High-Level Power-Reduction Heuristics
for Embedded Real-Time Systems*

Osman S. Unsal, Israel Koren and C. Mani Krishna

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Abstract. Power constrained real-time
systems are of increasing importance in de-
fense, space, and consumer applications. In
this paper, we focus on high-level power
issues in large scale real-time systems.
In particular, we apply our approach to
loosely coupled and tightly-coupled sys-
tems. We specifically show that significant
power savings are possible through simple
high-level application-oriented heuristics.

1 Introduction

High-level power estimation and modeling is a well
established research area [9, 10]. However, most of
the research concentrates on saving energy within in-
dividual nodes [3, 5, 20], while other approaches are
mostly concerned with routing [16, 17] or topology
[13]. Although there are a few papers that deal with
high-level power issues in real-time systems [2, 4],
there is, to the best of our knowledge, no effort that
brings together intra- and inter-node concerns for
large-scale real-time systems. In our previous work,
we developed such a combined system-level approach
unifying inter- and intra-node level power issues. [18].

This paper explores the feasibility of using high-
level power saving heuristics in large scale real-time
systems. Since this domain is historically divided into
loosely-coupled and tightly-coupled systems, we will
be looking at each of the two subdomains separately.
Loosely-coupled real-time systems, also termed dis-
tributed systems, are often characterized by the lack
of a shared memory, with each node’s operating sys-
tem responsible for its own private memory. Tightly-
coupled real-time systems, on the other hand, are
typically shared-memory systems with a single oper-

* This work is supported in part by DARPA through con-
tract No. F30602-96-1-0341. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as necessarily representing
the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects
Agency, the Air Force or the U.S. Government.

ating system. This architectural difference has impli-
cations for power management.

Due to the lack of shared memory, the bottleneck
in loosely-coupled systems is the latency in accessing
data residing in another processor’s private memory.
Therefore, the focus in loosely-coupled systems is on
replication [1, 11, 19]. In Section 2, we look at selec-
tive replication of data structures for power optimiza-
tion. On the other hand, the bottleneck in tightly-
coupled systems is the processor-to-shared-memory
interface. Typically, partitioned memory banks are
used to mitigate this bottleneck [7]. In Section 3, we
will study the use of memory/processor sleep modes
in such a power-constrained real-time multiprocessor
system. We conclude our analysis with a brief discus-
sion of our results in Section 4.

2 Loosely-Coupled Systems

In this section we consider distributed real-time sys-
tems and examine the correlation between power con-
sumption and various system attributes such as task
assignment and network topology. Within this frame-
work, our particular aim is to study the problem of
positioning copies of shared data structures to re-
duce power consumption. Each node has its private
memory and each task has an associated worst-case
execution time and deadline. Shared data originates
from, and is updated by, a single source task. This
shared data is then consumed by multiple tasks in a
read-only fashion. If two tasks reside on different pro-
cessors then the communication power cost depends
on the routing algorithm and topology. To save en-
ergy, a source remote task’s data structures may be
replicated closer to the consuming task(s). The ob-
jective is to find the ideal degree of replication. In-
creasing the replication increases local memory size
and its energy consumption, while decreasing the vol-
ume of network transfers and the associated power
consumption. Therefore a “sweet spot” may exist,
beyond which increasing the degree of replication in-
creases the overall energy consumption [18]. Memory



consistency is preserved by updating all the repli-
cated copies of a datum when a source task writes a
shared datum to its private memory. In typical ap-
plications, reads dominate writes. For example, store
instructions comprised 26% of data operations, while
load instructions took 74% in the study of a subset
of the SPECint92 benchmarks [7]. This characteristic
renders replication useful.

In this work, we consider selective replication. By
selectively replicating the data structure of the source
task only at some nodes, we seek to reduce the en-
ergy consumption. The reads at the consuming node
are done from the closest replicated copy. The frame-
work for the above system already exists at the OS
or application level, so this extension can be easily
implemented.

In our previous work (which involved replication
at each consuming node) [18], we saw that task as-
signment has a major impact on energy consumption.
We analyzed various task assignment strategies such
as round-robin, first-fit and best-fit. In this paper we
also present results for a new energy efficient closest-
neighbor-first heuristic that assigns data consuming
tasks topologically close to the source task.

