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An Interactive VLSI CAD Tool for Yield Estimation

Israel A. Wagner.and Israel Koren, Fellow, IEEE

Abstract—The yield of a VLSI chip depends on the sensitivity
of the chip to defects occurring during the fabrication process,
among other factors. To predict this sensitivity, one usually
needs to compute the so-called critical area (4.}, which reflects
how many and how large the defects must be in order to
result in a circuit failure. The main computational problem in
yield estimation is to caleulate A. efficiently for complicated,
irregular layouts. A novel approach is suggested for this problem
that results in an algorithm that will solve it efficiently. This
paper provides an interactive, accurate, and fast method for the
evaluation of critical area as a design tool; the tool utilizes good
visual feedback to allow layout improvement for higher yield. The
algorithm is compared to other yield-prediction methods, which
use either the Monte Carlo approach (VLASIC) or a deterministic
approach (SCA); the algorithm is shown to be faster. It also
has the advantage that it can graphically show a detailed ‘defect
sensitivity map’ that can assist a chip designer in improving the
yield of his/her layout.

1. INTRODUCTION

OLLOWING [4], [8], [9], and [13], the yield of a chip,

denoted by Y, is computed as Y = ITI%,Y;, where Y;
is the yield associated with the ith step of the manufacturing
process. For convenience, the subscript will be omitted and
Y will be referred to as the yield of a single processing step.
Using the negative binomial distribution, the yield of a single
processing step is modeled as

Y= AHA—IRanI ()

[

where d denotes the average number of defects per unit of area,
« the clustering parameter, and A, the critical area, defined by

A= \.ooo A(r)D{r)dr 2)

where A(r) is the area in which the center of a defect of
radius 7 must fall in order to cause a circuit failure. For a
given circuit layout C it is defined as

Alr) = \N

(z.y}eC

6(z,y,7) dz dy (3)
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where

1, a defect of radius r at (x,y)
causes a circuit failure CY

0, otherwise

1

b(z,y,1) =

where D(r) is the density function of the defect size. Exper-
imental data on defects in many wafers lead to the following
formula {8], [9], [18]:

D(r) = Ta\ﬂmt. 0<7<ro

5
b P, rp<r<oo )

where p and ¢ are real numbers (typically p = 3,9 ~ 1 [18]),
and cis given by c = (¢ + 1)(p — 1)/(g + p) [3].-

The problem in yield estimation is to calculate A, for a com-
plicated, irregular layout. Existing yield-prediction algorithms
are based on one of the following methods:

» Deterministic Approaches: Compute A(r) for several
values of r by either the virtual artwork method [12],
[13], scan-line [15], [16], shape-expansion [3], [17], or
heuristic analytical expressions [2]. Equation (2} is then
used to approximate A, and (1) is used to predict the
yield.

» Monte Carlo Approach: Draw a large number of defects,
with their radii distributed according to I¥(r}, check for
each defect if it causes a fault, then divide the number
of defects causing circuit failures by the total number of
defects [20], [21].

Algorithms based on the deterministic approach are usually
faster, while the Monte Carlo approach yields more precise
results but needs substantially more CPU time. Hence, neither
method is suitable as a precise interactive design tool. In this
paper a new analytic approach is suggested that leads to a
faster algerithm for computing A.. Such an algorithm can be
used as the core of an interactive yield-prediction tool, which
can help a VLSI designer to make yield-oriented decisions
early in the design process, rather than the traditional approach
of completing the layout and leaving the yield issues to the
fabrication phase.

The rest of the paper is organized as follows: Section I1
includes the suggested analytic approach, Section III describes
the algorithm, and in Section IV numerical and graphic results
are presented.

II. CRITICAL AREA ANALYSIS—A NEW APPROACH

A. Computing the Critical Area

In general, A(r) is an area measure, and hence can be
expressed as an integral, for a given cell C, as was shown
in (3) and (4) above.
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Let us denote by w an ordered set of coordinates {x,y).

Thus,
L D(r) A-\:mo. &(u, ) &ﬁv dr.

