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Abstract

We claim that the unique characteristics of multimedia
applications dictate media-sensitive architectural and com-
piler approaches to reduce the power consumption of the
data cache. Our motivation is exploring energy savings
for real-time multimedia workloads without sacrificing per-
formance. Here, we present two complementary media-
sensitive energy-saving techniques that leverage static in-
formation. While our first technique is applicable to exist-
ing architectures, in our second technique we adopt a more
radical approach and propose a new caching architecture
by re-evaluating the architecture-compiler interface.

Our experiments show that substantial energy savings
are possible in the data cache. Across a wide range of
cache and architectural configurations we obtain up to 77%
energy savings, while the performance varies from 14% im-
provement to 4% degradation depending on the application.

1. Introduction

The recently introduced low-power media/embedded
processors share a common trait; the caches consume a
significant portion of the power consumed: 42% and 23%
of the total processor power in StrongARM 110 [20] and
Power PC [4], respectively. Therefore, if we save on the
cache energy consumption, the overall energy consumption
will also be considerably reduced.

In an earlier paper about the FlexCache project [23],
we described our vision of a multipartitioned cache where
memory accesses are separated based on their static pre-
dictability and memory footprint, and managed with various
compiler controlled techniques supported by instruction set
architecture extensions, or with traditional hardware con-
trol. Here we apply our vision to data cache energy savings.
To implement this goal, we blur the boundary between the
architecture and compiler layers. This is in line with our
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philosophy that power and energy savings are inter-layer is-
sues and that they should be addressed together all the way
up from the architectural to the network layer [28, 29].
In particular, our contributions are:

� A compiler-controlled data remapping scheme direct-
ing scalar accesses to a small scratchpad SRAM area.
Our scheme can be utilized in existing media proces-
sors and results in up to 38.2% average energy savings
without sacrificing performance.

� Hotlines, a media-sensitive software-directed caching
framework that eliminates cache tags. Hotlines is up
to 50% more energy efficient than a regular cache.

We adopt an incremental approach. In the first phase, we
employ data partitioning for scalars. This approach requires
no or minimal modifications to current architectures and
compilers. In our previous work [27], we examined the
memory footprint of scalars in multimedia applications and
found them to be extremely small. However, we also es-
tablished that a significant percentage of memory accesses
in those applications are scalar accesses. This duality moti-
vated us to direct the scalar accesses to a small scratchpad
SRAM area. Although accessed very frequently, this small
SRAM is more energy efficient than when scalar data are
mapped into the large L1 cache.

In the second phase, we aim for greater energy sav-
ings through graceful but powerful architectural/compiler
paradigm redefinitions. We design and introduce a
compiler-controlled tagless caching framework, hotlines,
which achieves significant energy savings. Our hotlines
framework saves energy without substantial performance
loss, in some cases even beating traditional hardware-based
cache performance.

This paper is organized as follows. In Section 2 we ana-
lyze related work and reiterate our motivation. In Section 3
we present the architectural framework for our incremental
techniques. We address compiler issues in Section 4. Sec-
tion 5 explains our experimental setup. We divide our re-
sults section into two: in Section 6.1 we analyze the energy
efficiency of our scratchpad technique in isolation. We then



embed this technique in our proposed Cool-Cache frame-
work together with our hotlines approach and study the per-
formance and energy savings of the complete Cool-Cache
framework in Section 6.2. We conclude in Section 7.

2. Previous Work

Previous cache partitioning research focused more on
performance issues rather than energy. Providing archi-
tectural support to improve memory behavior include split
caches which were discussed in [21]. Albonesi [2] proposed
selective cache ways, a vertical cache partitioning scheme.
Benini et al. [3] discuss an optimal SRAM partitioning
scheme for an embedded system-on-a-chip. Panda et al.
[24] propose use of a scratchpad memory in embedded pro-
cessor applications. Kin et al. [13] study a small L0 cache
that saves energy while reducing performance by 21%. Lee
and Tyson [17] use the mediabench benchmarks and have
a coarse-granularity partitioning scheme: they opt for di-
viding the cache along OS regions for energy reduction.
Chiou et al. [9] employ a software-controlled cache and
use a cache way based partitioning scheme. A recent paper
by Huang et al. [12] also uses a way-prediction scheme;
their cache partitioning includes a specialized stack cache
and compiler implementation concerns are addressed.