The optimal location and number of replicated
copies changes for each degree of replication. Since
the problem is NP-complete, an adaptive simulated
annealing heuristic was used. The details of this
heuristic are provided in the next section. There, we
also compare selective replication with full replica-
tion.

Exhaustive (Optimal) Examples For the results
in this section, the task execution times, periods as
well as intertask communication sizes are randomly
selected. The number of nodes is 16, the write-to-read
power ratio is 1.22, 15% of the memory operations are
writes and 85% are reads, and per-hop remote access
energy cost is three times that of a local access en-
ergy cost.

We concentrate on the impact of task allocation.
The system here is a 16-node mesh with 40 tasks. The
results of our previously mentioned closest-neighbor-
first heuristic are compared against round-robin allo-
cation in Figure 1. Fewer replicated copies are needed
when using the closest-neighbor-first algorithm and
the optimal energy is lower.

Non-exhaustive Heuristic The previous exhaus-
tive heuristic, while giving optimal results, runs in

1000000

g
S

Round-Robin f

Optimal Energy
2
S

/ Closest Neighour First

0o 2 4 6 8 10 12
Number of Replicated Copies

14 16

Fig. 1. Comparing the allocation schemes for a 16-node
mesh.

O(2number-of -nodes) time This becomes very expen-

sive when the number of nodes is large. Therefore,
an intelligent search heuristic is needed. We modi-
fied an adaptive simulated annealing scheme [14] for
our purposes. The pseudo-code of the heuristic is
given in Figure 2. Here we start with a sufficiently
high temperature, where we allow liberal scanning of
the configuration space; and slowly decrease the tem-
perature to concentrate on a minimum. We either
transfer a replicated point from a node to another
node (in the function transport-one) or we change
the number of replicated points by one (in the func-
tion incdec_by_one). The metrop function in Figure 2
is the well-known metropolis operator, exp(—E/kT),
where E is the energy difference with previous step, k
is the Boltzmann constant and 7 is the current tem-
perature. Success in the metropolis operator function
returns 1 for the value of variable ans. We executed
our simulated annealing heuristic for a 16-node sys-
tem with different parameters and compared the re-
sults against exhaustive runs for the same inputs.
Our heuristic was able to find the optimum result
for all cases. Then, for the 32-node 40-task system,
we compared our selective replication scheme to the
case of no replication for different parameter values.
The results in Table 1 show significant power sav-
ings. The results also show the relative sensitivity
of the selectively replicated results to changes in pa-
rameter values, whereas cases with no replication are
relatively insensitive.



2X WR 30%WR 5%WR L.HOP BASE
FR | NR FR NR | FR | NR | FR | NR | FR | NR
Hypercube|75837|132500| 75275|127250{60895|124750{55102|59750|67587|125750
Mesh 80540(206750| 82700{201500{63865|199000{55570(68000{72290|200000
Ring 94647|231500(110915|226250|68320|223750(57137|70750|86397|224750
Torus 72125| 97850 68345| 92600|59905| 90100(54387(55900(63875| 91100
Chordal |72867| 97850| 69335 92600/60152| 90100|54772|55900/64617| 91100

Table 1. Comparing the minimum energy of no replication to full replication. 2xWR means that write energy is two

times of the baseline, 30% WR that 30 percent of the data

operations are writes, 5% WR, that 5 percent of operations

are reads, L.HOP that per-hop energy cost low, i.e. it is one third of the baseline local access cost and BASE is the
baseline configuration. FR denotes full replication and NR, no replication.

mai n()

nover =100*no_of _nodes;
nlimt=10*no_of _nodes;
tfactr=0.9;

t=tstart,;

create_random assi gnment () ;
{Or (i7=1, jj<=100; jj++)

| dec=r andom() ;
if (Idec>0.5)

i ncdec_by_one();
netrop();

el se

transport_one();
metrop();

(ans==1)

nsucc++;
adj ust _assi gnnent () ;

if (nsucc>=nlimt) go to end_iter;

}

end iter: t=t*tfactr;
if (nsucc==0) go to end_anneal ();
}

end_anneal ();

Fig. 2. Pseudo-code for Simulated Annealing Heuristic

3 Tightly-Coupled Systems

Most modern memory and processing devices have
a sleep mode. A big difference exists in power con-
sumption between the active and sleep mode of de-
vices. This is especially the case for memories. As an
example consider a 4M x 16 EDO DRAM, Micron
MT4LC4M16R6 [12]: it has an active-mode power
consumption of 580 mW, and a sleep-mode power
consumption of 1.65 mW: a ratio of over 350. (By
contrast, the corresponding ratio for processors tends
to be around 5).

