
The Minimax Cache: An Energy-Efficient Framework for Media Processors�
Osman S. Unsal, Israel Koren, C. Mani Krishna, Csaba Andras Moritz

Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003

E-mail: founsal,koren,krishna,moritzg@ecs.umass.edu

Abstract

This work is based on our philosophy of providing inter-

layer system-level power awareness in computing systems

[26, 27]. Here, we couple this approach with our vision of

multipartitioned memory systems [18, 19, 25], where mem-

ory accesses are separated based on their static predictabil-

ity and memory footprint and managed with various com-

piler controlled techniques.

We show that media applications are mapped more ef-

ficiently when scalar memory accesses are redirected to a

minicache. Our results indicate that a partitioned 8K cache

with the scalars being mapped to a 512 byte minicache can

be more efficient than a 16K monolithic cache from both

performance and energy point of view for most applica-

tions. In extensive experiments, we report 30% to 60%

energy-delay product savings over a range of system con-

figurations and different cache sizes.

1. Introduction

The caching subsystem in the recently introduced low-

power media/embedded processors consume a significant

portion of the total processor power: 42% and 23% in Stron-

gARM 110[17] and Power PC[2], respectively. Therefore,

if we save on the data cache energy consumption, the overall

energy consumption will also be considerably reduced. We

firmly believe that the unique characteristics of multimedia

applications dictate media-sensitive inter-layer architectural

and compiler approaches to reduce the power consumption

of the data cache. Our previous work extracted these char-

acteristics; here we leverage this information to form our

energy-saving Minimax cache framework.

Simply put, the Minimax cache is a regular L1 data cache

with an additional small memory area. This small mem-

ory area is implemented as a statically managed minicache.

While the size of the minicache is kept to a minimum, we�This research was supported in part by the National Science Founda-

tion under grant EIA-0102696

employ it to get maximum energy-performance benefits.

This organization leverages the fact that many accesses have

very small footprints but they are frequently accessed. In

our previous work, we have determined that scalar accesses

exhibit this behavior for media applications[25]. We there-

fore redirect the scalar memory accesses to the minicache.

Statically diverting the scalar and non-scalar accesses to the

minicache and the regular L1 data cache, respectively, not

only eliminates the cache interference but also saves power

by only accessing a small minicache instead of a much

larger data-array. In our previous work [25], we examined

the interference issues. Here, we concentrate on the power

aspect. Our results for a range of media applications indi-

cate a 30% to 60% improvement in the energy-delay prod-

uct.

The research spans the compiler and architectural lay-

ers. Our compiler-level analysis separates scalars from non-

scalars and we map them to separate cache partitions. Ex-

isting cache partitioning schemes are driven by architectural

features; examples are partitioning along instructions/data

or along stack/heap accesses. The unique aspect of our Min-

imax cache partitioning scheme is the fact that it is driven

by an application feature: scalar accesses. This is not only a

finer granularity scheme but also one that blurs the com-

piler/architecture interface. By taking cache partitioning

closer to the application layer, we are shifting caching from

a hardware concern to a hardware/compiler one.

Briefly, our contributions in this paper are:� Introduction of a new compiler-level scheme to parti-

tion scalars into a separate, much smaller cache area:

the minicache. The scalars in the minicache and the

non-scalars in the regular cache form the Minimax

cache framework.� Presentation of extensive experimental results on me-

dia applications and demonstrating that the Minimax

cache organization is substantially more energy effi-

cient while exhibiting high performance.� Analyzing the energy impact of varying the register file

size on media applications. We use register file sizes

of 16 and 32.

Note that the Minimax cache approach is different from

techniques to reduce energy dissipation that are based

on placing a small cache in front of the L1 cache and

managing it dynamically. Those approaches can come

with a significant performance degradation relative to a

conventional cache due to an increase in the access time

on a miss in the small cache. Kin et al.[10] study a small

L0 cache, called the filter cache, that saves energy while

reducing performance by 29%.

The rest of this paper is organized as follows: We pro-

vide an analysis of related work in Section 2. Section 3 dis-

cusses our approach in more detail and provides our motiva-

tion. In Section 4 we introduce our experimental methodol-

ogy. The results are given in Section 5. We conclude with a

brief summary and a synopsis of future work in Section 6.