Combined compiler/architectural efforts toward increas-
ing cache locality [19] have exclusively focused on ar-
rays. A recent memory behavior study for multimedia ap-
plications has also primarily targeted array structures [15].
Another recent paper by Delazuz et al. [11] discusses
energy-directed compiler optimizations for array data struc-
tures on partitioned memory architectures; they use the
SUIF compiler framework for their analysis. One previ-
ous work that also targeted multimedia systems [25], has
considered dynamically dividing caches into multiple parti-
tions, using the Mediabench benchmark in the performance
analysis, with comments on compiler controlled memory.
Cooper and Harvey [10] look at compiler-controlled mem-
ory. Their analysis includes spill memory requirements for
some Spec ’89 and Spec ’95 applications. In this confer-
ence, Witchel et al. [31] propose a direct addressed cache
which eliminates some cache tag accesses and thereby saves
energy. In their study of instruction fetch prediction, Calder
et al. [7] introduce a tagless memory buffer for next cache
line and set prediction. Abraham and Mahlke [1] evaluate
memory hierarchies for embedded systems from a perfor-
mance point of view.

Our previous work [22, 23, 27, 28, 29] and the above
research provide the framework and the motivation for this
study. Our unique contribution is the design of an energy
efficient compiler-controlled dynamically-configurable tag-
less caching framework. This work pushes caching further
up to the compiler layer.

3. Architectural Framework

3.1. Scalar Data Remapping

Our first energy-saving technique can be used in exist-
ing architectures: remap every scalar memory access into
a scratchpad memory area. No architectural modifications
are necessary since many media/embedded processors have
a scratchpad. For example, any entry in the cache in Fujitsu
Sparclite can be locked, in effect making the entry an ele-
ment in the SRAM buffer. Part of the cache can be reorga-
nized as an SRAM scratchpad area in the Samsung ARM7
and Hitachi SH2. The recently introduced Intel StrongARM
SA-1110 [14] has a 512 byte minicache for frequently used
data. In our previous study of the Mediabench benchmarks
[27], we found that a slightly larger scratchpad SRAM size
of 1024 bytes is enough to map all the scalars. A scratchpad
SRAM guarantees single-cycle access time to scalars since
there are no cache misses. Thus, we guarantee at least the
same level of performance from our scheme as compared to
a regular non-partitioned architecture. In fact, since we de-
crease the cache interference, we get better data cache per-
formance by separating scalar accesses from array accesses
[27]. If the embedded/multimedia processor is not equipped
with any kind of scratchpad mechanism, then the ISA can be
augmented with special load/store instructions which would
channel the scalar data to a separate cache area. The imple-
mentation is simple: encode a single additional bit in the
instruction, thus “marking” the load/store to be diverted.
This is similar to the approach taken by Calder et al. [8]
for marking branch instructions.

3.2. Cool-Cache Architecture

Our caching architecture is completely compiler-
managed and is therefore able to leverage static information
that is lost in traditional hardware caches.

A Cool-Cache architecture combines four cache control
techniques: (1) fully static, (2) statically speculative, (3)
hardware supported dynamic, and (4) software supported
dynamic.

The fully static cache management is based on disam-
biguation between the scalar and non-scalar accesses. As
described in [27], although the scalars typically have a
very small footprint, they are frequently accessed, and have
considerable interference with non-scalar accesses. The
Cool-Cache architecture, by statically diverting the scalar
and non-scalar accesses to the scratchpad memory and the
SRAM, respectively, not only eliminates this interference
but also saves power by only accessing a small scratch-
pad memory instead of a much larger data-array. Although
our current implementation is based on statically mapping
scalars, a generalization of this idea is to map frequently ac-



cessed memory references that have a small footprint into
the scratchpad area.