To see how task allocation to memory modules

can make a difference to power consumption, con-
sider the following contrived and oversimplified ex-
ample. Suppose we have a five-processor multipro-
cessor with two multiport memory modules, running
two task sets A and B. Suppose precedence require-
ments dictate that all the tasks in B can run only
after all tasks in A finish. No other precedence con-
ditions exist. Suppose the size of each memory mod-
ule is large enough to hold one of the two task sets
completely; however, neither can hold all the tasks
in both A and B.

If we allocate all of task set A to memory module
M and all of set B to module M», M, will be active
while tasks in A are running, and asleep when they
are not. A similar case holds for M, with respect to
task set B. By contrast, if we allow some tasks of
A to be assigned to M; and some to M, and sim-
ilarly for tasks of B, both modules will have to be
active for a longer time. Hence, the former arrange-
ment permits power savings over the latter. (We have
not taken memory interference into account in this
example, but the argument will hold as long as mem-
ory interference remains a second-order effect).

Task assignment to memory modules to reduce
energy consumption was considered before, in [6],
for general-purpose systems. In this paper, we study
the problem specifically for real-time workloads. The
potential for energy savings is higher for overde-
signed systems since the devices can be put to sleep
mode more often. This is especially the case for
real-time multiprocessor systems since memory-wise
and compute-wise these systems are typically overde-
signed [8].

The system model is shown in Figure 3. We as-
sign tasks to memory banks, i.e., choose one memory
bank to hold all of the the data and text sections of
a task. If only X banks are used by the application
tasks at a given time, the remaining P — X banks can
then be switched to sleep mode to conserve energy.



More precisely:

E
d( nedrtgy(t)) =N- Pcpu + X(t) * Pra+

(P = X(t)) - Prns (1)

where Energy(t) is the cumulative system energy at
time ¢, Pep, is the CPU power consumption, Py,
is the memory power consumption in active mode
and P,,s is the memory power consumption in sleep
mode.

The numerical results in this paper are for a

Processor  |——
#1
' Bank
. #1
Run-time queue ' '
[ [ [ [ [T i '
Bank
. #P
Processor ||
#N

Fig. 3. Closely-coupled system model

shared memory multiprocessor with two memory
banks and two processors with a shared run-queue.
All tasks have a deadline and a worst-case execution
time associated with them. The periods are randomly
chosen. The execution times are random as well; how-
ever they are chosen so that the total processor uti-
lization is equal to some specified quantity. Each task
has a memory size requirement, which is randomly
chosen in such a way to satisfy a given memory load.
Then, the energy expression for the 2-bank 2-CPU
system case is:

d(Energy(t))
- = 2 . Pc u X t) - Pma
It pu T ( ) +

(2= X(?)) - Prs (2)

X is 0 if there are no tasks in the run queue, 1 if
there is one task in the run queue or if there are
two tasks in the run queue that are assigned to the
same bank, 2 if there are two tasks in the run queue
that are assigned to different banks. Our multipro-
cessor scheduling heuristic is the well-known earliest-
deadline-first adapted to the closely-coupled system.

In this variant, the chosen task is allocated to the first
available processor. We run our simulation over the
least common multiple of task periods and check for
deadline misses. Since our focus is on real-time sys-
tems, we reject runs with deadline misses. Each ap-
plication is assumed to have an energy budget. Each
successful execution of a periodic task contributes to
the reward, which continues to accrue until the sys-
tem energy budget is depleted. All our results, unless
otherwise noted, are averaged over 50 runs.