Note that  is a 2-D point; hence du is an infinitely small area
unit. The two integrations are independent, so their order can
be changed, yielding

A, = \: . A "~ §(u,r)D(r) i du. 7

»=0

Ag = (6)

Let us denote by S(u) the internal integral. In fact, §(x) is the
defect sensitivity at point u, i.e., the probability of a circuit
fault caused by a defect at point u; it is given by

” §(u,7)D(r) dr.

r=0

S(u) = (8)

We then obtain
A, = \ S(u)du. o
uwEl

Let us assume that §{u, r) is monotonic in r; that is, if a defect
of size v at point u results in a circuit fault, then a defect of
size 7' > r at the same point will also result in a circuit fault.
Further, let v ()} denote the critical radius at point «, i.c., the
minimal size of a defect causing a circuit fault at point u

re(u) = E“.F?m?u r}=1}

This will simplify the formula for S(u) resulting in

S(u) = \
r=r,(u)

At this point, the problem of calculating the critical area A,
has been reduced to that of calculating the critical radius at
each point of the layout, since the integral in (10} can be pre-
calculated for several values of r.. In practice, if a simple
formula like {5) is used, then its integral can be represented
in a closed form.

In order to be practical, let us consider the area of the layout
as a set of grid points, each of which may be either empty
or belong to a shape in the layout. The grid resolution is -,
which has to be small enough to cover all significant shape
variations. If our layout has width W and height H, then
there are W H /2 points in it. The layout is described as a
set of shapes L = { P}, Py, -+, Pi.}, where the P denotes sets
of points, and k is the number of shapes in the layer under
consideration. Henceforth, ‘points’ has the meaning of ‘grid
points’.

Based on the above analysis; one can employ a naive
algorithm for calculating r.(p), as depicted in Fig. 1. The
problem with ALGI is its high complexity. There are W H/+*
points, and for each point we need to scan all the other points
(in the worst case, when there are only 2 small polygons near
the edge of the area). Hence, the complexity of running ALG1
on the whole cell is O(W H/+?)%. For example, if the layout
is 100 gm x 100 um and we set v = 0.1 pm, then we need
0(10'2) computation steps. In the next section, a mathematical
observation is presented that can be used to substantially speed
up this computation.

D(r) dr. (10)

Function ¢ .(u)eal;
var 1; real; begin
To=0
repeat
ri=r+4;
sean the points in the r-vicinity of u
until two points, uy, 8z that belong to two different shapes are found;
r{u):= mar{lu - wy],}u% ~ ]}
end;

Fig. 1. Naively computing r.(#) (ALGI).

B. Computing r.{u) Efficiently—A Ring Theorem

Let us first discuss the ‘short-circuit’ type faults. We shall
later show that the same approach holds for ‘open-circuit’
faults. In this context, r.(u) is the minimal radius of a circle
around v that intersects more than one shape. A defect with
such a radius will cause a short circuit.

We denote by |u — u’| the distance between the points u
and u'. (Although we use the Euclidean distance in this paper,
the theory holds for other measures as long as the triangle
inequality holds.} Also, we denote by r;(u) the distance from
u to the ith nearest shape of the layout; we will be interested in
r1(u) and r2(x), the distances to the nearest and second nearest

metal polygons, respectively. From the above definitions, the

critical radius at point u is the radius of the smallest circle
around u that covers.points from two (or more) polygons,
hence ro{n) = ro(u).

The corollary of the following theorem states that the critical
radii of two points cannot differ by more than the distance
between these points. ‘

Theorem 1: Let u and v’ be two points in a layour. Then

Vi€ {1,2}: |ri(u) - ri(u’)] € |u— 2|

In other words, the functions 71 (-),r2(-) are ‘Lipschitz con-
tinuous’ with the Lipschitz constant equal to 1 {See [1], [11]

for definition and applications of Lipschitz continuity.)

Corollary I: Any polygon that may affect r.(u) intersects
either the ring:

folrs (@) = Ju— /| < Jo - u] < 1 (o) o+ |u — o]}
or the ring:
{olra(a) = = o] S o =0 < ra(ad) + u = ]},

The proofs of Theorem 1 and Corollary 1 can be found in the
appendix. Note that the same arguments that are used in the
analysis of short-circuit type defects can also be used for open-
circuit type defects, by considering the borders of conducting
shapes rather than the shapes themselves, as shown in Fig. 4.
This is achieved in the following way:

1} for each net NV, replace its polygon by several edges
named Nigooi, N1oooi+t, -

2) to the resulting layout, apply procedure YMAP, but lock
for “shorts™ only between nets whose index difference
is smaller than 1000. (It is assumed arbitrarily that the
number of edges in a polygon is smaller than 1000.)



