
PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 1

System-Level Power-Aware Design Techniques in
Real-Time Systems

Osman S. Unsal, Member, IEEE, and Israel Koren, Fellow, IEEE

Abstract— Power and energy consumption has recently become
an important issue and consequently, power-aware techniques are
being devised at all levels of system design; from the circuit and
device level, to the architectural, compiler, operating system and
networking layers. In this survey we concentrate on power-aware
design techniques for real-time systems. While the main focus is
on hard real-time, soft real-time systems are considered as well.
We start with the motivation for focusing on these systems and
provide a brief discussion on power and energy objectives. We
then follow with a survey of current research on a layer by
layer basis. We conclude with illustrative examples and open
research challenges. This work provides an overview of power-
aware techniques for the real-time system engineer as well as an
up-to-date reference list for the researcher.

Index Terms— Real-time systems, power-aware design, mi-
croarchitecture, compiler, operating system, network

I. PROLOGUE

As we get closer to the limits of scaling in CMOS cir-
cuits, power and heat dissipation issues are becoming ever
more important. In recent years, the impact of pervasive
computing and the internet have accelerated this trend. The
applications for these domains are typically run on battery-
powered embedded systems. The resultant constraints on the
energy budget require design-for-power as well as design-for-
performance at all layers of system design. Even when battery-
based constraints do not exist, energy must often be conserved,
in general-purpose as well as in real-time systems. Consider,
for example, the following facts:

� According to Dataquest, worldwide total power dissipa-
tion of processors in PC’s was 160 megawatts in 1992,
growing to 9000 megawatts by 2001. In the same vein,
a typical server farm with 25000 square feet of space
and 8000 servers is estimated to consume 2 megawatts
of power [1].

� A computer owner in Britain demonstrated the extent
of the thermal and heat density issues by placing a
dish of aluminum foil above the chip inside his PC and
frying an egg for breakfast [2] (cooking time 11 minutes,
experiment details and photos available at [3]).

Real-time systems are often severely energy-constrained. The
need to continue meeting critical task deadlines while staying
within power and energy constraints presents interesting engi-
neering challenges.

Manuscript received January 20, 2002; revised November 18, 2002. This
work was supported in part by NSF grants EIA-0102696 and CCR-0205212.

Osman S. Unsal was with Electrical and Computer Engineering Depart-
ment, University of Massachusetts, Amherst, MA 01003. He is now with
Intel Labs Barcelona, Spain.

Israel Koren is with Electrical and Computer Engineering Department,
University of Massachusetts, Amherst, MA 01003, USA.

It is important to note the conceptual difference between
power-aware and low-power systems. In low-power design,
the main goal is minimization of power. On the other hand, a
power-aware system is one in which meeting power and energy
goals is a significant design consideration and in which the
system modifies its behavior based on current power/energy
availability. At this point it is worthwhile to further clarify
what is meant by power-aware design and to correct some
misconceptions associated with this term:

� Power-aware design does not necessarily imply min-
imization of power or energy. On the contrary, some
power-aware design goals may increase power/energy
consumption. Consider the case of design for decreasing
peak power in a processor: one method to attain this
goal would be to use schemes which would intentionally
delay the issue of some instructions to smoothen the
instruction issue distribution and thus decrease the peak
consumed power. However, delaying some instructions
could lead to the application being finished later than
it otherwise would, therefore increasing the energy con-
sumption. Thus, this scheme would be a power-aware,
but not a low-power, design.

� Decreasing average power does not imply decreasing
maximum power. Those goals are non-orthogonal sub-
sets of low-power design. Average power dissipation is
calculated over the entire run of the application. Being an
average of the power consumption distribution histogram,
average power is distinct from maximum power which is
the peak value of the histogram. An optimization meant
to decrease average power could even lead to an increase
in the maximum power used.

� Power and energy efficiency are separate design goals.
Energy is the integral of power consumption over a time
period. A power-efficient design might very aggressively
decrease the clock rate, but this might not be an energy-
efficient design since the performance of the application
might degrade to such a degree that actual energy con-
sumption increases.

� Power-constrained applications are distinct from
energy-constrained ones. An application running on a
finite source of energy such as batteries is an energy-
constrained application whereas an application running
on an infinite source such as solar power is power-
constrained. Maximum available power and the energy
budget are different metrics in power-aware design.

� Energy-constrained systems do not always target en-
ergy minimization. If the charge that is drawn from a
battery solely depends on the battery capacity (the total

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 2

energy budget) then energy minimization would be a
valid design goal for a battery equipped system. However,
studies of batteries have shown their behavior to be unlike
ideal capacitors, i.e., the charge depends not only on the
battery capacity but also on the rate of discharge [4], [5],
[6], [7]. Therefore, for those energy constrained systems
the goal is battery lifetime extension which is separate
from energy minimization.

In this paper we survey research into power-aware real-time
systems. In Section II, we present a concise tutorial on system-
level power-aware design. We then follow with a survey on
current power-aware research issues in real-time systems. The
survey is partitioned into four sections, covering architectural,
compiler, OS, and network layers. We consider both hard and
soft real-time systems in each section. However, we will devote
more attention to hard real-time systems since several surveys
exist for soft real-time systems covering the multimedia [8]
and embedded [9] domains.

A. System-Level Power-Aware Design for Real-Time Systems

We assume familiarity with common concepts in real-time
systems; for detailed information, the reader is encouraged to
consult [10], [11], [12]. System-level power-aware design in
real-time systems is a relatively new research area. Low-power
had become an important parameter at the higher layers of
system design by the mid - 1990’s. Most of the new system-
level low-power techniques initially targeted general-purpose
computing systems. However, it soon became apparent that
real-time systems present unique challenges and opportunities
for system-level low-power design as demonstrated next.

� Real-time systems are usually severely power-
constrained. In particular, space borne and multimedia
systems are typically battery-operated and therefore
have a limited energy budget. Real-time systems are
also relatively more time-constrained compared to
general-purpose systems. Therefore, the challenge is to
save power while satisfying temporal guarantees.

� Some real-time applications such as avionics, robotics
and deep space missions require systems with small form
factors, which in turn mandates low heat dissipation.
Since heat is a byproduct of power dissipation, low-power
system-design ensures a more reliable system by limiting
the heat produced.

� Real-time systems are typically over-designed to ensure
that the temporal deadline guarantees are still met even if
all tasks take up their worst-case execution time (WCET)
to finish. Since, in the average case, tasks do not run until
their WCET, this is very energy inefficient. System-level
techniques can decrease this power dissipation through
the use of power-aware task scheduling algorithms while
preserving the temporal guarantees.

� Real-time systems are designed to be fault-tolerant. Fault-
tolerance ensures reliability through replication of soft-
ware/hardware resources. However, brute replication in
turn, causes high power dissipation. System-level low-
power techniques manage replication resources judi-
ciously to reduce the required power.

System-level power-aware research for real-time systems is
still in its infancy. While there is intense activity in the
area, most initial research is concentrated in adding power-
awareness as a second-tier design goal which complements
the more traditional real-time design goals. According to this
approach, the system is first optimized subject to traditional
real-time design constraints like timing and reliability. More
often than not, an additional optimization step subject to
power-aware design constraints is then piggybacked to this
design. We believe that power-awareness should be one of the
primary design goals for real-time systems, integrated in the
design process at all levels, simultaneously coexisting with the
traditional real-time design objectives. This requires a radical
rethinking of the design methods as well as the definition of
new metrics, a vision that is already becoming more ingrained
in the research community.

II. TUTORIAL ON SYSTEM LEVEL POWER-AWARE DESIGN

A. Device-Level Power Dissipation Basics

CMOS devices are currently the building blocks for com-
puting elements used in real-time systems. We distinguish
between three types of power dissipated in CMOS circuits:
dynamic, static and short-circuit. Short-circuit power is dis-
sipated when both the NMOS and PMOS transistors are
conducting simultaneously, and is due to the flow of current
from power source to the ground. However, short-circuit power
is comparatively insignificant and therefore is not within our
scope. Dynamic power is consumed due to the switching of
gates and is still responsible for a large percentage of the total
power dissipated in current computing devices, although power
dissipation related to static power is expected to increase in
the future. Dynamic power reduction techniques form the bulk
of the research reviewed in this survey. The average dynamic
power is given by the following formula:

��� ����� � �� ���	 � � �

�� � � (1)

where �� is the load capacitance, a substantial portion of
which is wire-related, ��	 is the average number of cir-
cuit switches per clock cycle, ��� is the supply voltage
and � is the clock frequency. The capacitance �� could
be reduced by physical design techniques. Using place and
route optimizations that strive to shorten or eliminate long
wires with high capacitative load helps to decrease the im-
pact of this term. Decreasing the second term, ��	 , the
average number of circuit state switches, is achieved using
techniques like minimizing the Hamming distance in opera-
tions/instructions following each other [13] or minimizing the
number of operations [14]. This term is targeted especially
by the hardware/software codesign community [15]. Since the
supply voltage ��� contributes a quadratic term to power
dissipation, it is being aggressively targeted at the device-level.
As technology advances towards deep submicron devices,
the shrinking of the feature size enables a decrease of the
supply voltage. According to ITRS projections [16], the 20
nm transistors that will go into production around 2007 are
expected to run at 0.75 volts.

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 3

Unfortunately, decreasing the supply voltage increases the
circuit delay, Æ, given by:

Æ �
�� � ���

� � ���� � �
 ��
(2)

where � is a process dependent constant, �
 is the threshold
voltage and � is another process dependent parameter which
varies between 1 and 2. One can see that the closer ��� gets
to �
 , the higher is the delay. It is obvious that ��� and �

have to be scaled down simultaneously in order to maintain
performance while saving power. Therefore, some device-level
researchers have proposed and built circuits which have either
variable or multiple �
 ’s and ���’s. Due to the increased
delay, the circuits could not be driven at the same frequency �
when the supply voltage ��� is decreased. Consequently, the
frequency must be reduced as well. Many power-aware real-
time/embedded processors provide runtime means to decrease
the supply voltage and the clock rate. This scheme, termed
Dynamic Voltage Scaling (DVS), is employed extensively at
the system-level. DVS works by slowing down the system
when maximal performance is not needed. Most approaches
differ in the way they decide when and for how long it would
be profitable to apply voltage scaling.