2. Previous Work

Previous cache partitioning research focused more

on performance issues rather than energy. Providing

architectural support to improve memory behavior include

vertical cache partitioning schemes such as the selective

cache ways proposed by Albonesi[1]. Panda et al.[20]

propose use of a scratchpad memory in embedded pro-

cessor applications. Kin et al.[10] study a small L0 cache

that saves energy while reducing performance by 21%.

Lee and Tyson [14] use the mediabench benchmarks and

have a coarse-granularity partitioning scheme: they opt for

dividing the cache along OS regions for energy reduction.

A recent paper by Huang et al. [8] has a separate partition

for the stack, they also address compiler implementation

concerns as well.

Combined compiler/architectural efforts toward in-

creasing cache locality [16] have exclusively focused on

arrays. A recent memory behavior study for multimedia

applications has also primarily targeted array structures

[12]. Another recent paper by Delazuz et al. [7] discusses

energy-directed compiler optimizations for array data struc-

tures on partitioned memory architectures; they use the

SUIF compiler framework for their analysis. One previous

work that also targeted multimedia systems, has considered

dynamically dividing caches into multiple partitions [22],

using the Mediabench benchmark in the performance

analysis, with comments on compiler controlled memory.

Cooper and Harvey [6] look at compiler-controlled mem-

ory. Their analysis includes spill memory requirements for

some Spec ’89 and Spec ’95 applications. Sanchez et al.

[23] introduce a compiler interference analysis and use a

dual data cache for programs that have a high conflict miss

ratio.

The fusion of the above research provided the motivation

for this work. We consider scalar memory accesses,

not only array or spill memory accesses, and we target

multimedia systems running a suite of media applications.

Compared to other cache partitioning approaches, we adopt

a compiler-managed, application-driven finer granularity

scheme: we direct scalar memory accesses to a minicache.

To be fair, we do an execution time analysis of our

minicache-added caching framework with a larger cache.

3. Background and Motivation

Our focus in this paper is multimedia architectures, but

the methodology described can be applied to other classes

of applications. We use the recently developed Mediabench

benchmarks [13] in our experiments. Mediabench is a

collection of popular embedded applications for communi-

cations and multimedia. See Table 1 for a short description

of the benchmarks included in our analysis.

In our previous work [25], we implemented a com-

piler/architectural level scalar/non-scalar partitioning

scheme through the use of a minibuffer. We define scalar

accesses to be original and compiler-introduced scalar vari-

ables that couldn’t be register promoted. One conclusion

that was drawn in that study was that the scalars in media

applications have a very low memory footprint and high

access frequency. They also have considerable interference

with non-scalar accesses. For the sake of clarity, we

replicate the results for scalar static memory footprint

upper bound using a 32 register configuration, see Table 2.

Depending on the application, the actual memory footprint

can be much smaller: addresses associated with variables

that are no longer live could be reused, dead code sections

could be eliminated, and so on. A compiler algorithm

to compute the actual footprint requires inter-procedural

analysis and a complex data-flow extraction. We have

devised an effective compiler-level approximation for this

purpose, the details and results are in [25].

The Minimax cache framework uses the same partition-

Application (In Bytes)

ADPCM 0

EPIC 321

G721 48

GSM 202

JPEG 502

MESA 2191

MPEG 2125

RASTA 618

Table 2. The Memory Size Requirements.

ing scheme, however we map into a minicache instead of a

Benchmark Description

ADPCM Adaptive differential pulse code modification audio coding

EPIC Image compression coder based on wavelet decomposition

G721 Voice compression coder based on G.711, G.721 and G.723 standards

GSM Rate speech transcoding coder based on the European GSM standard

JPEG A lossy image compression decoder

MESA OpenGL graphics clone: using Mipmap quadrilateral texture mapping

MPEG Lossy motion video compression decoder

RASTA Speech recognition front-end processing

Table 1. Applicable Mediabench benchmarks. We do not include GHOSTSCRIPT since it is more
amenable to embedded systems than multimedia. We also do not include the public key encryption

schemes, PGP and PEGWIT, for similar reasons.

minibuffer and we conduct an extensive energy analysis.