Function r.{u):real;
var  d: real;
begin
d:=lu-v]
repeal
scan the points in the 1wo rings:
Rlxfo | ry(w)—d € Jo— s} < rifu'} + d)
B2:{v | rof{x’} = d £ o — o} € ra(w) + d}
until 1wo points, u;, uz that belong to two different shapes
and are pearest 1o u are found;
ri{u) = min{|w — w],|u - ¥}
ra(u) i= max{je « ue| ,Jx - walli
re{w) = ro{u);
end;

Fig. 2. Efficiently computing r.-(u) using »y (a"), ra(u") (ALG2).

Procedure YMAP(L : layoul; ¢na., 7y 2 7eal);

¢ A layout I with width W and height H.

* & - A boond on the errorin A,.

* 1y - The minimal ground rule for the layer under test.
Output: * The defect sensitivity S(x,y) for each grid-point (=, E L.
* A, = The critical area of L.

Input:

var Aey Ty re: real; -
iy Jy m, iz integer;
begin
2= 1061+ fmax~Ty; {* this number results from Theorem 2 */
A =0, mim Wil m = (/1]
foré;=1tem, j:=1ltondo
e i= rliv, 1)
8liv. gy o= fear, DO)Y;
Agi= A, + T5(i7,57%  [* 97 is an area element for plecewise integration®/
end;

Fig. 3. Computing the defect-sensitivity 5(-) and the critical area A.
(YMAP).

Fig. 5 shows a layout example illustrating the above.

Using Theorem 1, one can devise a better algorithm for cal-
culating r.(u), which makes use of the previously calculated
values r1(u') and ra(n'), where ' is a neighbor of » on the
grid.

In ALG2, shown in Fig. 2, we perform an exhaustive search
for only one point. Then, for all the other points we need only
scan a ring whose radius cannot exceed the edge of the cell,
and whose width is 2. Hence, the worst case complexity of
running ALG2 on the whole cell is O(W H/y*)'-*, which
implies that, in the example above, ALG2 is 1000 times faster
than ALG1. A more sophisticated analysis leads to an even
better bound of O(W H7:/+>), where 77 is the average critical
radius of the layout. It is interesting to note that the complexity
is inversely proportional to the Iayout density; as the number of
shapes grows, 7 decreases, as does the complexity of ALG2.

Using (9) and (10) above, and the procedure ALGZ to
calculate +.(z,y), the sensitivity and critical area for an
arbitrary cell can be approximated as depicted in Fig. 3. In
order to get a good approximation for A., one must choose a
~ such that (1) y is small enough so that we will not miss any
significant variation in the critical ridius between grid points
and, {2) the number of test-points, given by W H/~2, is not too
large in order to keep the algorithm efficient in time and space.

The theorem that follows shows the linkage between -y and
the maximal error.

Theorem 2: Denote by A, the critical area of the layout,
and by A’ the critical area as computed by YMAP. Then, for
a typical distribution of defect size, the relative error satisfies

A — A, 0.943y

< 1
o (1
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O onginsl metal
B conact
BH *Dummy* metal lines lor open—circuil faults

shortin & = opepin O

Fig. 4. Transforming an open-circuit problem to an analogous short-circuit
problem.

{b)

Fig. 5. Analysis of a cell for open-circuit fault sensitivity (a) and short-circuit
fault sensitivity (b). ’

where r, is the minimum ground rule distance for the layer
under consideration.

For example, if r;, = 1.0 um and « is selected to be 0.01
jen, then the relative error is bounded by 0943%. In other
words, the runtime needed to have the error bounded by ¢ is

A 1.5
(€ 7g)?
It is implied by (12) that the error, ¢, decreases as 1 /YT,

where T is the runtime. This implies that YMAP is a polyno-
mial complexity approximation scheme.

T(e) = O (12)

1II. IMPLEMENTATION AND RESULTS

YMAP was implemented in the C' programming language,
and run on an RS$/6000 IBM workstation. It has been integrated
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(<}

)

Fig. 6. Examples of sensitivity maps produced by YMAP for various layout configurations.

into the IBM design system [6]. Fig. 6 shows examples of
metal polygons with the corresponding defect-sensitivity maps
for short-circuit faults.