The third component of the power dissipation, static power,
is mainly due to leakage current between the power supply
and ground. Leakage current has five components: reverse
biased pn junction current, sub-threshold leakage, gate induced
drain leakage, punch through and gate tunneling. Subthreshold
leakage current dominates the leakage current and is in turn
dominated by temperature and threshold voltage. Specifically,
subthreshold leakage current scales exponentially with de-
creasing threshold voltage. Thus, lower threshold voltages
lead to increased subthreshold leakage current and increased
static power. As such, static power is independent of the
circuit activity but dependent on the device area and tem-
perature. Therefore, static power consumption occurs as long
as power is supplied to the CMOS device. Although static
power consumption is insignificant in current device sizes, it
is expected to dramatically increase with shrinking feature
sizes in the future. There is already considerable research
activity to decrease static power consumption for general-
purpose computing systems by turning off the voltage supply
to portions of the chip that are not being used.

Shrinking feature sizes are responsible for increasing
thermal-related problems as well. The on-chip temperature
in current processors can vary by as much as several tens
of degrees from one portion of the chip to the other with
the maximum temperature reaching as high as 100 � C. The
maximum chip temperature, ���, is related to the chip
area and maximum power dissipation, both of which tend to
increase with scaling:

��� � ��� �	�
���

(3)

where ��� is the ambient temperature, ��� is the maximum
power dissipation and
 is the chip area. 	� is the equivalent
thermal resistance of the packaging and substrate (Si) layer.
Reducing the term of interest at the system-level, maximum

power, will also reduce the maximum temperature. Device-
level related thermal issues are covered in [17]. For detailed
information about device-level power dissipation basics, we
refer the reader to [18], [19], [20], [21].

B. What is System-Level Power-Aware Design?

All the techniques for system-level dynamic power-aware
design focus on one or more of the terms in Equation 1.
This is the case even for ��: the load capacitance may seem
to be highly dependent on the physical design process and
not affected by system-level design optimizations. However,
consider an architectural design employing Globally Asyn-
chronous Locally Synchronous (GALS) principles [22]. GALS
is a clustered design with each cluster having its own clocking
domain. Thus, compared to a completely synchronous archi-
tecture, the shorter wire lengths in GALS decrease the ��. A
power-aware compiler might employ instruction scheduling to
decrease ��	 . An OS-level heuristic might then scale down
the frequency � and voltage ��� when peak performance is
not required. A network layer scheme might put the network
interface into standby mode when it is not likely to receive
a message, thereby eliminating dynamic power dissipation
for the duration. Therefore, power-awareness is embedded in
every step of the system design hierarchy. The answer to the
above question is now obvious:

System-level power-aware design includes power and en-
ergy management and modeling issues at the microarchitec-
tural, compiler, operating system (OS) and networking layers.
By contrast, device-level power-aware computer design covers
power issues at the device and circuit level. Up until the
mid 1990’s, power-aware design was restricted to device-level
low-power design. Architects, compiler and OS experts and
network engineers designed for speed and performance; power
and energy was considered to be the responsibility of circuit
and layout engineers. However, in the last couple of years there
has been explosive interest in establishing power and energy
as important design goals at the higher layers of computer
systems. The reasons behind this phenomenon are explained
next.

C. Why is System-Level Power-Aware Design Important?

After all, a persuasive counter claim could be made as
follows: CMOS circuits are the basic building blocks of the
current microprocessors. Dynamic power in CMOS circuits is
dissipated according to Equation 1. When circuit technology
scales through shrinking the transistor feature size by a
factor of �, the capacitance is reduced by � and the supply
voltage by ��. Therefore, power decreases by a factor of ��,
provided the frequency remains the same. Consider shrinking
the transistor feature size from ��� to ���, thus scaling
by a factor of 1.38. This means that power will be reduced
by ����� � ��� times. Since power seems to be significantly
decreased by each new generation, there is no need to be
concerned with power at the higher levels of system design.

Unfortunately, this is no longer the case. With each
generational scaling of the feature size, more complex,
aggressive designs are used. These designs employ higher

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 4

clock frequency, larger chip area and higher total number
of transistors due to the use of more aggressive speculative
execution. The result is a significant increase in power
dissipation. Consider Table I: although the power supply
voltage has decreased, total power dissipation has increased
fivefold over the lifespan of the Alpha processor family. On
the other hand, aggressive, complex designs increase the
opportunities available for power management: there are more
individual units which can be placed on standby when not
needed by the application.

Processor Power Freq. Die Size ���

(Watts) (MHz) (mm�)
21064 30 200 234 3.3
21164 50 300 299 3.3
21264 90 575 313 2.2
21364 100 1000 340 1.5
21464 150 2000 396 1.2

TABLE I

CASE STUDY FOR SCALING: THE COMPAQ ALPHA (SOURCE:WILCOX

AND MANNE [23])

Another worrying trend is the increase in power density.
Consider Figure 1 for the Intel family of microprocessors.
The power density is expressed in terms of watts/cm�: the
current generation is getting close to the power density of a
nuclear reactor. Note that the power density of a hot plate
has already been exceeded. This results in more expensive
cooling mechanisms and reduced reliability. The increase in
total power dissipation as well as power density means that
traditional power management policies centered only at the
device and VLSI levels are no longer sufficient. As a result,
power has propagated as an important design constraint to
the higher levels. The reader can find further information and
surveys regarding system-level power-aware design in the
following articles [25], [26], [27], [28], [29], [30], [31].

.

.

W/cm2

.

1

10

100

1000

386 Pentium PentiumII PentiumIV
Nuclear ReactorPentiumIIIPentiumPro486

Fig. 1. Power Density of Intel Chips (Source: Fred Pollack [24])

III. LAYER BY LAYER SURVEY ON SYSTEM LEVEL

POWER-AWARE REAL-TIME RESEARCH

Processors used in real-time systems are usually more
conservatively designed. The typical real-time processor, if

pipelined at all, can issue a single instruction per cycle
and instructions execute in-order. Although not very common
lately, even caches used to be disabled. The reason for this
restraint is threefold; first, the use of a time-tested and prov-
ably correct architecture provides a reliable foundation block
for the system. Second, the simple architecture makes the
incorporation of fault-tolerance such as hardware redundancy
easier. Third, this simplicity offers ease of modeling for WCET
analysis. It is worth noting that even simple pipelining is
quite difficult to model [32]. The same reasoning provides
the rationale behind disabling caches.

However, it is our belief that more complex architectural
features such as multiple out-of-order instruction issue or mul-
tithreading will trickle down to processors used in real-time
systems and offer more research opportunities. Currently, real-
time systems research at the microarchitectural level for power
savings is concentrated on the following issues: instruction
set architecture selection, instruction caches and the system
bus, cache region reservation, voltage and frequency scal-
ing, battery-consciousness, Field Programmable Gate Arrays
(FPGA), and task movement. We consider each of those topics
next.

Instruction Set Architecture (ISA) Level: This is an active
research area in the context of general-purpose architectures;
various researchers have commented on the need to take power
and energy into account in ISA design. However, not much
effort has been devoted to power-aware ISA design in real-time
systems. We now briefly discuss one of the few representative
works in power-aware ISA issues in real-time systems by
Cheng et al. [33]. The authors employ a fine-grained off-
line scheduling approach which saves power by combining
multiple instructions into one complex but lower power in-
struction or by using low-power versions of instructions while
considering task deadlines. The proposed scheme assumes that
the ISA is sufficiently flexible, however, in practice there is not
much scope for the existence of complex instructions which
are functionally equivalent to a group of simpler instructions
in the ISA design.

I-cache and Buses: The control path, which governs the
fetch, issue and retiring of instructions, is quite simple in
typical embedded processors and occupies a relatively small
portion of the chip area. The caches take up most of the
chip area [34] and are responsible for a considerable percent-
age of the energy dissipation even though memory is more
energy efficient than control logic. We concentrate here on
the instruction-cache (I-cache) and consider two representative
power reduction approaches. Benini et al. [35] compress
the instructions in memory. A compressor/decompressor is
inserted between the memory and the CPU and therefore no
architectural changes to the ISA are necessary. The observation
is that a subset of the ISA is used for programs so the
most frequently used instructions are compressed. This saves
instruction fetch energy by using fewer bits on a fetch. An
alternative strategy by Lee at al. [36] also concentrates on
saving instruction energy. The authors employ a loop cache
and keep the tight loop in a small loop cache instead of
accessing a larger block. The power savings come from two
factors: first, less power is consumed per access by accessing

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 5

a smaller loop cache instead of a larger monolithic cache;
second, unlike regular caches, the loop cache has no address
tag store and no valid bit, thus saving power. The enabling
factor is a special class of branch instructions, called short
backward branch instructions, that were developed specifically
for loops. This work also demonstrates the usefulness of
augmenting an ISA in a power-aware fashion for real-time
systems. Besides being energy-efficient, the loop-cache also
enhances predictability in real-time applications by keeping
frequently executed tight loops in the cache.

Power-aware bus encoding techniques decrease the off-chip
power dissipation of address buses. A representative example
is the bus-invert scheme proposed by Stan and Burleson [37].
In this scheme, the number of bit transitions that might occur
with respect to the previous data are computed before the
data is put on the bus. If the transition count is more than
half the bus width, the data is inverted and put on the bus,
thereby saving power. The inversion of the bus is signaled
through an extra bit line. More recently, Mamidipaka et al.
[38] observed that bus transitions are an important source
of power dissipation in embedded systems. They proposed
a low-power address encoding scheme using self-organizing
lists which exploit the spatial and temporal locality of the
addresses. This approach saves power on the data busses (up
to 54%) as well as address busses (up to 59%).