3.1. Compiler and Architectural Implementation

Many embedded and media processors already have a

scratchpad minibuffer or a minicache. The difference be-

tween the two organizations is that the minibuffer approach

would require explicit management at compile-time of the

memory accesses that are mapped into it, a conservative

approach because compile-time analysis typically would

need to overestimate the footprint to match exactly the

size of the minibuffer, while the minicache could be a

fully associative cache where the compile-time estimated

footprint could be larger than the cache size. In practice, the

dynamic memory footprint of memory accesses mapped

into the small area is likely to be smaller than the static

estimate, resulting in a high hit-rate in the minicache

even if its size is chosen somewhat smaller than the static

footprint size. Additionally, this latter approach could

be used together with a simpler compiler analysis that

gives a larger lower bound on the dynamic footprint. The

minibuffer approach would require an exact bound on the

footprint size to guarantee program execution correctness

but, if that is successfully done would consume somewhat

less power than the minicache. Coherence between the L1

data and minicache is guaranteed through type information

based partitioning. In case one would want to add other

data accesses to the minicache then alias analysis should

be used. The output of the alias analysis would determine

if there is any overlap in between the different memory

accesses. If there is overlapping, mapping to the minicache

should be avoided.

As far as implementation is concerned, no architectural

modifications are necessary if the media processor is

equipped with a minicache. An example is the recently

introduced Intel StrongARM SA-1110 [9] which has a

IMMU Icache
(16 Kbytes)

Instructions

PC

Core

SA−1

ARM

Load/Store Data

Write Buffer Read Buffer

(8 Kbytes)
Dcache

System Bus

SA−1110

Intel StrongARM

Minicache
DMMU

Addr

Figure 1. Intel Strongarm SA­1110 Architec­

ture.

512 byte minicache, see Figure 1. This processor is

very similar to our baseline. If the media processor is

not equipped with any kind of minicache mechanism,

then assembler annotations can be used to devise special

load/store instructions which would channel the scalar data

to a separate, smaller cache area.

3.2. Feasibility Study

The minibuffer approach[25] requires sophisticated

compiler-level analysis. Our new framework, the Minimax

cache, avoids most of this complexity. Since the footprint

of scalars is low, we expect the Minimax cache to be as ef-

ficient as the minibuffer approach. One way of ascertaining

this is to analyze how well the scalars are mapped into the

separate cache area. In Figure 2, we present the minicache

miss rates. The associated experimental setup is described

in Section 4. We provide the results for both a 16 regis-

ter and a 32 register processor, the smaller register file in-

creases the number of scalar memory accesses. Note that a

very small minicache size of 128 bytes can hold the work-

ing set of the scalar data for most applications. The working

set of the 16 register configuration is higher due to the ad-

ditional spills. However, even for a 16 register combination

a size of 512 bytes is sufficient.

These results verify the promise of our approach. Al-

0

2

4

6

8

10

Epic G721 Gsm Jpeg Mesa Mpeg Rasta

M
is

s
R

a
te

 (
in

 %
)

128 bytes
256 bytes
512 bytes

1024 bytes

(a) 32-register processor

0

5

10

15

20

25

Epic G721 Gsm Jpeg Mesa Mpeg Rasta

128 bytes
256 bytes
512 bytes

1024 bytes

(b) 16-register processor

Figure 2. Miss Rates for different minicache

sizes.

though the Minimax cache requires some additional chip

area compared to the monolithic cache, the impact is neg-

ligible since the minicache sizes used in this work are very

small. Moreover, our comparative performance study of the

Minimax Cache with a much larger monolithic cache in-

dicate that Minimax cache can even outperform the larger

cache: see Section 5.

4. Experimental Methodology

Figure 3 shows a block diagram of our framework. We

needed a detailed compiler framework that would give us

sufficient feedback, is easy to understand, and allows us to

change the source code for our modifications. With this in

mind, we chose the SUIF/Machsuif suite as our compiler

framework. SUIF [24] does high-level passes while Mach-

suif [15] makes machine specific optimizations. First, all

the source files are converted into SUIF format and merged

into one SUIF file. Next, we run this SUIF file through the

Machsuif passes. We modified Machsuif passes to anno-

tate all the scalar accesses and to vary the machine register

file size. The modifications are propagated using the SUIF

annotation mechanism. We amend the resulting assembler

code by inserting NOP-like instructions around the anno-

tated scalars, thus marking them.