The second technique in the Cool-Cache architecture is
based on a compile-time speculative approach to eliminate
tag-lookup for non-scalar memory accesses. In addition,
some of the cache logic found in associative caches can also
be eliminated. The idea is that if a large percentage of cache
accesses can be predicted statically, then we can eliminate
the tag-array and the cache logic found in associative caches
and thus reduce power consumption.

The scalars are directly mapped to the scratchpad mem-
ory; no additional runtime overhead is required. The non-
scalars however, if managed explicitly in the compiler, re-
quire virtual-to-SRAM address mappings or translations at
runtime. This mapping is basically a translation of virtual
cache line addresses into SRAM lines, based on the line
sizes assumed in the compiler. Note that the partitioning of
the SRAM into lines is only logical: the SRAM is mainly
accessed at the word level, except for during fills associ-
ated with cache misses. This translation can be done by
inserting a sequence of compiler generated instructions, at
the expense of added software overhead. But as discussed
in [22], for many applications, there is a lot of reuse of
these address mappings. Our findings for multimedia appli-
cations also confirm this. The compiler can speculatively
register-promote the most recent translations into a small
new register area - we call it the hotline register file. With
special memory instructions, similar to those proposed in
the FlexCache architecture [23], the runtime overhead of
speculation checking can be completely eliminated.

The third technique helps to avoid paying the high
penalty of a software-based recovery mechanism, (i.e., dur-
ing a statically miss-predicted access) we use a small 16-
entry fully associative cache TLB to cache address map-
pings for memory accesses that are miss-predicted. We
found that a 16-entrycache TLB is enough to catch most of
the address translations that are not correctly predicted stat-
ically. This approach, is similar to caching frequently used
page table entries in the TLB, to minimize address transla-
tion overhead in virtual memory systems.

The fourth technique used in Cool-Cache, is basically a
fully reconfigurable software cache. This technique is more
of a backup solution, and it can implement a highly associa-
tive mapping. Our implementation is based on a four-way
associative cache with random replacement. The mapping
table between virtual cache lines and physical SRAM lines
is implemented similarly to an inverted page table. Our re-
sults show that the combined static and cache TLB tech-
niques capture more than 99% of the memory accesses for
most of the multimedia applications.

Figure 1 gives an overview of the Cool-Cache architec-
ture. All the memory accesses are diverted by the compiler
to either the scratchpad or the hotline architecture. The

scratchpad access mechanism consumes very little power
due to its small size (we assume a 1Kbyte structure in our
experiments) compared to the regular SRAM data array.
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Figure 1. The Cool-Cache Architecture

The non-scalar memory instructions carry a hotline in-
dex. This identifies the hotline register, predicted by the
compiler to contain the address translation for the current
memory access. Using this index, the corresponding hot-
line register is read from the hotline register file.

The hotline register contains the virtual cache line ad-
dress to SRAM line address mapping. If the memory ref-
erence has the same virtual address as that contained in
the hotline register, we have a correct static prediction.
Upon a correct static prediction, the SRAM can be accessed
through the SRAM address contained in the hotline register
that is combined with the offset part of the address, and the
memory access is satisfied. If we have a static mispredic-
tion, though, the cache TLB is checked for the translation
information.

If the cache TLB hits, the hotline register is updated with
the new translation, and the memory access is satisfied. A
cache TLB miss invokes a compiler-generated software han-
dler. This handler checks the tag-directory (which itself is
stored in a non-mapped portion of the SRAM) to check if
it is a cache hit/miss. On a miss, a line is selected for re-
placement and the required line is brought into its place, the
replacement being handled by software. The cache TLB
and the hotline register are updated with the new transla-
tion, and the memory access is satisfied by accessing the
SRAM.