Cache Region Reservation: Since many real-time appli-
cations have tight memory requirements as well as power
and timing constraints, a natural optimization approach is to
reserve regions in the cache. For real-time systems, there is
a strong research tradition for cache/memory region reserva-
tion techniques. However, most of the previous approaches
considered locking or reserving memory to increase execution
time predictability and not to reduce power. One of the first
efforts to consider power is by Li et al. [39]. Their aim is
to find a data or instruction cache configuration so that the
real-time constraints can be met with the lowest power. They
assume a single CPU with multiple real-time tasks running
at different rates. The scheduling algorithm is the Earliest
Deadline First (EDF), a widely used preemptive algorithm
in real-time systems. In EDF, the task that has the earliest
deadline in the time domain has the highest priority. It has
also been proved that if the total system load is not greater
than 100% and task deadlines equal their periods, then the
task set is schedulable on that processor [40]. If the utilization
is more than 100%, then caches are added to decrease the
WCET of certain tasks until the utilization drops below 100%.
Li et al.’s partitioning heuristic sets aside cache partitions
for each task. If a task’s instructions or data are reserved a
partition, then the instructions or data will always stay in the
cache. This ensures that the program always has instruction
or data hits. The partition allocation heuristic uses a linear
programming approach for region allocation. The optimization
procedure considers the total cache size and task schedulability
as constraints and solves for minimum system power under
these constraints.

Voltage and Frequency Scaling: Real-time systems are
typically over-designed, provisioning resources for the worst-
case execution time (WCET). Since tasks rarely execute up

to their WCET, there is significant scope for power and
energy savings using dynamic voltage and frequency scaling
(DVS). The processor must be augmented with hardware
blocks that allow changing the supply voltage dynamically, see
Figure 2. Reduction of ��� and/or frequency saves substantial
power, however it also increases the circuit delay, causing
a slowdown in the execution of programs. Therefore, DVS
heuristics usually trade off power savings against delay. One of
the earliest papers in this area is by Yao et al. [41]. The authors
consider a set of tasks with an identical period. They define the
average-rate requirement of a task to be the ratio of its required
number of cycles divided by its time frame (deadline�arrival
time). At time t, the energy-saving heuristic sets the speed of
the processor to the sum of average-rate requirements of tasks
which are in the same time frame. Kirovski and Potkonjak
[42] extend the analysis to tasks with arbitrary periods and
explore processor allocation as well as task assignment for
voltage scaling. All tasks are assumed to be independent.
The allocation step finds the most energy-efficient number of
processors to use given the task set. Steepest descent heuristics
are used for allocation and task assignment.

PROCESSOR
CORE

V
control

Memory

Clock Clock

DD

DD DDV V

DC−DC converter and
Voltage Controlled Oscillator

Fig. 2. Augmented processor blocks to implement dynamic voltage/frequency
scaling

Lee and Sakurai [43] also use DVS, but the supply voltage
changes are allowed only at specific points during the execu-
tion of a task. They partition each task into time slots. This
is useful in processors employing DVS strategies at specific
intervals. Kang et al. [44] also vary the supply voltage but they
consider task dependencies. They use task chains for modeling
and target distributed real-time systems. Krishna and Lee [45]
adopt a two phase heuristic that has offline and a steepest
descent-based online components. Luo and Jha [46] consider
aperiodic tasks as well, which are assumed to be soft real-time.
The scheduling scheme is static for the hard real time periodic
tasks and dynamic for the soft aperiodic tasks. Kirovski and
Miodrag [47] prove that voltage scalable task allocation and
scheduling optimization problems are NP-complete.

Scaling the frequency and voltage takes a non negligible
amount of time, which can be in the order of tens of microsec-
onds. This overhead is considered by AbouGazeleh et al. [48].
Hong et al. [49] use synthesis techniques with dynamic voltage
scaling. The heuristic computes power efficient I- and D-cache
sizes. Other papers that are based on DVS schemes include
utilizing integer linear programming to minimize power [50],

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 6

considering fixed-priority scheduling [51], extensions for non-
preemptive [52] and preemptive aperiodic tasks [53].

Battery Conscious Real-Time: Many real-time platforms,
such as space-borne systems use batteries that constrain avail-
able energy. The most important issues to be considered here
are the total battery capacity, expressed in Ampere-hours or
Watt-hours and the battery discharge profile. The latter is
important in devising battery-aware schemes that are guided
by the discharge profile. In one such recent work, Luo and
Jha [54] consider distributed real-time systems and develop a
battery model, which is used in two scheduling schemes: first
they optimize the battery discharge power profile, and then
they use voltage scaling for distributed real-time systems. The
overall objective is to extend the battery lifespan while meeting
task deadlines and precedence requirements. The authors claim
that mitigating battery capacity loss requires reducing the
discharge current level and shaping its distribution. The first
scheme employs schedule transformations. Starting from a
valid schedule, the transformations are based on minimization
of the peak power consumption and reduction of the variance
of the discharge current profile. The second scheme is based
on slack time reallocation which reduces the average discharge
current level. In the case of systems with more than one
means of power delivery, a different metric is needed. In their
approach, Liu et al. [55] study the Mars rover application.
They develop a maximum power-budget concept and propose
heuristics similar to [54] for a dual power-source system. A
power-usage metric (free vs. expensive) is developed from a
depletion point of view: free solar power cell and an expensive
battery based-power source.

FPGA for Real-Time: FPGA-based systems are considered
to be less energy efficient compared to other architectural alter-
natives but they offer significant potential for power-reduction
techniques since many blocks of the FPGA could be inactive
and still consume power. Park and Burleson [56] examine
reconfigurable architectures and consider a real-time video
application. One suggestion for higher energy-efficiency is to
utilize free FPGA resources as local memory to avoid off-chip
communication. Another suggestion is to avoid unnecessary
computation by adjusting the search area according to the
changing characteristics of the video signal.

Task Movement: Task movement is important in real-
time systems for fault-tolerance or load balancing purposes.
However, power efficient task movement heuristics have not
been extensively investigated. One exception is the work of
Liu et al. [57]; this is based on the observation that a set of
processors can operate at a lower power level than a single
one with the same performance if there is enough parallelism.

Fault-Tolerance: Including power-awareness in fault-
tolerant systems may lead to slightly divergent design points
from that of non-power-aware schemes. We illustrate the
above assertion with a simple example: consider the problem
of optimal checkpoint placement to recover from transient
faults. We want to find the energy-optimal strategy. During
checkpointing, the power dissipated per time unit is higher
than during regular program execution. Since the stable storage
has to be accessed very frequently, energy is consumed at a
higher rate. Assume for example, that running the application

without any checkpoints consumes 120 millijoules of energy
and takes 600 milliseconds to complete. Also assume that
there is a single transient fault during execution. The energy
consumed during the checkpointing process is 10 millijoules
and each checkpoint takes 20 milliseconds. The energy con-
sumed to recover from the transient fault by rolling back
to the last checkpoint and resuming execution is half of the
inter-checkpoint energy on average. A traditional non-power-
aware placement strategy, shown in Figure 3a, would minimize
the overall execution time. According to this criterion, the
optimal number of checkpoints is 3. However, if the criterion
is minimization of energy, shown in Figure 3b, the optimal
number of checkpoints is 1 or 2. Thus, time and energy
optimal solutions have different design points. A power-aware
design which takes timing constraints into consideration would
choose to employ 2 checkpoints, which is energy-optimal with
minimal execution time degradation.

700

750

800

850

900

0 1 2 3 4 5

E
xe

cu
tio

n
T

im
e

(i
n

m
se

c.
)

Number of Checkpoints

(a) Non-power-aware placement

150

160

170

180

0 1 2 3 4 5

C
on

su
m

ed
 E

ne
rg

y
(i

n
m

jo
ul

es
)

Number of Checkpoints

(b) Power-aware placement

Fig. 3. Time- and energy-optimal checkpoint placements.

We conclude the survey of the microarchitectural layer
with a short synopsis of power-aware soft real-time research.
Hughes et al. [58] evaluate the relative merits of architectural
and dynamic voltage scaling techniques for power reduction
in multimedia applications. A variety of architectural config-
urations are studied with distinct instruction window, issue

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 7

width and functional unit (FU) sizes. Generally, the architec-
ture scales from a very aggressive 8-wide issue, 128-entry
instruction window, 8 FU configuration to a less aggressive
processor with 2-way issue, 32-entry instruction window and 4
FUs. The developed scheme operates at the frame granularity,
and requires a profiling phase. The profiling phase predicts
the energy per instruction for all possible architectural and
DVS-based configurations using the profiles of a single frame.
Then, before the execution of each frame, the adaptation
control algorithm predicts the number of instructions that will
be executed for the frame. Using the energy and instruction
estimates, the algorithm chooses the most energy efficient
architecture and DVS combination for each frame. The results
indicate that the mean fraction of missed deadlines over all
the applications is about 2.2%. One somewhat surprising
conclusion is that, with DVS, more aggresive architectures are
more energy efficient. Using an MPEG application, Martin and
Siewiorek [59] determine that a processor speed-setting policy
should consider battery capacity and memory bandwidth, more
specifically, that the memory subsystem should be a major
design consideration so that it does not limit performance over
the range of CPU frequencies. The experiments were carried
out through actual measurements with the important finding
that both factors must be simultaneously considered when
implementing voltage scaling. Along the same lines, these
authors explore in [60] the impact of the non-ideal battery
characteristics on power policies in a wearable computing
setting.

A. Compiler Level

There has been very limited work in the area of power-
aware compilers for hard real-time systems. This is a difficult
task since the compiler optimizations would need to consider
power and energy minimizations while making sure that those
transformations do not violate timing constraints. Approaches
at this level are mainly confined to soft real-time systems
with most of the research focusing on embedded systems. The
objective for these applications is to optimize memory usage
since embedded systems are severely memory constrained.
Here, saving power is a side effect of memory size and usage
optimizations. We concentrate here on two subareas:

Voltage and Frequency Scaling: Azavedo et al. [61]
develop a compiler-driven scheme for DVS that uses “check-
points”. The term checkpoints refers to statically determined
program epoch points where processor frequency and volt-
age can be changed. The checkpointing information also
specifies per-epoch timing constraints, so the scheme is
fine grained at the intra-task level. User defined check-
points are inserted into the source code and compiled
into special instructions. The heuristic requires a profiling
stage which reports per-checkpoint minimum and maximum
power/energy/performance information.