We then used the Wattch [4] tool suite to run the bina-

High−level SUIF passes

(porky, swinghnflew)

passes (agen, raga, afin,

printmachine)

assemble to binary)gcc (

Simplescalar 3.0

cpp (.c to .i preprocessor)

Low−level Machsuif

scc (transform to SUIF)

‘‘Mark’’ Scalars

Annotate Scalars

Figure 3. The Experimental Setup Block Dia­

gram

ries and collect the energy results. Wattch is based on the

Simplescalar [5] framework. The simulators has been mod-

ified to recognize the annotations in the marked code.

Our baseline machine model is an ARM-like single-issue

in-order processor. Lee et. al. [14] use an identical config-

uration in their power dissipation analysis of region-based

caches for embedded processors. We use the activity sen-

sitive conditional clocking power model in Wattch, i.e., the

cache consumes power when it is accessed. We modified

Wattch to calculate the energy consumption of the addi-

Processor L1 Cache L2 Cache

ARM ARM10 32K None

Transmeta Crusoe TM3200 32K None

Transmeta Crusoe TM5400 64K 256K

Intel StrongARM SA-110 16K None

Equator Map-CA 32K None

Intel StrongArm 110 16K None

Intel StrongARM 1100 8K None

Table 3. Cache configurations for typical me­

dia processors.

tional minicache. To determine the baseline architecture,

we did a survey of current media processors. As Table 3

indicates, the trend is towards larger caches. Therefore we

have selected a 64Kbyte 2-way cache as our baseline, see

Table 4. To be fair, we also examine 8K caches as well. The

table also indicates that media processors do not typically

have L2 data caches. Therefore, we only have L1 caches in

our baseline architecture. However, some recent media pro-

cessors have L2 data caches, the Transmeta Crusoe TM5400

is one example. So we also include an analysis of energy-

delay impact of L2 caches. Here a concern might be the is-

sue of consistency between the L2 cache and the L1 data +

minicache. Namely, the block fetched from L2 into the L1

caches could contain a mix of scalar/non-scalar data. We

avoid this problem by keeping the block sizes same across

the caches. If the block sizes were different, then the is-

sue could be addressed by clustering the scalar data to the

beginning of the address space and padding them appropri-

ately to the size of the L2 cache block size and boundary.

Processor Speed 1GHz

Issue In-order Single-issue

L1 D-cache 64Kb, 2-way associative

Minicache 256bytes, fully-associative

L1 I-cache 32Kb, 2-way associative

L2 cache None

L1 D-cache hit time 2 cycles

Minicache hit time 1 cycle

L2 cache hit time 20 cycles

Main memory hit time 100 cycles

Table 4. Baseline Parameters.

5. Results

Separating frequently-accessed low-footprint scalars

from non-scalars by mapping them into separate cache

areas decreases cache interference. This leads to a more

efficient use of the available caches. To underscore

that intuition and to be fair, we next show that a much

smaller 8Kbyte+512 byte Minimax cache can outperform a

16Kbyte monolithic cache for media applications, only for

a few applications the larger cache is better, see Figure 4.

The analysis is done for configurations with and without an

L2 cache. We only include the execution time results here

since the energy efficiency of the smaller Minimax cache

is trivially obvious. The implication is that compiler-level

schemes can result in saving chip real-estate by partitioning

application accesses.

When introducing energy saving methods we need

0.9

0.95

1

1.05

1.1

Epic G721 Gsm Adpcm Mesa Mpeg Rasta

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

(a) With 256K L2 Cache

0.9

0.95

1

1.05

1.1

Epic G721 Gsm Adpcm Mesa Mpeg Rasta

(b) No L2 Cache

Figure 4. Depending on benchmark, a Mini­

max Cache of much smaller size can be better
than a monolithic cache of larger size. Here

the results are the normalized execution time

of an 8Kbyte Minimax cache with a 512 byte
minicache. They are normalized with respect

to the execution time of a 16Kbyte monolithic
cache. To be fair, configurations with and

without an L2 level cache are shown.

to be conscious of performance impacts of the proposed

method: we might save energy but this can come at the

expense of performance. We therefore use the energy-delay

product as our metric in our experiments. Here the delay

is expressed as the total execution time. Figure 5 after

the References shows the energy-delay product results

in terms of mi
roJoules � se
ond for the L1 caching

subsystem for the mediabench applications. We take the

most challenging configuration for the Minimax cache: 16

register processor without L2 cache to penalize Minimax

cache capacity misses. The results compare 8K and 64K

monolithic caches with the same size Minimax cache with

a minicache size of 128, 256, 512 and 1024 bytes. We

get significant savings for the 64K cache: close to 30%

for the worst case. For some applications with a very

small footprint but frequent scalar accesses the savings are

even more pronounced, 60% for the Epic benchmark for a

minicache size of 128 bytes. The sensitivity of the results

to the minicache size exhibits some interesting behavior.

