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ABSTRACT

Placement problems are in many cases solved
at a very early stage of the design cycle when only a
rough estimate of the blocks’ geometry is available.
Hence, En placement can be viewed as a problem of
optimization under uncertainties. One type of
uncertainties that may arise in the physical design
process is in the position of ports. We first present
a mathematical framework to model these uncer-
tainties, and then solve the associated stochastic
optimization problem. The solution is obtained by
proving that the stochastic optimization problem
can be reduced to an equivalent deterministic one.
Then a normal law of distribution of the placement
cost is proved. Finally, a post optimization phase
that resolves the uncertainties is suggested.
Index Terms - IC layout, Constructive placement,
Physical design, Stochastic programming.

1. INTRODUCTION

Many algorithms have been proposed to solve
the placement problem of general blocks. Among
them are the comstructive algorithms in which son
blocks are selected and then located one at a time,
within the area of a father block. All the blocks are
assumed to have a rectangular shape and they com-
municate with each other through ports on their
boundaries.

Typically, the solution of the general block
placement problem is attempted at a very early
stage of the chip design process. At this stage there
is usually some uncertainty regarding the final
geometry of the blocks. The uncertainty can be in

the exact area of a son block, its aspect ratio or in
the position of its ports. Most existing models for
the placement problem are deterministic; it is desir-
able however, to consider the above uncertainties
when making decisions at the early stages of the
design cycle.

In this paper we limit our discussion to the
uncertainty that may arise in the position of ports.
We attempt to find the optimal block configuration
(under some constructive placement algorithm)
when this uncertainty is considered.

2. OUTLINE OF THE DETERMINISTIC PLACE-
MENT PROCESS

Given the geometry of the father block B, and
its b son blocks B, 1 <i <5, and the logical inter-
connections between their ports through several
nets, the problem of the optimal! placement of
general blocks is to minimize a nonnegative real
function C(®,, x,, yy,..., Oy, X3, 33}, where @, is the
position transformation of the / -th son block (gen-
erally, there are eight possible transformations
resulting from two reflections and four rotations),
and (x, ;) is the location of its center within the
coordinates of B, . The function C is the cost of a
complete valid placement (i.e., blocks do not
overlap). In constructive placement the solution is
obtained incrementally. At every step we first select
a yet unplaced block and then we attempt to locate
it optimally within the available free area. This free
area is decomposed into maximal rectangles called
prime free rectangles (PFRs), whose number is
O(5*). Obviously, for every valid location of a new
block- there exists at least one PFR that must



contain that block. Therefore, it has been suggested
to solve the minimization problem for each PFR
separately, and then select the solution that yields
the lowest cost {4].

Assume that a block B, can be located suc-
cessfully in a PFR, and let R denote the feasible rec-
tangle (within this PFR) for positioning the center
of B, R={{xylasx<b c<y<d} . Assume
further that B, should be connected to p ports of the
father and the already placed blocks, and let
{x,y), 1 <i<p , be their positions in the father
block (8,) coordinate system. Let (u,v), 1 <i<p,
denote the positions of the corresponding p ports of
B, in the B, coordinate system, where (0,0) is its
center position. We are looking for (x,y) € R such
that if we locate there the center of B;, the contrib-
ution f{x,y) to the cost of the current partial place-
ment is minimized, that is, we attempt to solve the
following problem:

minimize f{x,y) =

P
Mﬁ.ﬂ.« + 14— abm + 0+~ v.buu, ()
i=1

subjectto: a<x<b, c<y<d, (2)

where w; is a weight assigned to the net containing
the ports located at (x, y) and (u, »). (Weights are
assigned to nets according to their relative signif-
icance, e.g.. [4] .) Equations (1)-(2) are a convex
program and can be solved analytically [1].

3. UNCERTAINTY IN THE POSITION OF
PORTS

Let us now assume that the positions of ports
are not determined in advance but can be varied
within given rectangles. Since ports are usually
located on the boundary of blocks, the rectangles
are degenerated into intervals. This uncertainty
may arise in the early stages of a top-down design
process, when the final location of the ports may be
affected by the relative position of the son blocks
within the father block, or by the block’s internal
layout which is not determined yet. Another moti-
vation for introducing these uncertainties is that, a
port corresponding to a wide bus can be considered

as uniformly distributed in a finite interval on the
block’s edge.