Memory Organization: Levy et al. [62] note that the
memory subsystem is responsible for up to 50% of total power
dissipation in embedded systems. The main focus of the paper
is the overview of compiler-driven power-aware research op-
portunities/perspectives for the memory. They identify specific

issues for power-aware embedded memory systems such as
block granularity, cache replacement algorithms, data cluster-
ing, and heap data allocation.

There is a rich tradition of compiler-driven power-aware
memory exploration for soft real-time systems. An interesting
analysis in [63] includes a negative result regarding the energy-
efficiency of standard compiler optimizations: the application
is an MPEG decoder on a battery-powered embedded system
(Smart-Badge from HP labs, a wearable system) and their
results indicate that standard compiler optimizations result in
less than 1% energy savings, but source code level optimiza-
tions are capable of up to 90% energy savings.

Grun et al. [64] look at categorizing accesses for mem-
ory customization for embedded systems and their approach
requires a profiling run. The authors utilize the results of the
profiling to customize the memory architecture for different ac-
cess and locality patterns, in effect partitioning the monolithic
cache. The variables are clustered according to different types
of locality. The power is reduced by using temporal caches
(caches with small line size or overall size) for variables with
high temporal locality and spatial caches (with large line sizes
to exploit the spatial locality) for variables with high spatial
locality. They report a 30% memory power reduction without
reducing performance.

Shiue and Chakrabarti [65] develop off-chip memory as-
signment schemes to avoid cache conflicts and save energy.
They define two arrays in a loop body to be compatible if
they are independent of the loop index. If all accesses in a loop
are compatible, then the conflict misses can be avoided by a
suitable data layout organization in memory that would place
compatible items in the same cache line. They also analyze the
impact of tiling on power efficiency. Specifically, they examine
the impact of tiling size. Tiling divides the iteration space into
tiles and modifies the loop nest to iterate over them, reducing
the miss rate and power. They consider a simple example as
shown in Figure 4. Here, array b has stride 1 while array a
has stride n. Interchanging will not help in this case since this
would change the stride of array b to n. Using tiling, the miss
rate is reduced from 0.44 to 0.22 for a tiling size of 2.

Kulkarni et al. [66] study techniques for power efficiency
by program transformations while preserving real-time per-
formance constraints. The applications studied are MPEG-2
decoder, QSDPCM video codec and a Voicecoder. In another
paper, Kulkarni et al. [67] develop code transformations for
embedded multimedia and DSP applications targeting power
savings in the cache. They consider locality of data, size
of data structures, access structures of large array variables,
regularity of loop nests and the size and type of cache in
developing the transformations. Soudris et al. [68] investigate
power-aware data reuse techniques for real-time multimedia
applications and determine that certain data sets are heavily
reused in a short period of time. The reused data is then
assigned to smaller on-chip memories which require less
power per access.

Unsal et al.[69], [70] employ data partitioning based on
type information. The authors find that scalars in multimedia
applications have a small memory footprint but a high access
frequency. Scalar accesses are mapped to a small scratchpad

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 8

for i=1,n for ti=1,n,64

 a[i,j]=b[j,i]; for i=ti,min(ti+63,n)
 for j=tj,min(tj+63,m)
 a[i,j]=b[j,i];

 for j=1,n After tiling for tj=1,n,64

Fig. 4. A simple example for tiling (Source: Shiue and Chakrabarti [65])

SRAM area [69] or alternatively a minicache [70]. This small
SRAM or minicache are more energy efficient than the large
L1 data cache. They also introduce a compiler-controlled
tagless caching framework. This compiler-directed cache is a
flexible data cache that replaces the tag-memory and cache
controller hardware with a compiler-managed tag-like data
structure that is much smaller than a traditional data cache
tag and saves energy in the data cache. Consider for example,
the system shown in Table II. Here the scalar accesses are
directed to a small minibuffer of size 1K. Assuming that the
unpartitioned monolithic D-cache has a miss rate of 2%, it
has been shown that the partitioned cache is 25% more power
efficient than the unpartitioned one. Moreover, the smaller
cycle time that is made possible by using a smaller structure
helps the real-time performance as well.

Parameter Attribute
64K L1 D-Cache power 3.0 Watts
D-Cache access time 2 cycles
D-cache miss rate 1.0%
1K Minicache power 0.5 Watt
Minicache access time 1 cycle
Minicache miss rate 4.0%
Minicache access percentage 35%
Main memory power 5.0 Watts

TABLE II

DATA CACHE CHARACTERISTICS FOR THE EXAMPLE

B. Operating System (OS) Level

Real-Time Operating Systems (RTOS) have been tradition-
ally designed for modularity, many employing small micro-
kernels; the real-time system engineer can then add modules
as required (the networking module, serial communication
module, etc.). This characteristic itself is naturally amenable
to power-aware computing: unnecessary modules could be
discarded, decreasing the power consumption. Typical issues
to be considered at this level include: DVS, I/O devices, actual
measurement of which blocks are responsible for most of the
power dissipated due to OS activity, and soft real-time systems.
We consider each in the following subsections.

Voltage and Frequency Scaling: Pillai and Shin [71] have
introduced OS-level heuristics and have implemented them.
The heuristics are based on the observation that most real-
time tasks finish before their WCET, creating a slack which
could be exploited for power-savings. The heuristics then scale
the voltage and frequency while maintaining real-time dead-
line guarantees. The authors consider periodic, non-sporadic
and independent real-time tasks. The heuristics are tightly
integrated with the operating system and are implemented as

extension modules to the Linux 2.2.16 kernel. A probe-based
power measurement framework records the energy saved.

I/O Devices: Swaminathan et al.[72] study OS-directed
power-aware I/O device scheduling for hard real-time systems.
They propose an online algorithm which takes a predetermined
task schedule and device-usage list as inputs and produces a
sequence of sleep/working states for each device. The tasks
have deadlines but are not periodic and are assumed to be
independent. They show that energy-optimal device scheduling
for real-time task sets is not possible without future knowledge
of device requests.

Power and Energy Analysis of RTOS: The first effort
in this area is by Dick et al. [73]. The authors analyze the
power profile of a commercial RTOS, the C-OS, by running
two applications on a Fujitsu SPARClite-processor-based em-
bedded system, and by evaluating the power consumed by the
operating system calls. They show that the RTOS can consume
a significant part of the system power and affect the power
consumed by the other software layers. Baynes et al. [74]
also analyze the C-OS as well as two other OS’s: Ecnidna
and NOS. The NOS is a simple “bare-bones” scheduler and
serves as a baseline case for comparison. The results show
that the RTOS overheads are a factor of two to four times
higher compared to NOS. Another key finding is that poorly
designed idle loops could cause the system to double its
energy consumption. Acquaviva [75] et al., on the other hand,
aim to establish the power profile of an RTOS independently
of the running applications. They experiment with various
OS components and report that increasing the context switch
frequency from 0Hz to 10 Khz does not affect the energy
consumption, concluding that the context switch mechanism of
an RTOS is energy-efficient. However, including the effects of
flushing the cache during a context-switch increased the energy
overhead. They also experiment with I/O drivers, specifically
with the CPU sending data bursts that are large compared to
the output buffer. The authors find that a considerable amount
of energy is spent by the OS when the buffer is full, or when
it polls a synchronization variable, similarly to [74]. They
consequently suggest that an energy-aware RTOS should send
data in smaller chunks, if possible.

Distributed Real-Time Systems: Unsal et al. [76] examine
high-level allocation and scheduling heuristics for distributed
hard real-time systems. Both tightly- and loosely-coupled
systems are considered. For loosely coupled systems, the
authors propose a power-aware shared data structure allocation
algorithm which clusters tasks using the particular shared
data structure to the same or a topologically close processor,
thereby saving power. Since the assignment problem is NP-
complete, they develop a simulated annealing approach to

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 9

0 5 10 20 22 30 35 40 50 55 60 65 70 77 80 90 95 100 110 120

T1T2 T3

T2T3 T4 T4 T4T1

T2 T2 T2 T2

T3

T3

P2

P1

Time

Fig. 5. Execution timeline of the tasks for the example (PI denotes Processor I)

0 5 10 20 22 30 35 40 50 55 60 65 70 77 80 90 95 100 110 120

Time

LB

2m

m

0

Po
w

er

2m

m

0

PA

Fig. 6. The tasks that are active at the same time and the associated memory bank power consumption for the different schemes (LB: Load-Balanced PA:
Power-Aware).

obtain solutions that are close to optimal. For tightly-coupled
systems, the authors examine the problem of allocating tasks to
memory banks. Energy is saved by turning off memory banks
that are not needed. This is maximized through a heuristic
which assigns tasks whose execution times overlap to a large
degree, to different memory banks.

Task id Execution Time Period Utilization(%)
T1 12 60 20.0
T2 10 20 50.0
T3 5 30 16.6
T4 15 40 37.5

TABLE III

THE TASK SET FOR THE EXAMPLE

The example below illustrates the contrast between classical
resource-driven task allocation policies and a power-aware
one. The system under consideration is a tightly-coupled
distributed real-time system with two processors and memory
banks. There is a single run-queue. In this setup, the tasks
are run on the first available processor and are assigned to
memory banks, i.e., a single memory bank is selected to hold
the data and text section of a task. If only � bank(s) are
used by the application tasks at a given time, the remaining
� � � bank(s) can then be put into sleep mode to conserve

energy. We are only considering dynamic power, so there is
no power dissipation when a memory bank is in sleep mode.
The delay caused by simultaneous accesses to a memory bank
by two tasks is negligible. There are four periodic tasks and
their execution times, deadlines, and utilizations are shown
in Table III. Suppose that the memory utilization of each
task is linearly dependent on its execution utilization. The
multiprocessor scheduling heuristic is earliest-deadline-first
adapted to the single run queue. In this variant, the chosen
task is allocated to the first available processor. The resulting
execution timeline of the tasks on the processors is shown in
Figure 5. Note that the chart remains the same independent
of the allocation of tasks to memory banks so the resulting
processor related power consumption is the same and is not
the main focus here. However, the power consumption of the
memory banks is dependent on the allocation of the tasks to
memory banks. Two tasks are allocated to each memory bank.
The memory bank related power consumption per time unit is
��, �, 	 if two banks are active at a time instant or if one
bank or none are active, respectively. A classical distributed
allocation scheme would try to balance the load of the memory
bank utilization. This load balancing (LB) scheme may assign
tasks T1 and T2 to bank 1 (bank utilization 70%), T3 and
T4 to bank 2 (bank utilization 54.1%). A power-aware (PA)
scheme, on the other hand, would try to assign harmonically-
related tasks to the same bank. The intuition being that by

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 10

allocating tasks whose periods are multiples of each other, the
tasks would be simultaneously active more frequently over
the execution timeline of the tasks and therefore save power.
Following this scheme we allocate T1 and T3 to bank 1 (with
periods 60 and 30, bank utilization 36.6%), T2 and T4 to
bank 2 (with periods 10 and 40, bank utilization 87.5%). Note
that PA is more load imbalanced than LB. The resulting bank
power consumptions are shown in Figure 6. The total memory
bank power consumption of the LB scheme is 137m, while that
of the PA scheme is 124m; a power savings of 15%.

