - 21’1 5 IV - U1 5 T i ( U ’ )  t (U - U’I} 
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The proofs of Theorem 1 and Corollary 1 are omitted for the sake of brevity. 
Using Theorem 1, one can devise a better algorithm for T ~ ( u ) ,  that makes use of the 

previously calculated values r1(u') and rZ(u'), where U' is a neighbor of U on the grid. (See 
Figure 2). 

In ALG2 we perform an exhaustive search for only one point. Then, for all the other 
points we need only scan a ring whose radius cannot exceed the edge of the cell, and 
whose width is 27. Hence, the worst-case complexity of running ALG2 on the whole cell 
is only 0 ( W H / Y ~ ) ' . ~  which, in the example above, is 1000 times faster than ALG1. A 
more sophisticated analysis leads to an even better bound of 0 (WHc/73)  where c i s  the 
average critical radius of the layout. It is interesting to note that the complexity is inversely 
proportional to the layout density; as the number of shapes grows, decreases, as does 
the complexity of ALG2. 

Using equations (9) and (10) above, and the procedure ALG2 to calculate ~ , ( z , y ) ,  the 
sensitivity and critical area for an arbitrary cell can be approximated as depicted in Figure 
3. In order to get a good approximation for A , ,  one must choose a y such that (1) 7 is 
small enough so that we will not m i s s  any significant variation in the critical radius between 
grid-points, and (2) the number of test-points, given by W H / - y 2 ,  is not too large, in order 
to keep the algorithm efficient in time and space. 

The following theorem shows the linkage between 7 and the maximal error: 

Theorem 2 : Denote by  A, the critical area of the layout, and by A: the critical area as 
computed by  ALGS. Then, for a typical distribution of defect size, the relative error satisfies 

where rg is the minimum ground rule for the layer under considemtion. 

For example, if T~ = 1.0pm and 7 is selected to be O.Olpm, then the relative error is 
bounded by 0.943%. In other words, to  have the error bounded by E we should set 

In fact, our implementation of YMAP calculates a better bound on its error using the 
actual values of critical radii. 

3 Implementation and Results 
YMAP was implemented in the C programming language, and run on an RS/6000 IBM 
workstation. It has been integrated into the IBMS design system [12]. Figure 4 shows 
examples of metal polygons with the corresponding defect-sensitivity map for short-circuit 
faults. 

3.1 

The values calculated by the algorithm can be used in two ways: 

Usage of the YMAP Algorithm 

1. Yield-Meter: for a given layout cell L,  compute the critical area, then use equation (1) 
to evaluate the yield of the cell. 
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2. Yield-Pointer: Draw a ‘topographic map’ of L,  such that the intensity of color at point 
U is proportional to S(u) as defined in equation (8) (See Figure 4). 

If Y (1;) is too small, one can use the sensitivity map to find how the yield can be improved. 

3.2 
We compared the YMAP program to two yield simulators: VLASIC ([lO],[ll]) and SCA 
([8],[9]). Simple layouts were considered for which analytic formulas of the critical area 
could be derived. For each such layout, we ran YMAP, VLASIC and SCA for several 
time limits, and then compared their relative results. The time limit was set by either 
the number of defects (VLASIC), the step size of the defect radius (SCA), or the grid size 
(YMAP). The results are ‘relative’in the sense that we take one case as havingunit critical 
area, and then normalize the other cases accordingly. This was done for two reasons. First, 
it is important for an interactive yield simulator tool to be able to compare several layout 
configurations for their predicted yield. Second, when two programs are being compared, 
their different ‘numerical noise’ may be filtered out by normalization. 
A Test Case: Short-circuit Faults in Two Parallel Lines 

each and spacing s, it can be shown that the critical area is 

Comparison With Other Yield Estimators 

For the case of short-circuit faults between two parallel lines (see Figure 5) of width w 

where (2w -t s) and H are the horizontal and vertical dimensions of the cell, respectively, 
and RmaS is the maximum possible radius of a defect for the given layout. In Table 1 we 
compare the convergence speed of the three algorithms, that is, how fast each algorithm 
converges to the precise ratio of A,/A,(purl). The numbers in the table are normalized 
according to purl. The advantage of using YMAP is demonstrated in Figure 5,  where the 
convergence rates of the programs are compared graphically. 
A Test Case: Short Circuit Faults for Two Corners 

In this case the layout was made of two squares in opposite corners of the area under test. 
The convergence rates are quite similar to those achieved for parallel lines. The detailed 
results are omitted for the sake of brevity. 