To model the above uncertainty we assume
that the x and y coordinates of a port are inde-
pendent random variables and consequently, f{x,y)
in (1) is 2 random variable too. The program given
in (1)-(2) is now a stochastic programming problem
[3] and we may therefore minimize the expected
value of f{x,y). The solution of the stochastic
program is given by the following theorem: .
Theorem: Let x;, u, y, and v, that appear in (1) be
distributed in the intervals [a}, a}], [8!, 7], [y}, ¥2]
and [6},87], | <i<p, respectively, with some
probability density functions (vanishing outside the
intervals). Then, minimizing the expected value of
the stochastic function f{x,y) in (1) is reduced to the
minimization of the deterministic function f{x,y)
where x;, u, y; and v; are replaced by their expected
values.

Proof: Since the expected value is a linear func-
tional, we obtain from (1)

. 14
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After some manipulations we obtain
4
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where 62 denotes the variance. To solve the

stochastic program we have to differentiate (4) with
respect to x and y. That is

P
mh._”mﬂ”rﬂvu = MM.&.HH + E(u;) — E(x)], (5)
and
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The partial derivatives of E[f{x,y)] have the
same form as those of flx,y), except that
X, w, y;and v are replaced by their expected values.
Hence the assertion is satisfied.

The above theorem says that though the
location of ports within blocks is unknown, an
optimal placement can be performed by considering
the mean of each location as if it was the exact
location of the port. Note that this is similar to the
situation that occurs in stochastic optimal control.
In case of certain stochastic linear plant equation,
the optimal contro! policy is obtained by solving the
related deterministic system, where the random vari-
ables are replaced by their expected values. This is
known as the certainty equivalence principle [5] .

We are also interested in the distribution law
of the stochastic function f{x,y). The importance of
this distribution stems from the fact that fix,y)
reflects the utilization of a placement and one might
wish to know the “risk” that he/she takes when
letting the position of ports be undetermined. We
claim that as the number of the nets increases, it
approaches a normal distribution. This can be
proved by showing that the contributions of nets to
the cost of a complete placement are independent
random variables that satisfy the conditions of the
Central Limit Theorem [2] . Fig. 1 depicts the
optimal placement of a 16 blocks and 16 mnets
example where ports are uniformly distributed in
their given intervals. This placement was obtained
deterministically (following the Theorem). The
ports were then allowed to distribute uniformly in
their intervals and the resulting probability density
function of the placement cost (obtained after
drawing a sample of size 10000) is shown in Fig. 2.
The mean and standard deviation that were calcu-
lated from the observations are indicated in the
figure.

The moments of the cost distribution function
have also been derived analytically (based on the
parameters of the ports” distribution functions),
yielding E(COST) = 1.52071 x 10° and
o(COST) = 3.28146 x 10'%, which are very close to

the moments derived from the random sampling in
Fig. 2.

4. POST OPTIMIZATION

As the design proceeds, the positions of some
ports are determined by design constraints, while
others may be located arbitrarily in their intervals of
distribution. The optimal positioning of the latter is
called post optimization. Since two different nets
have no common ports and the x and the y coordi-
nates do not interfere in the objective function, the
post optimization can be accomplished separately
for the x and y coordinates of every net. Consider a
net whose ports’ coordinates x;, 1 £7<n, are dis-
tributed in the intervals [o, §;]- Then, the post
optimization problem is given by:

() minimize flxg, %) = Y (4= 5
ij=1

(8) subjectto: o; s x; < B, l<i<n

which is a quadratic programming problem and can
be solved [1].

ACKNOWLEDGEMENT: A part of this research
was performed while S, Wimer was with the Design
Center of National Semiconductor in Tel-Aviv. The
Design Center support of this research is gratefully
acknowledged.

REFERENCES

[11] Awvnel M., Nonlinear Programming: Analysis
and Methods, Prentice-Hall, 1976.

[2] Fisz M., Probability Theory and Mathemat-
ical Statistics, John Wiley, 1963.

[3] Vajda S., Probabilistic Programming, Aca-
demic Press, 1972.

[4] Wimer 8. and Koren I, Analysis of Algo-
rithms for Constructive General Block Place-
ment in VLSI, Technical Report No. 553,
Dept. of Electrical Engineering, Technion,
Haifa, 1985.

[5] Acki M., Optimization of Stochastic Systems,
Academic Press, 1967.



— — .

SED costs 1 4BI409

Figure 1: Optimal placement of a 16 blocks and 16 nets example,
obtained by deterministic optimization.

mean: 1,52060 x 107
varionce: 3.27108 x 101%
lowest observed value: 1.3888p x J0*

highest observed value: 1.74197 x 10°
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Figure 2: Distribution of placement cost of 16 blocks and 16 nets example.