Soft Real-Time Systems The OS-level research in power-
aware soft real-time systems is gaining in importance. This is
driven by the handheld or pocket computers which are becom-
ing more popular and feature such soft real-time applications
as handwriting recognition, audio and video playback and
Global Positioning System (GPS). Farkas et al. [77] examine
the power profile of a pocket computer and show that it
exhibits a wider range of dynamic power than a notebook
computer. The authors then examine the energy implications
of various Java design options. Since the Java Virtual Machine
(JVM) exists as a middleware layer between the application
and the OS layer, this analysis has OS implications. They
report that using a single JVM (that the users would share) is
25% more energy efficient than using one JVM per applica-
tion. Another key finding is that techniques such as just-in-time
compilation, which aim to minimize overall execution time,
are energy-efficient. Yuan and Nahrstedt [78] also focus on
a middleware approach but they consider applications running
on a laptop instead of a pocket computer. The authors develop
an Advanced Configuration and Power Interface (ACPI) com-
pliant processor/power resource management scheme. They
implement the scheme on a Windows NT platform running on
a laptop. The applications are a math program with periodic
constant processing time, and an MPEG decoder with periodic
variable processing time. Based on a simple energy model,
they claim 39.5% savings.

Batteries: Ma and Shin [79] examine energy-aware quality-
of-service tradeoffs. To this end, the authors develop an
energy aware scheduling algorithm which favors low-energy
and critical tasks. Depending on user needs, the algorithm
is tunable toward extended battery life at the expense of
performance. Their simulation results show that battery life
can be extended by up to about 100% with performance
degradation of about 40%. Benini et al. [80] demonstrate
open and closed-loop dynamic power management strategies
on a digital audio recorder application. They stress the fact
that policies that seek to minimize average power reduction
need not neccessarily result in extended battery lifetime. Their
objective is maximizing the time of operation of battery-
operated portable equipment through utilizing the information
about the battery’s charge state. Flinn and Satyanarayanan
[81] also target battery time and propose a synergestic scheme
based on a tight cooperation between the applications and OS.
The authors study video player, speech recognizer, map viewer
and web browser applications. The results suggest that battery
life could be extended by up to 30%.

Web Servers: The increased popularity of internet applica-
tions places an immense burden on the power costs of web

hosting centers. Bohrer et al. [82] examine energy efficiency in
web servers. The authors establish the motivation by observing
that web server capacity is planned to provide acceptable
service even in hours of peak demand. In other words, the
design is for the worst-case similarly to hard real-time system
design philosophy. Therefore, the web server might not be
operating at its maximum capacity for long periods of time.
Using actual data from the web logs of the 1998 winter
olympics in Nagano, the authors note that while the peak
workload was 1840 hits/second, the average workload was
only 459 hits/second. This data indicates that on the average
the site was operating at about 25% of the peak capacity. By
predicting periods of low activity and employing the use of
voltage and frequency scaling, they report that savings in the
range of 23% to 36% are possible while preserving server
responsiveness.

Jitter: Sometimes system behavior that is deemed to be
harmful to performance can provide new approaches for a
power-aware objective. Consider jitter, which is an undesirable
property for streaming applications. While clearly irritating
for the end-user, a jitter-prone soft real-time system can be
leveraged for power savings. Jitter usually manifests itself in
the form of early or late frame arrival. If a frame arrives early,
then DVS schemes could be used to reclaim the slack for
power savings. On the other hand, if a frame arrives late, then
some relatively unimportant frames can be dropped thereby
saving power in this case as well.

C. Network Level

Traditional real-time research on this level concentrated
on designing communication protocols that provide bounded
response times and therefore increase determinism. Including
power-efficiency as a complementary goal presents an addi-
tional challenge. Qu et al. [83] consider energy minimization
of deadline constrained communication systems. The com-
munication system is modeled as a sequence of store-and-
forward pipeline stages. The authors develop an algorithm to
compute k, where k is the power-optimal number of fragments
for a packet. The approach is then applied to the 4-stage
Myrinet pipeline resulting in 27% to 93% power reduction
depending on the pipeline stage. Gruenwald and Banik [84]
study real-time databases and propose a transaction manage-
ment framework that reduces deadline missing transactions
while balancing the energy consumption by the mobile hosts
in the system. Unsal et al. [85] consider energy-aware data
replication on distributed real-time systems. The authors also
study the energy impact of network topology and broadcasting
in real-time systems and develop a power-aware real-time mul-
ticasting scheme which relies on a Steiner tree heuristic. Lee et
al. [86] conduct a formal modeling for power-aware real-time
systems based on process algebra. The proposed framework
allows the modeling of probabilistic resource failures as well.
The approach is applied to a power-aware ad-hoc network
protocol.

The commercial/research opportunities for power-aware soft
real-time systems have just started being tapped into. The
introduction of the wireless WiFi (IEEE 802.11) standard has

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 11

led to increased activity. The next two papers deal with power-
aware issues for this standard. In the first paper, Qiao et al.
[87] study combining transmit power control and physical
layer rate adaptation for energy-efficient operation of the IEEE
802.11a wireless LAN. Lahiri et al. [88] discuss issues in
the development of a battery-efficient 802.11 Medium Access
Control (MAC) processor. As such it combines issues at the
network and architectural layers. In the design process, the
authors start with a ’raw’ architecture, apply typical MAC
frames to this architecture for current profiling, analyze the
profile to identify regions where the battery is inefficiently
discharged, identify which states of the processor are responsi-
ble for the bottleneck regions and modify the MAC processor
bus protocol to decrease the bottleneck region. The authors
reapply this Hardware/Software codesign refining process until
the desired level of battery efficiency is reached. They examine
energy savings for both streaming applications with QoS
requirements as well as non-real-time applications.

An earlier work by Havinga and Smit [89] also considers
the MAC layer. The authors concentrate on handheld com-
puters and study power-aware network protocols. The MAC
protocol maximizes the standby mode of network interfaces
to reduce energy. In another paper the same authors [90]
explore power-aware buffering strategies and an ATM-like
switching fabric architecture for multimedia applications. They
also discuss architectural issues such as clock gating toward
power efficient operation of the switching fabric. Gomez
et al. [91] concentrate on routing optimizations in wireless
networks to save power. In their adaptive packet forwarding
scheme, the intermediate nodes act as redirecting agents and
perform route optimization which can lead to discovery of
new routes that require less transmission power. The energy-
efficiency of existing popular streaming media products have
been analyzed in [92]. There, the author shows that Microsoft
Media Player exploits network level fragmentation for high
bandwidth streams which leads to wasted energy in a lossy
network. However, since the packet transmission rate in Media
Player is regular, this enables simple history-based client end
policies to use lower power states with quite small data
losses. The analysis of Real and Quicktime products reveals
that transmitting larger data packets at regular intervals could
increase their energy efficiency.

An emerging research area, especially for military applica-
tions, is wireless sensor networks. Sensor networks usually
have low duty cycles, low-bandwidth communication, non-
replaceable batteries and short transmission distances and
they also have dynamic configurability and fault-tolerance
requirements. Taken together, those characteristics call for a
unique power-aware research agenda. Some of these issues
are addressed in an overview paper on low-power wireless
networks [93]. Presenting several key technologies required
for low-power sensor network, the paper is a good introduction
to the topic. Network concerns such as communication (at
the physical, MAC, and network sublayers), routing and data
forwarding are main research foci. We present here a short
synopsis of power-aware network sensor work: Rabaey et
al. [94] develop a model for packet forwarding which also
includes a term for path-loss term. An interesting, somewhat

counter-intuitive, observation that they make is that it might
be more energy efficient to send a bit using several short hops
instead than using one longer hop. Other researchers have
looked into clustering issues: due to the short transmission
distances, it might be necessary to form several clusters of
sensor nodes. Moreover, it might be necessary to dynamically
change the sensor network configuration from time to time.
Therefore, a dynamic clustering approach would be more
suitable for sensor networks. Hienzelman et al. [95] pro-
pose Low-Energy Adaptive Clustering Hierarchy (LEACH),
a dynamic clustering approach. LEACH uses a randomized
rotation of local cluster base stations (responsible for inter-
cluster communication) to evenly distribute the energy load
among the nodes. The routing protocol uses data fusion to
minimize the information sent by the sensor nodes to the base
station, reducing energy consumption. Their simulation reports
reduction by a factor of 8 in energy dissipation compared
to conventional routing protocols. The MAC layer in sensor
networks has different design goals than traditional wireless
MAC’s such as the IEEE 802.11: energy conservation and self-
configuration are more important than per-node fairness and
latency. Ye et al. [96] consider those design goals in developing
an energy-efficient MAC protocol, termed S-MAC. S-MAC
reduces energy consumption by putting nodes to sleep while
they are listening to an idle channel. Neighboring nodes form
clusters to establish sleep schedules. S-MAC also sets the radio
to sleep when other nodes are transmitting. Results indicate
that S-MAC consumes 2-6 times less energy than an IEEE
802.11-like MAC. Tsiatsis et al. [97] study energy-efficient
packet forwarding in wireless sensor networks. Each sensor
node is composed of two blocks: the sensor node CPU and
the radio board. The authors propose to migrate part of the
network layer responsibility from the sensor node CPU to the
radio board. Power is saved since packets are now processed
by the radio board, instead of moving up to the sensor node
CPU.