Because the software handler is accessed so seldom, its
overhead has minimal effect on the overall performance.
The Cool-Cache can, in fact, even surpass a regular hard-
ware cache in terms of performance. For one, the inter-



ference between scalar and non-scalar accesses has been
eliminated resulting in higher hit-rate, and better cache uti-
lization. Secondly, a high associativity is emulated, with-
out the disadvantage of the added access latency in regu-
lar associative caches. Since the SRAM access mechanism
is much less complicated than a regular tagged hardware
cache, there is a possibility of reduction in cycle time. As
shown in [30], the tag-access is on the critical path and can
add as much as 30% to access time of associative caches.
So, many designs either place the tag-access on a separate
pipeline stage or try to balance the latency between the data-
array path and the tag-path [30]. Finally, an optimal line
size can be chosen on a per-application basis.
From a power perspective, the Cool-Cache has substantial
gains compared to a hardware cache for two reasons. First,
there are no tag-lookups on scalar accesses and correctly
predicted non-scalar accesses. Second, the SRAM is used
as a simple addressable memory - the complicated access
mechanisms of a regular cache consume more power.

As shown by the results, except for one application, the
hotline prediction system performs better for higher line
sizes. Specifically, a line-size of 1024 bytes gives the best
result, among the tested line-sizes, for most of the applica-
tions. Such a big line-size can be an issue however, when
interfacing with higher-level caches or the DRAM. Filling
a 1K-wide cache line on a miss can take a large number of
cycles. The problem of supporting different line-sizes, and
especially the larger ones, can be mitigated to quite an ex-
tent by having an interleaved structure of DRAM banks and
a slightly wider bus between the SRAM and the external
memory. See a recent paper by Delaluz et al. [11] for a
discussion of energy conscious interleaved memories.

4. Cool-Cache Compiler

The overall complexity of the Cool-Cache compiler is
not much higher than that of a regular compiler. Figure
2 shows a high-level picture of the stages involved. The
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Figure 2. Cool-Cache compiler stages

sources are first converted to the intermediate format and
high-level optimizations are performed. This, the most time
consuming task, is common to both the Cool-Cache and a
regular compiler. Following that is the Alias Analysis stage.
It enables the hotline analysis to more economically assign
hotlines to references. Without the alias analysis, we would

liberally assign each memory reference a new hotline num-
ber. This will have a degrading effect only if the number of
references within inner loop bodies is more than the number
of hotlines, resulting in the same hotlines being assigned
to references that could be spatially far apart. This would
cause interference and result in lower prediction rates. For
many applications, this isn’t so and we can omit the alias
analysis stage altogether without any noticeable effect on
the prediction rates.

Next we have the hotline analysis stage - this is a greatly
simplified version of the algorithm used in the FlexCache
paper, because alias analysis information is disregarded.
Algorithm 1 shows the pseudocode. The scalar footprint
analysis [27] then calculates the footprint requirements of
scalars. Having done with all the higher level stages, code
generation is performed next. This stage is modified from a
regular compiler to generate the modified memory instruc-
tions: they contain the scratchpad/hotline annotations. In
terms of the final binary output, the only changes we have
are the additional bits in memory instructions that carry the
annotations. This means that the binary can even be run on
a regular hardware cache architecture that disregards the an-
notations. The code is exactly the same size, differing only
in addresses.

5. Methodology

Since our target application is multimedia, we use
Mediabench[16] in our experiments. See Table 1 for a short
description of the benchmarks included in our analysis.

Figure 3 shows a block diagram of our framework. We
needed a detailed compiler framework that would give us
sufficient feedback, is easy to understand, and allows us to
change the source code for our modifications. With this in
mind, we chose the SUIF/Machsuif suite as our compiler
framework. SUIF [26] does high-level passes while Mach-
suif [18] makes machine specific optimizations. We have
modified SUIF/Machsuif passes for our memory remapping
schemes and used the SUIF annotation mechanism to prop-
agate them. First, all the source files are converted into
SUIF format and merged into one SUIF file. Then, the hot-
line pass (which is a SUIF pass) is run on this merged file
to produce a modified SUIF file. The hotline pass analyzes
the file and annotates the non-scalar accesses with hotline
numbers. Next, we run this SUIF file through the Machsuif
passes. The Machsuif Raga pass annotates all the scalar
accesses as such. The resulting assembler code targets the
Alpha processor and contains two kinds of annotations that
are of interest to us: hotline and scalar annotations. We
amended the assembler code by inserting NOP-like instruc-
tions around the annotated memory operations, thus mark-
ing them.