For some benchmarks the energy-delay product decreases

as we increase the minicache size and then starts increasing

as the size is further increased. This is due to the complex

interplay between energy and performance: for those

benchmarks small minicache sizes incur more scalar misses

affecting performance, as the minicache size is increased

the working set of the scalars fit in the cache and there is

an optimum point beyond which the energy-delay product

starts to increase with the increased energy consumption

dominating the product. For some applications such as

the Mesa or Rasta, a 128 byte minicache size has a higher

energy-delay product than the monolithic cache since

the working set of the scalars does not fit in 128 bytes.

However, even for those applications a minicache of either

256 or 512 bytes gives substantial savings.

As the main memory to processor speed discrepancy

grows, L3 caches have become feasible for general purpose

processors[21]. Following the same trend, some recent

media processor designs have started to include on-chip

L2 caches, see Table 3. The rationale for this is the

widening memory-gap as much as multiprogramming

related causes. This motivates us to look into the combined

energy-delay signature of the L1 data cache together with

the L2 cache. We use a 256Kbyte 4-way associative L2

cache for this study. Figure 6 shows the results. Note that

the energy-delay issues related with scalar data not fitting

in the minicache for such benchmarks as Mesa or Rasta

has been masked by the L2 cache. Comparison of Figure 6

with Figure 5 provides other interesting insights: note that

the L1+L2 combination is more energy-delay effective for

most benchmarks than L1 only configuration, even with

the additional energy consumption of the L2 cache taken

into account. This observation implies that future media

processors can benefit from an on-chip L2 cache.

There is another aspect of scalar access related energy

0.5

0.6

0.7

0.8

0.9

1

1.1

Epic G721 Gsm Adpcm Jpeg Mesa Mpeg Rasta

R
el

a
ti

v
e

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

Figure 7. Relative energy consumption of the

register files. The results give the register
related energy consumption of a 16­register

processor relative to that of a 32­register pro­

cessor.

consumption: the register file. Since we model a media pro-

cessor that is akin to the ARM architecture, we have used a

register file size of 16 in our experiments. We now extend

our analysis to register related energy impact of scalars

and vary the register file size. Compared to the 32-register

processor, average power per register access is lower for the

16-register case. This might imply that register file energy

consumption of the 16-register processor would be less

than 32-register processor for most applications. However,

Figure 7 shows a counter-intuitive result: a 16-register

processor consumes more register related energy than a

32-register processor for the Adpcm application. This is

because all scalars for the Adpcm application fit in 32

registers and there are no scalar related memory accesses,

see Table 2. However, the 16 register file is too small

for the scalars to fit in and some scalars spill to memory.

The energy impact of those additional scalar related data

transfers between the registers and memory cause the

16-register processor to consume more register-related

energy than 32-register one. This phenomenon offers

the following insight: compiler/architecture coupling is

becoming stronger and should be considered at the design

stage.

In summary we consider an example of a media applica-

tion mix. In particular, we would like to concentrate on a

business videophone application. The application mix con-

sists of an Mpeg decoder for video, Gsm encoder for voice

transmission over telco lines, and Rasta speech recognition

for minutes of meeting purposes. We weigh the applica-

tions as follows: Mpeg 60%, Gsm 20%, and Rasta 20%.

We normalize the energy-delay products against the base-

line monolithic cache case, and weigh them accordingly for

a combined energy-delay product. See Figure 8 for the re-

sults. Minicaches of 512 bytes and 256 bytes give the best

results for the L1 data cache only and with L2 cache, re-

spectively. In both cases, we get 30% savings. Ideally, one

should also take into account the interplay for multiple ap-

plications existing in the same system: issues such as con-

text switches or L2 issues come to mind. We note those

issues in the next Section.