Maximum power reduction is an important design goal,
especially for thermally-constrained systems. As an exam-
ple we consider the goal of maximum power reduction for
real-time message delivery in a router setting. In power-
unaware routing, shortest path schemes usually provide the
best performance, minimizing the average end-to-end message
delay. However, these schemes create hotspots, which increase
congestion and the maximum power consumed. Alternatively,
by identifying and avoiding hotspots, maximum power can
be decreased. Note that this might mean that the total energy
consumption will increase. For motivational purposes, con-
sider a 7 processor system as shown in Figure 7. Nodes A
and B simultaneously send a message to node E. Assume
that the deadline for the messages to be received at node
E is 20 seconds. Assume further that it takes 5 seconds
for a message to traverse a hop and that the router power
dissipation at a node is 200 milliwatts. As shown in Figure 7a,
the maximum power dissipation in a power-unaware scheme
based on shortest-path routing is 400 milliwatts (at node G)
and the messages are received at node E in 10 seconds. A
power-aware scheme utilizes a different path for the message
from node B to E (see Figure 7b), with E receiving the

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 12

last message in 15 seconds; still less than the deadline.
Moreover, the maximum power dissipation is now reduced to
200 milliwatts, an improvement of 100%. A generalization of
this example would be a topology-aware, slightly randomized
shortest-path routing scheme. This scheme would take more
aggresive randomized routing decisions around the hotspots,
subject to message deadlines being met, trading off maximum
power reduction for message delivery performance.

B

C D

E

F

G
400 miliwatts

A

(a) Non-power-aware routing

B

C D

E

F

G

A
200 miliwatts

(b) Power-aware routing

Fig. 7. Shortest-path versus maximum power reducing power-aware routing.

IV. EPILOGUE

We have presented an overview of system-level power-
aware design methods in real-time systems. Where
appropriate, we included examples and challenges. Our
goal is to ferment further research in this evolving field.
In the same vein, we firmly believe that new paradigms
and modification of current design techniques need to be
developed from the earliest stages of real-time system design,
with power-awareness embedded as an indispensable design
objective. We conclude with several examples that support
this argument.

Example 4.1: On a meta level, reliable real-time system
design requires a well-defined interface between the user,
control engineer and the computer architect. This interface is
specified using performability. An amalgam of performance

and reliability, performability defines several accomplishment
levels, which pertain to the different performance levels
as perceived by the user. Performability of a real-time
system is thus the probability that the design will allow each
accomplishment level to be met. At the high-level design,
power-awareness (in the form of energy budget, maximum
power requirements or any other power-aware measure) could
be embedded as one or more accomplishment levels. This
addition will then provide valuable probabilistic information
as to the real-time system’s ability to meet each power-aware
accomplishment level.

Example 4.2: Here we demonstrate the need for new
research in execution time estimation to support power-
awareness. Traditionally, WCET analysis was sufficient to
satisfy the performance requirements for real-time systems,
there was no need to provide the complete execution time
histogram. Now consider two applications (see Figure 8),
and a DVS scenario; both applications have the same WCET.
However, DVS schemes take advantage of tasks that finish
before their WCET. Therefore, the application in Figure 8b
has more “capacity” for power-savings through DVS than the
one in Figure 8a, since the average execution time of the
task is comparatively lower. An execution time analysis based
on the extraction of WCET would not be able to capture this
potential, compared to one which analyzes the distribution of
execution times.

Example 4.3: Load balancing is an important research area
in the domain of distributed real-time systems. More suitable
to distributed shared-memory-based systems, traditional
load balancing attempts to minimize the task response time
by dynamically reallocating tasks to processors subject to
deadline feasibility constraints. However, this approach might
not decrease the total energy consumption. Consider two
tasks, with similar WCET. The rate of energy consumption of
one task could be significantly higher than the other due to a
higher circuit activity factor such as more frequent memory
accesses. Therefore, one needs to consider the activity factor
of tasks. An “energy balancing” scheme would then utilize
this information to minimize the total energy consumption,
subject to deadline constraints.

System-level power-aware research for real-time systems
is a new and vibrant research area. Many current approaches
make use of dynamic voltage scaling (DVS) heuristics and
slack reclamation for power and energy savings. We believe
that the scaling down of supply voltages and the fundamental
limits on threshold voltage reduction will limit the gain
from DVS in the future. More diversity in novel power-
aware real-time design techniques, especially in the domain
of fault-tolerance will be needed. Static power reduction
by predictively turning off inactive blocks and functional
units will also become more important, with the additional
requirement of preserving timing constraints in real-time
applications. Finally, thermal limitations will give rise to new
hotspot prediction and maximum power reduction techniques
for real-time systems.

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 13

Input SetsInput Sets

E
xe

cu
tio

n
T

im
e

WCET WCET

(a) (b)

Fig. 8. Two applications with same WCET but with different suitability for DVS schemes.

ACKNOWLEDGMENT

The authors would like to thank Prof. C.M. Krishna for his
many comments and suggestions which greatly improved this
paper.

REFERENCES

[1] D. Singh, V. Tiwari, “Power Challenges in the Internet World”, Cool
Chips Tutorial, In conjunction with the 32nd International Symposium
on Microarchitecture, MICRO-32, Nov. 1999, pp. 8-15.

[2] G. Johnson, “At Los Alamos, Two Visions of Supercomputing”, The
New York Times, June 25, 2002.

[3] http://www.handyscripts.co.uk/trubador egg.htm
[4] T. Martin, D. Siewiorek, “A Power Metric for Mobile Systems”,

International Symposium on Low Power Electronics and Design,
ISLPED’96, Aug. 1996, pp. 37-42.

[5] A. Wolfe, “Issues for Low-Power CAD Tools: A System Level Design
Study”, Journal of Design Automation for Embedded Systems, 1, 4, pp.
315-332, 1996.

[6] M. Pedram, Q. Wu, “Design Considerations for Battery-Powered
Electronics”, 36th Design Automation Conference, DAC99, June 1999,
pp. 861-866.

[7] K. Lahiri, A. Raghunathan, S. Dey, D. Panigrahi “Battery-Driven Sys-
tem Design: A New Frontier in Low Power Design”, Asia South Pacific
Design Automation Conference (ASP-DAC) / International Conference
on VLSI Design, Jan. 2002, pp. 261-267.

[8] P. J. M. Havinga, G. J. M. Smit, “Energy-efficient Wireless Networking
for Multimedia Applications”, Wireless Communications and Mobile
Computing, Wiley, 1, pp. 165-184, 2001.

[9] M. Pedram, “Power Optimization and Management in Embedded
Systems”, Proceedings of the Conference on Asia South Pacific Design
Automation Conference, Jan. 2001, pp. 239-244.

[10] C. M. Krishna, K. Shin, Real-Time Systems, McGraw-Hill, 1997.
[11] J. A. Stankovic, K. Ramamritham (Eds.), Tutorial: Hard Real-Time

Systems, IEEE Press, 1988.
[12] H. Kopetz, Real-Time Systems Design Principles for Distributed Em-

bedded Applications, Kluwer Academic Publishers, Apr. 1997.
[13] C. Lee, J. K. Lee, T. Hwang, “Compiler Optimization on Instruction

Scheduling for Low-Power”, Proceedings of The 13th International
Symposium on System Synthesis, Sep. 2000, pp. 55-60.

[14] I. Hong, M. M. Potkonjak, “Power Optimization Using Divide-and-
Conquer Techniques for Minimization of the Number of Opera-
tions”, IEEE/ACM International Conference on Computer-Aided De-
sign, ICCAD-97, 1997, pp. 108-113.

[15] W. Fornaciari, M. Polentarutti, D. Sciuto, C. Silvano, “Power Optimiza-
tion of System-level Address Buses Based on Software Profiling”, Pro-
ceedings of the Eighth International Workshop on Hardware/Software
Codesign, 2000, pp. 29-33.

[16] “Design: 2001 Edition”, Report of the International Technology
Roadmap for Semiconductors, 2001.

[17] Y.-K. Cheng, C.-H. Tsai, C.-C. Teng, S. Kang, Electrothermal Analysis
of VLSI Systems, Kluwer Academic Publishers, 2000.

[18] A. Chandrakasan, R. Brodersen, Low Power Digital CMOS Design,
Kluwer Academic Publishers, July 1995.

[19] F.N. Najm, “A Survey of Power Estimation Techniques in VLSI
Circuits”, IEEE Transactions on VLSI Systems, vol 2, no. 4, pp. 446-
455, Dec. 1994.

[20] S. Devadas, S. Malik, “A Survey of Optimization Techniques Targeting
Low Power VLSI Circuits”, 32nd Design Automation Conference
DAC95, 1995, pp. 242-247.

[21] M. Pedram, “Power Minimization in IC Design: Principles and Ap-
plications”, ACM Transactions on Design Automation of Electronic
Systems, vol 1, no 1, Jan. 1996, pp. 3-56.

[22] D. M. Chapiro, “Globally Asynchronous Locally Synchronous Sys-
tems”, Ph.D. Thesis, Stanford University, 1984.

[23] K. Wilcox, S. Manne, “Alpha Processors: A History of Power Issues
and A Look to the Future”, CoolChips Tutorial, An Industrial Per-
spective on Low Power Processor Design, in Conjunction with 32nd
International Symposium on Microarchitecture, MICRO-32, pp. 16-37,
1999.

[24] F. Pollack, “New Microarchitecture Challenges in the Coming Gener-
ations of CMOS Process Technologies”, Keynote Talk, 32nd Interna-
tional Symposium on Microarchitecture, MICRO-32, p. 2, Nov. 1999.

[25] L.Benini, G.De Micheli, “System-Level Power Optimization Tech-
niques and Tools”, ACM Transactions on Design Automation for
Embedded Systems (TODAES), Vol.5, No.2, pp. 115-192, Apr. 2000.

[26] E. Macii, M. Pedram, F. Somenzi, “High-Level Power Modeling,
Estimation and Optimization”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol 17, no 11, pp. 1061-
1079, Nov. 1998.