A. Usage of the YMAP Algorithm

The values calculated by the algorithm can be used in two

ways:

1) Yield-Meter: for a given layout cell L, compute the
critical area, then use (1) to evaluate the yield of the
cell,

2) Yield-Pointer: draw a ‘lopographic map’ of L, such that
the intensity of color at point w is proportional to S(u)
as defined in (8) (See Fig. 6.)

If Y(L) is too small, one can use the sensitivity map to find
how the yield can be improved.

B. Comparison with Other Yield Estimators

We compared the YMAP program to two yield simulators:
VLASIC [20], [21] and SCA [15], [16]. Simple layouts were
considered for which analytic formulas of the critical area
could be derived. For each such layout, we ran YMAP,
VLASIC, and SCA for several time limits, and then compared
the results. The time limit was set by either the number of
defects (VLASIC), the step size of the defect radius (SCA), or
the grid size (YMAP). The results are normalized, i.e., we take
one case as having unit critical area and then normalize the
other cases accordingly. This was done for two reasons. First, it
is important for an interactive yield simulator tool to be able to
compare several layout configurations for their predicted yield.
Second, the three programs have quite different assumptions
on units of area, defect size, etc., and this “numerical noise”
may be filtered out by normalization.

+
+

w 13 w

Fig. 7. Cell with two parallel lines.

1) Test Case 1: Short-Circuit Faults in Two Parallel Lines:
For the case of short-circuit faults between two parallel lines
(see Fig. 7) of width W, spacing S, and height H, with defect
distribution as in (5) (with p = 3 and g= 1), it can be shown
(see Appendix) that the critical area is

2 1 W + 5/2

S W+S5 R, (3

A.=H-

where (2W + §) and H are the horizontal and vertical
dimensions of the cell, respectively, and R, is the maximum
possible radius of a defect for the given layout. In Table I
we compare the convergence speed of the three algorithms,
that is, how fast each algorithm converges to the precise ratio
of A.(pars)/A.(par1), where par|,pars are two cells with
parallel lines but different S, W combinations. The advan-
tage of using YMAP is demonstrated in Fig. 11, where the
convergence rates of the programs are compared graphically.

2) Test Case 2: Short-Circuit Faults for Two Implementations
of a NAND: In CMOS design it frequently happens that several
topologies can be used for the same circuit. Fig. 8 shows
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Fig. 8. Two intplementations of NAND with different wiring schemes and the corresponding maps.

TABLE 1
COMPARING THE AVERAGE ERRORS (IN %) OF YMAP,
VLASIC aNp SCA ror THE THREE TeST CASES

Program | Case | CPU time (sex) 0.5 18] 37| 94 16 2] e
YMAP | PAR 580 304] 154] 054 0-19] 0.21 /003
NAND 982 577 138| 1.33 133 | 007 0.00
WP 1324 6.79| Li7| 1965 | 183| 0.03]{0.59
VLASIC | PAR 3651 | 31.43 | 3220 [ 11.57 | 857 ] 2.49 [ 4.00
NAND 10000 | 1146 | 1289 | 6.06 | 422] 542021
WP 52.69 [ 33.03 | 10.60 | G.10 | 1.74] 589 1.45
SCA PAR B4.42 | 5146 | 27.31 | 23.31 [ 17.98 | 13.05 | 0.43
NAND J4.15 | 3506 | 682| 500 | 525 4.33]0.14
WP 49.53 | 47.76 | 45.82 | 36.96 [ 26.14 | 9.98 | 0.03

two possibilities for the wiring of a NAND gate, together with
their corresponding defect-sensitivity maps. The first, nandl, is
wired in a straightforward manner while in the second, nand?2,
the yield has been taken into account and the spacing between
wires was increased as much as possible. This modification,
which does not cost any additional area, has reduced the
critical area in the Mi-tayer by more than 31%.

The error in the ratio A.(nandl)/A.(nand2) is based on
the value calculated by VLASIC in a very long run (4 -107
random defects). See Table I and Fig. 11 for the convergence
rates of YMAP, VLASIC, and SCA.