0.66

0.68

0.7

0.72

0.74

128 Byte 256 Byte 512 Byte 1024 Byte

N
o

rm
a

li
ze

d
 S

a
v

in
g

s

(a) Without L2 Cache

0.66

0.68

0.7

0.72

0.74

128 Byte 256 Byte 512 Byte 1024 Byte

(b) With 256K L2 Cache

Figure 8. Relative energy savings for the

videophone application for 64K L1 data

cache. The minicache energy­delay product
is normalized with respect to the monolithic

cache.

6. Conclusions

We introduced our Minimax Cache framework for

media processors. This framework further blurs the

architecture/compiler interface. We discussed the architec-

tural/compiler implementation issues of our approach. We

demonstrated that statically mapping frequently used low

footprint data such as the scalars in media applications to a

separate cache partition is from 30% to 60% energy-delay

efficient.

In the future, we would like to extend our analysis to

multiple applications residing on the same media processor.

This requires an extension to Wattch so that multiple

processes and context-switches could be simulated.

In case of the instruction cache, one idea would be to

map frequently accessed basic blocks from the secondary

task, or interrupt handlers, into the minicache. This would

reduce the interference between primary and secondary

tasks in multimedia systems, that is a significant source of

execution time variability [11]. Alternatively, if frequently

accessed basic blocks are mapped, then energy savings

could be obtained, similar to the Bellas et al. approach [3].

References

[1] Albonesi D. H., “Selective Cache Ways: On-Demand

Cache Resource Allocation,” Journal of Instruction

Level Parallelism, May 2000

[2] Bechade R. et al., “A 32b 66MHz 1.8W Microproces-

sor,” Proceedings of the International Solid-State Cir-

cuits Conference, 1994

[3] Bellas N. E., Hajj I. N., Polychronopoulos C. D., “Us-

ing Dynamic Cache Management Techniques to Re-

duce Energy in General Purpose Processors”, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 8, No. 6, December 2000

[4] Brooks D., Tiwari V., Martonosi M., “Wattch: A

Framework for Architectural-Level Power Analysis

and Optimizations,” Proceedings of the 27th In-

ternational Symposium on Computer Architecture,

ISCA’00, Vancouver, Canada, June 2000

[5] Burger D., Austin T. D., “The Simplescalar Tool

Set, Version 2.0,” University of Wisconsin-Madison

Computer-Sciences Department Technical Report

#1342, June 1997

[6] Cooper K. D., Harvey T. J., “Compiler-Controlled

Memory,” Proceedings of the Eighth International

Conference on Architectural Support for Program-

ming Languages and Systems (ASPLOS) October,

1998

[7] Delaluz V., Kandemir M., Vijaykrishnan N., Irwin M.

J.,“Energy-Oriented Compiler Optimizations for Par-

titioned Memory Architectures,” Proceedings Interna-

tional Conference on Compilers, Architectures, and

Synthesis for Embedded Systems CASES00, San Jose,

CA, November 2000.

[8] Huang M., Reanu J., Torellas J., “L1 Cache Decompo-

sition for Energy Efficient Processors,” International

Symposium on Low-Power Electronics and Design,

ISLPED’01, Huntington Beach, CA, August 2001

[9] Intel StrongARM SA-1110 Microprocessor Brief

Datasheet, April 2000

[10] Kin J., Gupta M., Mangione-Smith W. H., “The Fil-

ter Cache: An Energy Efficient Memory Structure,”

Proceeedings of the 30th Annual Symposium on Mi-

croarchitecture, MICRO’97, 1997

[11] Koopman P.J.Jr.,“Perils of the PC Cache,” Embedded

Systems Programming, 6(5), May 1993

[12] Kulkarni C., Catthoor F., H. De Man, “Advanced Data

Layout Organization for Multi-media Applications,”