[27] R. Graybill, R. Melhem (Eds.), Power Aware Computing, Kluwer
Academic/Plenum Publishers, ISBN 0-306-46786-0, May 2002.

[28] K. Roy, M.C. Johnson “Software Design for Low Power”,
NATO Advanced Study Institute on Low Power Design
in Deep Submicron Electronics, Aug. 1996 (available at
http://www.ece.purdue.edu/˜ vlsi/papers/mark/lpsw chap.ps).

[29] J. Lorch, A. J. Smith, “Software Strategies for Portable Computer En-
ergy Management”, IEEE Personal Communications Magazine, 5(3),
pp. 60-73, June 1998.

[30] G. Welch, “A Survey of Power Management Techniques in Mo-
bile Computing Operating Systems”, ACM Operating Systems Review
(SIGOPS-OSR), Vol:29 No:4, pp.47-56, 1995.

[31] C. E. Jones, K. M. Sivalingam, P. Agrawal, J. C. Chen, “A Survey of
Energy Efficient Network Protocols for Wireless Networks,” Wireless
Networks, vol 7, no 4, pp. 343-358, July 2001.

[32] N. Zhang, A. Burns, M. Nicholson, “Pipelined Processors and Worst-
Case Execution Times”, Journal of Real-Time Systems, Vol. 5, pp. 319-
343, 1993.

[33] S.-T. Cheng, C.-M. Chen, J.-W. Hwang, “Low-Power Design for Real-
Time Systems”, Real-Time Systems, Vol. 15, pp. 131-148, Kluwer
Academic Publishers, 1998.

[34] K. Danckaert, F. Catthoor, H. De Man, “System Level Memory
Optimization for Hardware-Software Co-Design”, Proceedings of
the 5th International Workshop on Hardware/Software Co-Design,
CODES/CASHE’97, 1997, pp. 55-64.

[35] L. Benini, A. Macii, E. Macii, M. Poncino, “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems”,
International Symposium on Low-Power Electronics and Design,
ISLPED’99, Aug. 1999, pp. 206-211.

[36] L. H. Lee, B. Moyer, J. Arends “Instruction Fetch Energy Reduction

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 14

Using Loop Caches for Embedded Applications with Small Tight
Loops”, International Symposium on Low-Power Electronics and De-
sign, ISLPED’99, Aug. 1999, pp. 267-269.

[37] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-Power I/O”,
IEEE Transactions on VLSI, pp. 49-58, Mar. 1995.

[38] M. Mamidipaka, D. Hirschberg, N. Dutt, “Low Power Address Encod-
ing Using Self-Organizing Lists,” International Symposium on Low-
Power Electronics and Design, ISLPED’01, 2001, pp. 188-193.

[39] Y. Li, W. Wolf, J. Henkel, “Task-level Memory Hierarchy
Synthesis for Low Power in Real-Time Systems”, Proceedings
of the 6th International Workshop on Hardware/Software
Co-Design Codes/CASHE’98, Mar. 1998 (available at
http://www.ee.princeton.edu/˜ yanbing/ftp/codes98.ps).

[40] C. L. Liu, J. WW. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real Time Environment”, Journal of the ACM, Vol.
20, No. 1, pp. 46-61, 1973.

[41] F. Yao, A. Demers, S. Shenker, “A Scheduling Model for Reduced CPU
Energy”, IEEE Annual Foundations of Computer Science, pp. 374-382,
1995.

[42] D. Kirovski, M. Potkonjak, “System-Level Synthesis of Low-Power
Hard Real-Time Systems”, Design Automation Conference, DAC’97,
1997, pp. 697-702.

[43] S. Lee, T. Sakurai, “Run-Time Voltage Hopping for Low-Power
Real-Time Systems,” 37th ACM/IEEE Design Automation Conference,
DAC’00, June 2000, pp. 806-809.

[44] D.-I. Kang, S. Crago, J. Suh, “Power-Aware Design Synthesis Tech-
niques for Distributed Real-Time Systems,” ACM Conference on Lan-
guages, Compilers, and Tools for Embedded Systems LCTES’01, 2001,
pp. 20-28.

[45] C. M. Krishna, Y-H. Lee, “Voltage-Clock-Scaling Adaptive Scheduling
Techniques for Low Power in Hard Real-Time Systems,” Sixth IEEE
Real Time Technology and Applications Symposium, RTAS’00, June
2000, pp. 156-165.

[46] J. Luo, N. K. Jha, “Power-Conscious Joint Scheduling of Periodic
Task Graphs and Aperiodic Tasks in Distributed Real-Time Embedded
Systems”, International Conference on Computer-Aided Design, Nov.
2000, pp. 357-364.

[47] D. Kirovski, P. Miodrag, “System-Level Synthesis of Low-Power Hard
Real-Time Systems”, Computer Science Department Report, University
of California, Los Angeles, 1996.

[48] N. AbouGhazaleh, D. Moss, B. Childers, R. Melhem, “Toward The
Placement of Power Management Points in Real Time Applications”,
Workshop on Compilers and Operating Systems for Low Power,
COLP’01, pp. 3.1-3.7, 2001.

[49] I. Hong, G. Qu, M. Potkonjak, M. B. Srivastava, “Synthesis Techniques
for Low-Power Hard Real-Time Systems on Variable Voltage Proces-
sors”, 19th IEEE Real-Time Systems Symposium, RTSS’98, 1998, pp.
178-187.

[50] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for Dynamically
Variable Voltage Processors”, International Symposium on Low Power
Electronics and Design, ISLPED’98, 1998, pp. 197-202.

[51] Y. Shin, K. Choi, “Power Conscious Fixed Priority Scheduling for Hard
Real-Time Systems”, 36th ACM/IEEE Design Automation Conference,
DAC’99, 1999, pp. 134-139.

[52] A. Manzak, C. Chakrabarti, “Variable Voltage Task Scheduling for
Minimizing Energy or Minimizing Power”, IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, (ICASSP’00), 2000,
pp. 3239-3242.

[53] A. Manzak, C. Chakrabarti, “Variable Voltage Task Scheduling Al-
gorithms for Minimizing Energy”, International Symposium on Low
Power Electronics and Design, ISLPED’01, 2001, pp. 279-282.

[54] J. Luo, N. K. Jha, “Battery-Aware Static Scheduling for Distributed
Real-Time Embedded Systems”, 38th ACM/IEEE Design Automation
Conference, DAC’01, 2001, pp. 444-449.

[55] J. Liu, P. H. Chou, N. Bagherzadeh, F. Kurdahi, “Power-Aware
Scheduling under Timing Constraints for Mission-Critical Embedded
Systems”, 38th ACM/IEEE Design Automation Conference, DAC’01,
2001, pp. 840-845.

[56] S.R. Park, W. Burleson, “Reconfiguration for Power Saving in Real-
Time Motion-Estimation,” IEEE International Conference on Acous-
tics, Speech, and Signal Processing, (ICASSP’98), May 1998 (available
at http://vsp2.ecs.umass.edu/vspg/publication/icassp98.ps.gz).

[57] J. Liu, P. H. Chou, N. Bagherzadeh, “Power-Aware Task Mo-
tion for Enhancing Dynamic Range of Embedded Systems with
Renewable Energy Sources”, Workshop on Power-Aware Computer
Systems (PACS’02), In conjunction with 8th Symposium on High-

Performance Computer Architecture HPCA-8, 2002 (available at
http://www.ece.uci.edu/˜ jinfeng/research/publication/pacs02.pdf).

[58] C. J. Hughes, J. Srinivasan, S. V. Adve, “Saving Energy with Archi-
tectural and Frequency Adaptations for Multimedia Applications”, 34th
International Symposium on Microarchitecture MICRO’01, Dec. 2001,
pp. 250-261.

[59] T. Martin, D. Siewiorek, “The Impact of Battery Capacity and Mem-
ory Bandwidth on CPU Speed-Setting: A Case Study”, International
Symposium on Low Power Electronics and Design, ISLPED’99, Aug.
1999, pp. 200-205.

[60] T. Martin, D. Siewiorek, “Non-Ideal Battery Behavior and Its Impact
on Power Performance Trade-offs in Wearable Computing”, 1999
International Symposium on Wearable Computers, Oct. 1999, pp. 101-
106.

[61] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
A. Nicolau, “Profile-based Dynamic Voltage Scheduling using Program
Checkpoints in the COPPER Framework”, Design Automation and Test
in Europe, DATE’02, Mar. 2002, pp. 168-176.

[62] R. Levy, B. Crilly, B. Narahari, R. Simha, “Memory Issues
in Power-aware Design of Embedded Systems: An Overview”,
Second International Workshop on Compiler and Architecture
Support for Embedded Systems, CASES’99, 1999 (available at
http://delta.cs.cinvestav.mx/˜ pmejia/power/paper36.ps).

[63] T. Simunic, L. Benini, G. De Micheli, “Energy-efficient Design of
Battery-Powered Embedded Systems”, International Symposium on
Low Power Electronics and Design ISLPED’99, 1999, pp. 212-217.

[64] P. Grun, N. Dutt, A. Nicolau “Access Pattern Based Local Memory
Customization for Low Power Embedded Systems”, Design Automa-
tion and Test in Europe, DATE’01, 2001, pp. 778-785.

[65] W.-T. Shiue, C. Chakrabarti, “Memory Exploration for Low Power
Embedded Systems”, IEEE International Symposium on Circuit and
Systems, May 1999, pp. 250-253.

[66] C. Kulkarni, D. Moolenaar, L. Nachtergaele, F. Catthoor, H. De Man,
“System-Level Energy-Delay Exploration for Multimedia Applications
on Embedded Cores with Hardware Caches”, Journal of VLSI Signal
Processing, Special Issue on SIPS’97, Workshop on Signal Processing
Systems, No.19, Kluwer, Boston, pp.45-58, 1999.

[67] C. Kulkarni, F. Catthoor, H. De Man, “Code Transformations for Low
Power Caching in Embedded Multimedia Processors”, International
Parallel and Distributed Processing Symposium (IPPS/SPDP 98), Apr.
1998, pp.292-297.