3) Test Case 3: Short-Circuit Faults for Two Implementa-
tions of the WP-logic Cell: WP-logic is a large cell with 73
transistors and fairly complicated metal routing. Figs. 9 and
10 depict two possible implementations of the wiring with the
corresponding defect-sensitivity maps. In the original design
{(wpl), wires have been put on a predefined grid, while in
the second implementation (wp2) dn effort has been made to
achieve better spacing, which results in a 21% reduction in
critical area of the Ml-layer.

Here again, the error in the ratio A (wpl)/A:(wp2) is based
on the value calculated by VLASIC in a very long run. The
convergence rates are depicted in Table I and Fig. 11

V. DISCUSSION

Based on the above examples, it is clear that all three
methods converge to similar results, but YMAP performs

Fig. 9. The original WP-logic cell with its sensitivity map.

better if the computation time must be limited, since its error
decreases faster. Hence, YMAP is suitable to serve as an
accurate interactive design tool.

It should be noted here that, in general, (see [7]) Monte
Carlo methods (like VLASIC) have their error (i.e., the vari-
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!

Fig. 10. The WP-logic with improved wiring cell with its sensitivity map.

ance) decrease as 1/ VN , where IV is the number of samples,
while the error in YMAP is only decreasing as 1/ VN, where
N is the number of points. However, our bound on the
error (see (11) and (12)) is deterministic and hence, guaran-
teed to be satisfied while in Monte Carlo methods one may
have significant deviations in the first period of computation.
These random deviations also explain the nonmonotonicity
in VLASIC-behavior in some of the above examples. On
the other hand, the SCA algorithm has quite a good error
bound, but with no error-time tradeoff, while in YMAP one
can achieve any level of accuracy at the cost of additional
runtime. It alse turns out that if we calculate r. only for a
subset of the points, and interpalate for the others, then the
time complexity reduces sharply, but the error increases only
slightly. The reason for this seems 10 be that the function r.(-)
is Lipschitz continuous and hence can be approximated by a
relatively small number of samples.

Besides the computational complexity, we feel that YMAP
suggests a different way of thinking for a layout designer due
to its good visual feedback.

Another point of interest is the generalization to 3-D de-
fects. For such defects, the concept of critical area can be nat-
urally extended to that of critical volume (see [14]). Currently,

our program implements the algorithm for planar, single layer
defects. However, it is straightforward to generalize it to 3-D
objects, by using an (z, y, z) lattice rather than the planar one.

V. CONCLUSIONS

All three algorithms (VLASIC, SCA, and YMAP) eventu-
ally reach the correct results. It seems that the Monte Carlo
procedure used by VLASIC requires many more iterations
for the results to be precise. On the other hand, SCA and
YMAP rapidly converge to their final result (YMAP's speed
is somewhat better), and are deterministic, so a single run is
sufficient.

Probably, the VLASIC approach is more suitable for a
whole chip analysis when a long, batch type execution is
acceptable. YMAP, on the other hand, can be more useful
as a part of a cell/macro CAD system, when a physical design
engineer needs a fast and precise yield prediction of his/her
layout.

If the chip is a memory unit built from a repeated basic
block, then YMAP constitutes a very efficient tool. Another
advantage of YMAP is that it provides a deterministic bound
on its error, so the user has a better knowledge about the
precision of the results.

APPENDIX

A. Proof of Theorem 1

Assume that, as in Fig. 12, p;(u) is the metal point nearest
to u, and p;(v') is the metal point nearest to u’. Clearly,

ra(w) = Ju— pa (0], ma(a) = o = pa(ad)]

and

! (14)

[ = p1(u)] = riu’)

otherwise p;(u) would become the nearest point to v. The
layout space is Euclidean, hence all points obey the triangle
inequality. In particular,

ri{u) <[’ = pr ()] — Ju -], (15)

Multiplying inequality (15) by —1 and adding to inequality
(14) one gets

rp(u) — m(u') <|u—|. (16)
In just the same way, by interchanging » and =, one can get

(') — vy () <|u— u') {17
and, all in all

(18)

|ry{w’) = ry()| < |u —w'}.
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Fig. 11. Convergence rates of VLASIC, SCA, and YMAP in the three test cases.
All the above arguments apply to rz as well as for 1. Hence Proof: By definition
we also have
. W_, (w) = lim re(u+ Ap) = ro(u)
fra(u’) — ro(u)| < hu— o). as dp © Ap—0 Ap '
QED. Using Theorem 1 we know that

As explained before, the critical radius at point u is Te(u)
= ro(u). It is implied by the theorem that any point that may
affect the critical radius of point u is in one of the rings

Py — lu— o] € lo—ul € ra(u') + Ju— ']}
(vlra(w) — u = ¥} < o —ul S ma(a) +Ju - v}

as sketched in Fig. 13. Hence, Corollary 1 follows.