We start by utilizing memory sleep mode only.
Our analysis is done across different values of system
parameter loads. The system parameters used are the
CPU and memory, therefore we need to define the
load metrics:

n-tasks

CPULoad = ( Y Exey/Pery)/N, (3)
k=1

n_tasks

MemoryLoad = ( Z Memy,)/(Np xS) (4)
k=1

where Fxe;, is the execution time, Perj the period
and Mem;, the memory size of the kth task. IV, is
the number of processors, N;, the number of mem-
ory banks and S the memory size of each bank. For
each energy budget, we plot the reward rate for dif-
ferent CPU loads in Figure 4. As the CPU load is in-
creased, the reward becomes less sensitive to it, and
ultimately saturates.

4000

o'%

3500

3000

2500

2000 |

Reward

1500

Load=0.25 ——
1000
Load=0.8 &
Load=0.85 ——=-
Load=0.9 ---o---{

| | |
0 500 1000 1500 2000 2500
Energy Budget

Fig. 4. The system reward as a function of the energy
budget using only the memory sleep mode.

We now define overlap to be the time period when
both memory banks are active. If we can utilize this



overlap by reassigning the overlapping tasks to the
same memory bank as much as possible, then the
other memory bank can be switched to sleep mode
for the duration of the overlap and save power. We
compare such an optimized allocation (obtained by
using an exhaustive search) with round-robin alloca-
tion. The resulting rewards are shown in Figure 5.
The optimized allocation has minimum overlap of
tasks, and is significantly more energy efficient than
the round-robin allocation.

4000

Optimized allocation <]
Round-Robin allocation -+--|

3500 | 3 3

3000

T

2500

T

2000

Reward

1500

T

1000

T

500 A J

0 | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Energy Budget

Fig. 5. Comparing the rewards due to the optimized and
unoptimized allocation schemes.

An analysis of the effects of memory loading (i.e.,
the memory requirements of each task) are given in
Figure 6 (PL denotes the CPULoad and ML the
MemoryLoad). We require that no task needs to be
split between two banks. The results show that the ef-
fects are negligible. This leads to the conclusion that
under this restriction, CPU load has more effect on
the energy reward than memory load.

The additional delay caused by simultaneous ac-
cess to a memory bank by two tasks must also be
considered. We model this penalty by defining inter-
ference. We introduce an interference parameter, A,
which ranges between 0 and 1. During interference,
z cycles of simulation time are translated into Az
units of useful cycles. Therefore, the closer A is to 1,
the less the interference penalty. Figure 7 shows the
results and as expected the effect of the interference
becomes more pronounced at high CPU loads.

Next, we turn our attention to task-period ad-

4000 T

25 ML=0.9

3500 - - PL=05 ML=0.6

3000
PL=0.5 ML=0.9 -
2500
2000

1500 |

1000

0 1 1 1 1
0 500 1000 1500 2000 2500

PL = processor load; ML = memory load

Fig. 6. Effect of varying memory loads

4000

3500

T

T

3000

2500

T

2000 |

Reward

1500

1000 -

500

| | |
0 500 1000 1500 2000 2500
Energy Budget

Fig. 7. Effect of memory interference.

justment. Task-period modification is a well-known
method in the context of improving control system
performance in real-time systems [15]. This method
however, has not been used before in a high-level
power saving setting. We now make this extension.
Readjusting the periods to make them more har-
monic can be expected to generate a smaller over-
lap, and thus lead to lower energy consumption. We
are only allowed to contract periods, since extending
them may violate application-imposed timing con-
straints. We take random task periods between 20
to 140 time units and contract them to multiples of
20. The results are shown in Figure 8, demonstrating
that higher CPU loads can, in some cases, actually
lead to higher savings.



6000

5000

4000 -

3000

Reward

2000

X L=.25 adj. +—
Sy g L=.25 unadj. -+--

X L=50ad). -8--

L=.50 unadj.
L=.75 adj.
L=.75 unadj. -*

1000 |

A‘»x

|
0 500 1000 1500 2000 2500
Energy Budget

Fig. 8. The effect of period adjustment.