[68] D. Soudris, N. D. Zervas, A. Argyriou, M. Dasygenis, K. Tatas, C.
Goutis, A. Thanailakis, “Data-Reuse and Parallel Embedded Archi-
tectures for Low-Power, Real-Time Multimedia Applications”, IEEE
International Workshop on Power and Timing Modeling, Optimization
and Simulation, PATMOS’00, Sep. 2000, pp. 243- 254.

[69] O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, C. A. Moritz,
“Cool-Cache for Hot Multimedia”, 34th International Symposium on
Microarchitecture MICRO34, Dec. 2001, pp. 274-283.

[70] O. S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz, “The Minimax
Cache: An Energy-Efficient Framework for Media Processors”, 8th
International Symposium on High-Performance Computer Architecture,
HPCA’02, Feb. 2002, pp. 131-140.

[71] P. Pillai, K. G. Shin, “Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems”, 18th ACM Symposium on
Operating System Principles, SOSP’01, Oct. 2001, pp. 89-102.

[72] V. Swaminathan, K. Chakrabarty, S.S. Iyengar, “Dynamic I/O Power
Management for Hard Real-Time Systems”, International Symposium
on Hardware/Software Co-Design CODES’01, 2001, pp. 237-242.

[73] R. P. Dick, G. Lakshminarayana, A. Raghunathan, N. K. Jha, “Power
Analysis of Embedded Operating Systems”, 37th ACM/IEEE Design
Automation Conference, DAC’00, 2000, pp. 806-809.

[74] K. Baynes, C. Collins, E. Fiterman, C. Smit, T. Zhang, B. Jacob,
“The Performance and Energy Consumption of Embedded Real-Time
Operating Systems”, University of Maryland at College Park, Technical
Report UMD-SCA-TR-2000-04, Nov. 2000.

[75] A. Acquaviva, L. Benini, B. Ricco, “Energy Characterization of Em-
bedded Real-Time Operating Systems”, Workshop on Compilers and
Operating Systems for Low Power, COLP’01, pp. 13-18, Sep. 2001
(available at http://research.ac.upc.es/pact01/colp/paper05.pdf).

[76] O. S. Unsal, I. Koren, C. M. Krishna, “High-Level
Power-Reduction Heuristics in Large Scale Real-Time
Systems”, IEEE International Workshop On Embed-
ded Fault-Tolerant Systems, Sep. 2000 (available at
http://www.ecs.umass.edu/ece/realtime/publications/efts2000 umass.ps).

[77] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, J. M. Anderson,
“Quantifying the Energy Consumption of a Pocket Computer and a

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003 15

Java Virtual Machine”, International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2000), June 2000, pp.
252-263.

[78] W. Yuan, K. Nahrsted, “A Middleware Framework Coordinating Pro-
cessor/Power Resource Management for Multimedia Applications”,
IEEE Symposium on Future Satellite Communications for Global IP
and ATM Networking, Globecom 2001, Nov. 2001, pp. 1984-1988.

[79] T. Ma, K. G. Shin, “A User-Customizable Energy-
Adaptive Combined Static/Dynamic Scheduler for Mobile
Applications”, Proceedings of IEEE Real-Time Systems
Symposium, RTSS’00, pp. 227-238, Nov. 2000 (available at
http://kabru.eecs.umich.edu/papers/publications/2000/ma rtss00.pdf).

[80] L. Benini, G. Castelli, A. Macii, R. Scarsi, “Battery-Driven Dynamic
Power Management”, IEEE Design and Test of Computers, Mar./Apr.
2001, pp. 53-60.

[81] J. Flinn, M. Satyanarayanan, “Energy-Aware Adaptation for Mobile
Applications”, 17th ACM Symposium on Operating System Principles,
SOSP’99, Dec. 1999, pp. 48-63.

[82] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, R.
Rajamony, “The Case for Power Management in Web Servers”, Power-
Aware Computing, Kluwer/Plenum series in Computer Science, Ch. 14,
Jan. 2002.

[83] G. Qu, D. Kirovski, M. Potkonjak, M. B. Srivastava, “Energy Mini-
mization of System Pipelines Using Multiple Voltages”, IEEE Inter-
national Symposium on Circuits and Systems VLSI, Vol.1, pp.362-365,
1999.

[84] L. Gruenwald, S. Banik, “A Power-Aware Technique to Manage Real-
Time Database Transactions in Mobile Ad-Hoc Networks”, 4th Inter-
national Workshop on Mobility in Database and Distributed Systems,
pp. 570-574, Sep. 2001.

[85] O. S. Unsal, I. Koren, C. M. Krishna, “Power-Aware Replication
of Data Structures in Distributed Embedded Real-Time Systems”,
EHPC2000, 14th Annual International Parallel and Distributed Sys-
tems Symposium, May 2000, pp. 839-846

[86] I. Lee, A. Philippou, O. Sokolsky, “Formal Modeling and Analy-
sis of Power-Aware Real-Time Systems”, IEEE/IEE Workshop on
Real-Time Embedded Systems, RTES’01, Dec. 2001 (available at
http://www.brics.dk/˜ alcomft/TR/ALCOMFT-TR-02-137.ps.gz).

[87] D. Qiao, S. Choi, A. Soomro, K. G. Shin, “Energy-Efficient PCF Oper-
ation of IEEE 802.11a Wireless LAN”, IEEE Conference on Computer
Communications INFOCOM’02, pp. 580-589, June 2002 (available at
http://kabru.eecs.umich.edu/papers/publications/2002/qiao infocom02.pdf).

[88] K. Lahiri, A.Raghunathan, S.Dey, “Battery Efficient Architecture for
an 802.11 MAC Processor”, International Conference on Communica-
tions, ICC’02, pp. 669-674, May 2002.

[89] P. J. M. Havinga, G. J. M. Smit, “Minimizing energy consumption for
handheld computers in Moby Dick”, 23rd Euromicro Conference, Sep.
1997, pp. 196-201.

[90] P. J. M. Havinga, G. J. M. Smit, “Octopus: embracing the energy
efficiency of handheld multimedia computers”, ACM/IEEE 5th Annual
International Conference on Mobile Computing and Networking, Mo-
bicom99, Aug. 1999, pp. 77-87.

[91] J. Gomez, A. T. Campbell, M. Naghshineh, C. Bisdikian, “Conserving
Transmission Power in Wireless Ad Hoc Networks”, 9th International
Conference on Network Protocols, ICNP’01, pp. 11-14, Nov. 2001.

[92] S. Chandra, “Wireless Network Interface Energy Consumption Impli-
cations of Popular Streaming Formats”, Multimedia Computing and
Networking 2002, MMCN’02, pp. 85-99, Jan. 2002.

[93] R. Min, M. Bhardwaj, S.-H. Cho, A. Sinha, E. Shih, A. Wang, A.
Chandrakasan, “Low-Power Wireless Sensor Networks”, Fourteenth
International Conference on VLSI Design, Jan. 2001, pp. 205-210.

[94] J. Rabaey, J. Ammer, J. L. da Silva Jr., D. Patel, “PicoRa-
dio: Ad-Hoc Wireless Networking of Ubiquitous Low-Energy Sen-
sor/Monitor Nodes”, IEEE Computer Society Annual Workshop on
VLSI (WVLSI’00), Apr., 2000, pp. 9-12.

[95] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, “Energy-Efficient
Communication Protocol for Wireless Microsensor Networks,” Pro-
ceedings of the 33rd Hawaii International Conference on System
Sciences (HICSS ’00), Jan. 2000, pp. 3005-3014.

[96] W. Ye, J. Heidemann, D. Estrin, “An Energy-Efficient MAC protocol
for Wireless Sensor Networks”, Proceedings of 21st Annual Joint
Conference of the IEEE Computer and Communications Societies,
(INFOCOM 2002), June, 2002, pp. 1567-1576.

[97] V. Tsiatsis, S. Zimbeck, M. Srivastava, “Architecture Strategies for
Energy Efficient Packet Forwarding in Wireless Sensor Networks”,
International Symposium on Low Power Electronics and Design,
ISLPED’01, 2001, pp. 92-95.

Osman S. Unsal received the B.S. degree in
Computer and Control Engineering from Istanbul
Technical University in Turkey, the M.S.E.E. from
Brown University, Providence, RI and the Ph.D. in
Electrical and Computer Engineering from Univer-
sity of Massachusetts, Amherst, MA in 1987, 1991
and 2003 respectively. Currently, he is with Intel
Barcelona Research Center.

His research focus is in power-aware systems,
computer architecture, compilers and real-time com-
puting.

Israel Koren (S’72 - M’76 - SM’87 - F’91) re-
ceived the B.Sc., M.Sc. and D.Sc. degrees from the
Technion - Israel Institute of Technology, Haifa, in
1967, 1970, and 1975, respectively, all in Electrical
Engineering. He is currently a Professor of Electri-
cal and Computer Engineering at the University of
Massachusetts, Amherst. Previously he was with the
Technion - Israel Institute of Technology. He also
held visiting positions with the University of Cali-
fornia at Berkeley, University of Southern California,
Los Angeles and University of California, Santa

Barbara. He has been a consultant to several companies including IBM, Intel,
Analog Devices, AMD, Digital Equipment Corp., National Semiconductor
and Tolerant Systems.

Dr. Koren’s current research interests include Techniques for Yield and
Reliability Enhancement, Fault-Tolerant Architectures, Real-time systems and
Computer Arithmetic. He published extensively in several IEEE Transactions
and has over 170 publications in refereed journals and conferences. He
currently serves on the Editorial Board of the IEEE Transactions on VLSI
Systems. He was a Co-Guest Editor for the IEEE Transactions on Computers,
special issue on High Yield VLSI Systems, April 1989 and the special issue
on Computer Arithmetic, July 2000, and served on the Editorial Board of
these Transactions between 1992 and 1997. He also served as General Chair,
Program Chair and Program Committee member for numerous conferences.
He has edited and co-authored the book, Defect and Fault-Tolerance in VLSI
Systems, Vol. 1, Plenum, 1989. He is the author of the textbook Computer
Arithmetic Algorithms, A.K. Peters, Ltd., 2002.