3.3 Discussion 

All three algorithms (VLASIC, SCA and YMAP) eventually reach the correct results. It 
seems that the Monte-Carlo procedure used by VLASIC requires many more iterations for 
the results to be precise. On the other hand, SCA and YMAP rapidly converge to their 
final result (YMAP’s speed is somewhat better), and are deterministic, so a single run is 
sufficient. 

Probably, the VLASIC approach is more suitable for a whole chip analysis when a long, 
batch type execution is acceptable. YMAP, on the other hand, can be more useful as a 
part of a cell/macro CAD system, when a physical designer needs a fast and precise yield 
prediction of his/her layout. 

If the chip is a memory unit built from a repeated basic block, then YMAP constitutes 
a very efficient tool. Another advantage of YMAP is that it provides a bound on its error, 
so the user has a better knowledge about the precision of the results. 
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Function r ,(u):real; 
var r: real; begin 

T := 0; 
repeat 

r := r + 7 ;  
scan the points in the r-vicinity of U 

until you find two points, 211, 212 that belong to two different shapes; 
T,(u) := max{lu - 2111 , Iu - u21) 

end; 
Figure 1: ALGl - Naively computing rc(u).  
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VLASIC 

YMAP 

F‘unct ion rc( a):real; 
var d: real; 
begin 

d := IU - U‘[ 
repeat 

scan the points in the two rings: 
Rl:{W I T ~ ( u ’ )  - d 5 12) - (11 5 T ~ ( u ’ )  t d }  
R2:{w I r 2 ( 4  - d 5 Iv - UI 5 r 2 ( ~ ’ )  t d }  

until you find two points, ul, u2 that belong to two different shapes and are nearest to U; 
T ~ ( u )  := min{lu - u11,Iu - 2121); 

r 4 ~ )  := max{lu - ~ 1 1 ,  [U - ~ ~ 1 ) ;  
T,(U) := rz(u); 

end; 
Figure 2: ALG2 - Efficiently computing ?,(U) using T I ( U ’ ) , ~ ~ ( U ‘ ) ~  

CPU time (sec) 0.44 1.77 3.7 9.38 15.81 82.84 160.01 
Avg. Error 70.45% 22.66% 20.56% 17.11% 34.08% 4.19% 1.68% 

CPU time (sec) 0.31 1.53 8.43 25.08 57.52 79.17 161.11 

Procedure YMAP(L : layout; e,.,, rg : real); 

, I  1 Avg. Error 

Avg. Error 
SCA CPU time (sec) 

Input: * A layout L with width Wand height If. 
* e-max - A bound on the error in A,. 
* rg - The minimal ground rule for the layer under test. 

* A, = The critical area of L.  
Output: * The defect sensitivity S(z, y) for each grid-point (2, y) E L. 

11.65% 5.44% 3.49% 2.54% 1.98% 1.60% 1.46% 
1.24 4.17 9.65 15.11 20.81 91.73 162.71 

58.76% 16.88% 3.82% 1.86% 0.93% 0.21% 0.16% 

Var A,7,rC: real; 

begin 
i, j, m, n:integer; 

7 := 1.061 * emax T ~ ;  
A := 0, m := rW/7l1 n := rH/7l 
for i := 1 to m, j := 1 to n do 

/* this number results from Theorem 2 */ 

r, := rc(i7,j7); 
S(i7,j-r) := JZC W d t ;  
A := A + ~ ~ S ( a 7 , j 7 ) ;  /* r2  is an area element for piecewise integration*/ 

Figure 3: YMAP - Computing the defect-sensitivity S(.) and the critical area A,. 

end; 

Table 1: Comparing the average errors in A,/A,(parl) of YMAP, VLASIC and SCA for 
pardel lines. 
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Figure 1: Examples of sensitivity maps produced by YMAP. 

H 

VLASlC - 
50% 

25% Error in 'par2' 

VLASIC - 

SCA 
YMAP ._____. 

Average Error 

100 100 CPU sec. 50 50 CPU sec. 

Figure 2: Cell with parallel lines and convergence rates for VLASIC, SCA and YMAP. 