Another corollary of Theorem 1 is that 7. has a bounded
derivative:

Corollary 2: Denote an arbitrary unit vector by p. Then

m.ﬂn?v

Yu :
U o

<1.

Yu : |re(u) — re(u)| € Ju — o

By setting ' equal to u + Ap we complete the proof.
QED.

B. Proof of Theorem 2

Using Theorem 1, one can see that the value of r.(u) as
computed by YMAP in any nongrid point u cannot exceed its
value at the nearest grid-point ug by more than the distance
between them. The worst case is when ro(u) is the same for
all four vertices of a grid square, but takes a maximum in the
center of the square. The average error for this square is the
volume of this square-based pyramid, divided by the area of
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Pi(u)
pl{u’)

T, (u)

T.......u-ﬁ

Fig. 12. A sketch of the situation in Theorem 1.

=

S uotal
E.E Rings 4o ba searched for critical radius of poll u

_ _q_n_.-dnrJ An_fihln_nl.:.-l..i *

_ REX B n:.,r-_au..m__."..or.-.:

Fig. 13. Only two rings need to be searched for ro(u’).

its basis. Due to corollary 2 the steepness of this pyramid is
bounded by 45°. Hence, the worst-case relative error in r.(u)
within a grid-square is bounded by

man
<3 V2 _ 7

¥? 32

Since the local defect sensitivity is defined by

1nn§.¢v - q.nﬁ.:.u
Tc(u)

Errfrc(u)] =

S(u) H\v ‘D(r) dr
r=r.(u)
the absolute error in the calculated value 5'(x) is bounded
from above by

e (w)+H{¥/3v2)

|87 (u) ~ S(u}| < \‘ D(r)dr.

re{u)

For practical considerations we can assume that the layout
obeys the ground rules, hence 7 {u} > ry and then we obtain

from (5) that
D(ry=crf™' /1P

Denote [ D(r)dr by I{r). Then, in the region of interest

The relative error, which is the ratio between the error and

the precise value, is

S'{u) — S(u)
S(u)

1(r) Lmi mwmv
< - I(r)
e _Aw + %v
I(r)
Q.wl

o-(rg)
nq.ml

p—1

Biel3(u) =

=1-

.__.
i
T+ —=
3v2
<1
3vV2r
Substituting a typical value of p = 3, and using the fact that
the critical radius of any point cannot be smaller than half the
minima!l ground-rute, we get
AL — A,

C

A

0.943
Ty

Err[4] = < max{Er{'(w)]} <

(20)

where r, is the minimal distance between shapes at the layer

under consideration.
QED.

C. Critical Area for Two Parallel Lines

Consider the case of two parallel lines with width W,
separation S, and height H (see Fig. 7). It has been shown
{e.g., [4]) that the critical area for radius r is

0, if r < 5/2
Afry=4¢ H.(2r - 8), ifSPR2<r<S+W
H-(2W + 5), fS+W<r < RBax

2n

where (2W + S}, H are the horizontal and vertical dimensions
of the cell, respectively. R,,.x is the maximal possible radius
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of a defect for the given layout. The total critical area is

m.._.: .
.P.H ,\ kma?.vnﬁl.w%.
5/2

,w+,§
Hnm \v ﬁwﬂlml.m.ﬂﬁuva_ﬁ
Jss2

m\-:..rx
+\. (2W + Sy dr
5

+W
e [(crt s S
2 a2
1 Runax
+{2w + ) lmﬂlw
WS

where
c={g+1)p—-1)/(a+p)

For p =3 and ¢ = 1, ¢ equals 1 and as a result

2 1 W+8/2
S W+8 R? .

max

A.=H. (22)
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