We then used the Wattch [5] tool suite to run the bi-



Benchmark Description
ADPCM Adaptive differential pulse code modification audio coding
EPIC Image compression coder based on wavelet decomposition
G721 Voice compression coder based on G.711, G.721 and G.723 standards
GSM Rate speech transcoding coder based on the European GSM standard
JPEG A lossy image compression decoder
MESA OpenGL graphics clone: using Mipmap quadrilateral texture mapping
MPEG Lossy motion video compression decoder
PEGWIT Public key encryption coder generates a public key from a private key
RASTA Speech recognition application

Table 1. Applicable Mediabench benchmarks. We do not include PGP, a public key encryption scheme
which is very similar to PEGWIT. We also do not include GHOSTSCRIPT since it is more amenable to
embedded systems than multimedia.
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Figure 3. Experimental Setup Block Diagram

naries and collect the energy results. Wattch is based on
the Simplescalar [6] framework. The simulators have been
modified to recognize the annotations in the marked code,
do hotline register checks, cache TLB checks, etc.. Such
statistics as the number and energy of scalar and hotline ac-
cesses, correct static predictions, cache TLB hits, scratch-
pad cache and Cool-Cache tagless SRAM accesses, etc. are
output by the simulators.

Our baseline machine model is an ARMlike single-issue
in-order processor. Lee et al. [17] use an identical config-
uration in their power dissipation analysis of region-based
caches for embedded processors. We modified Wattch to
calculate the energy consumption of the additional hard-
ware blocks required in Cool-Cache. The added blocks and
their power consumption as modeled by Wattch are shown
in Table 2. We use the activity sensitive conditional clock-
ing power model in Wattch, i.e., the cache consumes power
when it is accessed. This is the model that gives the most
conservative energy savings. Note that other Wattch power
models reported even higher savings for our framework. An
example is the cc3 model which includes leakage power:
the absence of data cache tags in our framework which

Hardware Block Name Modeled as Power (W.)
64bit Wide L1 Memory SRAM 6.86
256bit Wide L1 Memory SRAM 5.58
1Kb Scratchpad Memory SRAM 0.68
8 Hotline Registers Register File 0.16
16 Entry Cache TLB CAM 0.34

Table 2. Cool-Cache specific hardware power
consumption. Note that L1 data memory is
tagless.

Processor L1 Size L2 Size
ARM ARM10 32K None
Transmeta Crusoe TM3200 32K None
Transmeta Crusoe TM5400 64K 256K
Intel StrongARM SA-110 16K None
Equator Map-CA 32K None

Table 3. Data cache sizes for typical media
processors.

would otherwise consume static power lead to higher sav-
ings. To determine the baseline cache size, we did a survey
of data cache sizes of current multimedia processors. As Ta-
ble 3 indicates, the trend is towards larger caches. Therefore
we have selected a 64Kbyte 2-way cache as our baseline.
We also examine 32K and 128K caches in our sensitivity
analysis. See Table 4 for the baseline configuration.

5.1. Scalar Data Remapping

Our main focus is Machsuif’s register allocator pass,
Raga. Raga determines the register allocation. The allo-



Algorithm 1 The Hotline Algorithm
/* For each routine, start the annotation process by start-
ing on the first block */
for each routine do

E = entry basic block;
Hotline Annotate E;

end for
/* procedure to Hotline Annotate a block X */
for each non-scalar access through variable name V do

if !(V.hasHotline) then
increment current Hotline; /* current Hotline is a
global variable */
if (current Hotline)� 8 then

current Hotline = 1;
end if
V.Hotline = current Hotline;
V.hasHotline = true;

end if
annotate this memory reference with V.Hotline;
workList = successors of X;
while !empty(workList) do

B = next basic block in workList;
if B.annotated then

continue;
end if
/* Traverse through the CFG by making recursive
calls */
Hotline Annotate B;
B.annotated = true;

end while
end for

cation uses a graph coloring heuristic to assign registers
to temporaries. We have made modifications to Raga to
annotate scalar memory accesses. The scalar memory
accesses consist of spills and register promotion related
memory accesses. Obviously, this could only be done if
the memory footprint of the scalars are smaller than the
scratchpad area. We presented the compiler algorithm that
extracts the footprint size in [27].