Workshop on Parallel and Distributed Computing in

Image Processing, Video Processing, and Multimedia

(PDIVM 2000), Cancun, Mexico, May 2000

[13] Lee C., Potkonjak M., Mangione-Smith W. H., “Medi-

abench: A Tool for Evaluating and Synthesizing Mul-

timedia and Communications Systems,” Proceedings

of the 30th Annual International Symposium on Mi-

croarchitecture, December 1997

[14] Lee S. H., Tyson G. S., “Region-Based Caching: An

Energy Efficient Memory Architecture for Embedded

Processors,” Proceedings of PACM (CASES’00), San

Jose, CA, November 2000

[15] http://www.eecs.harvard.edu/

hube/software/software.html

[16] Memik G., Kandemir M., Haldar M., Choudhary

A., “A Selective Hardware/Compiler Approach for

Improving Cache Locality,” Northwestern University

Technical Report CPDC-TR-9909-016, 1999

[17] Montanaro J., Witek R. T., et al., “A 160MHz 32b

0.5W CMOS RISC Microprocessor,” IEEE Inter-

national Solid-State Circuits Conference, February

1994, vol. 39

[18] Moritz C. A., Frank M., Lee W., Amarasinghe S., “Hot

Pages: Software Caching for Raw Microprocessors,”

MIT-LCS Technical Memo LCS-TM-599, Aug 1999

[19] Moritz C. A. , Frank M., Amarasinghe S.,“FlexCache:

A Framework for Compiler Generated Data Caching,”

To appear in Lecture Notes in Computer Science,

Springer-Verlag, 2001

[20] Panda P. R., Dutt N. D., Nicolau A., “Efficient Utiliza-

tion of Scratch-Pad Memory in Embedded Processor

Applications,” Proceedings of European Design and

Test Conference, Paris, France, 1997

[21] Poff D. E., Banikazemi M., Saccone R., Franke H.,

Abali B., Smith T. B., “Performance of Memory Ex-

pansion Technology,” Workshop on Memory Perfor-

mance Issues, 28th International Symposium on Com-

puter Architecture, ISCA’01, Goteborg, Sweden, June

2001

[22] Ranganathan P., Adve S., Jouppi N. P., “Reconfig-

urable Caches and Their Application to Media Pro-

cessing,” Proceedings of the 27th International Sym-

posium on Computer Architecture ISCA’00, Vancou-

ver, Canada, June 2000

[23] Sanchez F. J., Gonzalez A., Valero M., “Static Lo-

cality Analysis for Cache Management,” Proceedings

of the 1997 Conference on Parallel Architectures and

Compilation Techniques PACT’97, 1997

[24] http://suif.stanford.edu

[25] Unsal O. S., Wang Z., Koren I., Krishna C. M., Moritz

C. A.,“On Memory Behavior of Scalars in Embedded

Multimedia Systems,” Workshop on Memory Perfor-

mance Issues, 28th International Symposium on Com-

puter Architecture, ISCA’01, Goteborg, Sweden, June

2001

[26] Unsal O. S., Koren I., Krishna C. M., “Power-Aware

Replication of Data Structures in Distributed Embed-

ded Real-Time Systems,” Lecture Notes in Computer

Science, LNCS2000 Springer-Verlag, May 2000

[27] Unsal O. S., Koren I., Krishna C. M., “Applica-

tion Level Power-Reduction Heuristics in Large Scale

Real-Time Systems,” Proceedings of the IEEE Inter-

national Workshop On Embedded Fault-Tolerant Sys-

tems, Washington, DC, September 2000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(a) Adpcm

10000

15000

20000

25000

30000

35000

40000

45000

50000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(b) Epic

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(c) G721

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(d) Gsm

600

800

1000

1200

1400

1600

1800

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(e) Jpeg

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(f) Mesa

150000

200000

250000

300000

350000

400000

450000

500000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(g) Mpeg

250

300

350

400

450

500

550

600

650

700

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(h) Rasta

Figure 5. L1 data cache Energy­Delay product results for the Minimax Cache.

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(a) Adpcm

10000

15000

20000

25000

30000

35000

40000

45000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(b) Epic

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(c) G721

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache

512b Minicace
1024b Minicache

(d) Gsm

400

600

800

1000

1200

1400

1600

1800

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(e) Jpeg

8000

10000

12000

14000

16000

18000

20000

22000

24000

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache

512b Minicace
1024b Minicache

(f) Mesa

150000

200000

250000

300000

350000

400000

450000

500000

8K Cache 64K Cache

E
n

er
g

y
-D

el
a

y
 P

ro
d

u
ct

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(g) Mpeg

250

300

350

400

450

500

550

600

650

8K Cache 64K Cache

No Minicache
128b Minicache
256b Minicache
512b Minicache

1024b Minicache

(h) Rasta

Figure 6. L1+L2 Cache Energy­Delay product results for the Minimax Cache.