4 Conclusion

We have constructed a framework to gauge the en-
ergy impact of various application and OS level
heuristics to energy consumption. Our model unifies
the inter- and intra-node approaches and is appli-
cable to large-scale loosely and tightly coupled real-
time systems. We have shown that relatively simple
heuristics can lead to considerable energy savings.

References

1. Ahmad I., Kwok Y.-K., “On Exploiting Task Dupli-
cation in Parallel Program Scheduling”, IEEE Trans-
actions on Parallel and Distributed Systems, Septem-
ber 1998, pp. 872-891

2. Cheng S.-T., Chen C.-M., Hwang, J.-W., “Low-
Power Design for Real-Time Systems”, Real Time
Systems, Kluwer Academic Publishers Vol. 15, 1998,
pp. 131-148

3. Danckaert K, Masselos K., Catthor F., De Man H.
J., Goutis K., “Strategy for Power-Efficient Design of
Parallel Systems”, IEEE Transactions on VLSI Sys-
tems, June 1999, pp. 258-265

4. Darko K., Miodrag P., “System-Level Synthesis of
Low-Power Hard Real-Time Systems”, Computer
Science Department Report, University of California,
Los Angeles, 1996

5. Diguet J. P., Wuytack S., Catthoor F., De Man
H., “Formalized Methodology for Data Reuse Explo-
ration in Hierarchical Memory Mappings”, Interna-
tional Symposium on Low-Power Design, 1997, pp.
30-35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Farrahi A. H., Tellez G. E., Sarrafzadeh M., “Mem-
ory Segmentation to Exploit Sleep Mode Operation”
32nd ACM/IEEE Design Automation Conference,
1995

Hennesy J., Patterson D. A., “Computer Architec-
ture: A Quantitative Approach”, Morgan Kaufmann
Publishers, 1996, pp 434-435, pp. 106,434-435
Krishna C. M., Shin K. G., Real Time Systems, Mc
Graw Hill, 1997

Landman P., “High-Level Power Estimation”,
ISLPED 1996

Lee M.T.-C., Tiwari V., Malik S., Fujita M., “Power
Analysis and Minimization Techniques for Embedded
DSP Software”, IEEE Transactions on VLSI Sys-
tems, March 1997

Levy E., Silberschatz A., “Distributed File Systems:
Concepts and Examples”, ACM Computing Surveys,
December 1990, pp.332-364 Report No. UCB/CSD-
96-914, University of California, Berkeley, Computer
Science Division, September 1996

Micron Technology Inc., “MT4LC4M16R6 Data
Sheet”, www.micron.com/mti/msp/html/data-
sheet.html

Patel C. S., Chai S. M., Yalamanchili S., Schimmal
D. E., “Power Constrained Design of Multiproces-
sor Interconnection Networks”, IEEE Conference on
Computer Design, 1997, pp 408-416

Press W. H., Flannery B. P., Teukolsky S. A., Vetter-
ling W. T., “Numerical Recipes, The Art of Scientific
Computing”, Cambridge University Press, 1989, pp.
326-334

Shin K. G., Meissner C. L., “Adaptation of Control
System Performance by Task Reallocation and Pe-
riod Modification”, 11-th Euromicro RTS, June 1999
Singh S., Woo M., Raghavendra C. S. “Power-Aware
Routing in Mobile Ad Hoc Networks”, ACM MOBI-
COM, 1998, pp. 181-190

Sivalingam K. M., Chen C., Agrawal P., Srivastava
M. B., “Design and Analysis of Low-Power Access
Protocols for Wireless and Mobile ATM Networks”,
ACM/Baltzer Mobile Networking and Applications
Journal, March 1998

Unsal, O. S., Koren, I., and Krishna C. M.,
“Power-Aware Replication of Data Structures in Dis-
tributed Embedded Real-Time Systems”, Proceed-
ings of IPDPS, May 2000

Vijay S., “Flexible Use of Memory for Replica-
tion/Migration inCache-Coherent DSM Multiproces-
sors”, Technical Report: CSL-TR-99-789, Computer
Science Department, Stanford University, November
1999

Wuytack S., Catthoor F., De Man H., “Transform-
ing Set Data Types to Power Optimal Data Struc-
tures”, International Symposium on Low-Power De-
sign, April 1995