6. Results

6.1. Scratchpad Energy Savings

Unless otherwise stated, all the results in this section are
with a scratchpad of size 1024 bytes, and the baseline cache
is 64Kbyte 2-way associative. We ran the benchmarks us-
ing the modified Wattch/Simplescalar and collected the data
cache energy results. Figure 4 shows the percentage energy
savings for our 32 general purpose register media proces-

Processor Speed 1GHz
Process Parameters 0.35 micron, 2.5V
Issue In-order Single-issue
L1 D-cache 64Kb, 2-way associative
L1 I-cache 32Kb, 2-way associative
Scratchpad 1Kb
On-chip L2 cache None
L1 D-cache hit time 2 cycles
Scratchpad hit time 1 cycle
L2 cache hit time 20 cycles
Main memory hit time 100 cycles

Table 4. Baseline Parameters.

sor model. We save 10.7% energy on average by using our
scheme.

Many media processors such as the ARM have a smaller
number of registers, usually 16. Therefore, we have re-
peated our energy analysis for a 16-register version of our
media processor. For 16 registers we have significantly
more scalar memory accesses due to register pressure. The
results are shown in Figure 4. Our technique saves an aver-
age of 38.2% of energy.

In fact, we show that we can be just as energy-efficient
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with a 16-register media processor with a scratchpad SRAM
as a 32-register processor with no scratchpad, see Figure 5.
Actually, the overall energy savings are even greater since
we just concentrate on the data cache energy consumption:
a 16-register file consumes substantially less power than a
32-register file.

Mediabench supplies two input sets: the second in-
put set is a larger one that exercises the caches more. We
used this alternative input set and ran the applications for a
study of input sensitivity. Although the data cache energy
consumption of the second set is higher, the results in Fig-
ure 6(a) suggest that the energy savings are independent of
the input sets included in the Mediabench.

Next we explore the sensitivity of the energy savings
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Figure 5. 16-register architecture with
scratchpad can be more energy efficient than
32-register architecture without scratchpad.

on cache associativity and size. We compared our baseline
cache with a 64K 4-way cache. The results in Figure 6(b)
show that the savings are fairly independent of cache as-
sociativity. We have also looked at the impact of cache
size. Figure 7(a) shows the energy consumption in milli-
joules for three cache sizes. Figure 7(b) shows the corre-
sponding energy savings for these cache sizes. Although
the energy consumption differs according to cache size, the
energy savings due to our method remain almost indepen-
dent of the size.

6.2. Cool-Cache Performance and Energy Savings

6.2.1 Prediction rates

The prediction rates of the hotlines scheme are shown in
Figure 8. The sensitivity of the prediction rates to both
cache line size and cache size are also shown. Figure 8(a)
shows the hit rate variation as a function of cache size where
the line size has been fixed at 256 bytes. The three bars for
each application, starting from the left, are for cache sizes
of 32Kb, 64Kb, and 128Kb, respectively. Figure 8(b) has
the cache size fixed at 32Kb with line sizes of 1024b, 256b,
and 64b.

From the second graph, it can be concluded that the pre-
diction rates (both static and dynamic) increase as the line
size increases. There are two reasons for this. First, be-
cause the media applications exhibit high spatial locality,
even a line-size as large as 1Kb does not degrade cache per-
formance (except for pegwit, where the cache-miss rate is
seen to drop as line size decreases). Second, as the line
size increases, the memory area covered by each hotline be-
comes larger and there is a higher chance of correct static
prediction.
The first graph shows that the static and dynamic prediction
rates are almost independent of cache size. The prediction
rate is dependent on the rate of reuse of cache lines. A high
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Figure 6. Energy savings sensitivity analysis

prediction rate implies that 24 cache lines (8 of which are in
the hotline register file and 16 in the cache TLB) are being
heavily reused. As long as these 24 lines are not replaced
from the cache during this period of heavy reuse, the predic-
tion rate will stay the same, regardless of the cache size. For
a 256byte wide line, this translates to 6kbytes. Therefore,
for cache sizes above, say 8Kb, the prediction rate will be
fairly constant. Figure 9 shows the sensitivity to the input
data size, where the cache and line sizes have been fixed at
32kb and 1024bytes, respectively. The first bar corresponds
to a small input data. The second one is for a much bigger
data set. As can be seen, the rates are fairly independent of
the data size.

6.2.2 Performance

We now study the impact of the Cool-Cache on perfor-
mance. Figure 10 shows the memory performance, i.e, the
cycles spent on memory instructions (values are normalized
to a scale of 0-1). There are four stacked bars for each appli-
cation. The leftmost bar corresponds to a hardware cache -
the bottom bar is the time spent on hits, the upper bar is that
spent on misses. The next three bars are for Cool-Caches
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Figure 7. Energy consumption and savings
for different cache sizes

of size 32kb and line sizes of 1024b, 256b, and 64b, re-
spectively. Each bar has several components. Starting from
the bottom, they are: time spent on scratchpad accesses,
on correctly predicted hotline accesses, hotline mispredic-
tions that hit the cache TLB, TLB mispredictions that hit
the cache, and cache misses. Since the Cool-Cache is re-
configurable, the line that gives the best performance can be
chosen. The worst performer is pegwit, for which the mem-
ory instructions take double the time taken on a hardware
cache. Note though that these performance numbers are
based on cycle counts and not time - as already mentioned,
the simpler access mechanism in Cool-Cache as compared
to a hardware cache, can lead to shorter cycle times.

Figure 11 shows the overall performance values (again
normalized to a 0-1 scale) for the same cache size and line
size parameters. Since the memory instructions are a frac-
tion of the total executed instructions, the overall perfor-
mance boost/degradation is less than the memory perfor-
mance boost/degradation. Note that for four of the bench-
marks, we perform better than a hardware cache. Two
benchmarks have the same performance, and for two bench-

(a) 256 byte line

(b) 32K Cache

Figure 8. Hit Rate for different configurations

marks we have worse performance. However the worst per-
formance degradation is 4%; while the best performance
gain, for Epic, is 14%.

6.2.3 Energy Savings

We now evaluate the energy savings of our Cool-Cache
framework over traditional hardware caching. As in Sec-
tion 6.1, this analysis is performed for two different me-
dia processor configurations: a 16-register and a 32-register
CPU. Note that the actual energy savings from Cool-Cache
is even higher: unlike a traditional set associative hardware
cache, Cool-Cache does not need set selection multiplex-
ers. We do not account for the energy impact of eliminating
this hardware block, since Wattch does not model the power
consumption of the set selection multiplexers. As explained
in Section 5, we also account for the energy consumption of
additional Cool-Cache hardware blocks as well.
We consider two Cool-Cache configurations, SRAMs with



Figure 9. Hit rate sensitivity to benchmark in-
put

Figure 10. Cool-Cache memory performance

8-byte and 32-byte widths, and compare these against two
traditional hardware caches, a direct mapped and a 4-way
set associative cache. The results in Figure 12 are for 64K
caches, the Cool-Cache has a hotline size of 256 bytes. As
seen in the figure, Cool-Cache savings are higher for the
16-register configuration. The 32-byte width Cool-Cache
achieves higher percentage energy savings than the 8-byte
width Cool-Cache. Note that Cool-Cache is substantially
more energy efficient than not only the direct mapped tradi-
tional cache but also the 4-way set associative one.

7. Conclusion

We present our Cool-Cache framework that acieves sub-
stantial energy savings for multimedia applications without
compromising performance. Our research covers the archi-
tectural and compiler domains. We consider both scalars
and non-scalars in our techniques. In particular, we propose

Figure 11. Cool-Cache performance

and evaluate a new flexible compiler-controlled caching ar-
chitecture that eliminates cache tags.
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