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Abstract

The unique characteristics of multimedia/embedded applications dictate media-sensitive architectural
and compiler approaches to reduce the power consumption of the data cache. Our goal is exploring en-
ergy savings for embedded/multimedia workloads without sacrificing performance. Here, we present
two complementary media-sensitive energy-saving techniques that leverage static information. While
our first technique is applicable to existing architectures, in our second technique we adopt a more radi-
cal approach and propose a new tagless caching architecture by re-evaluating the architecture-compiler
interface.

Our experiments show that substantial energy savings are possible in the data cache. Across a wide
range of cache and architectural configurations we obtain up to 77% energy savings, while the perfor-
mance varies from 14% improvement to 4% degradation depending on the application.

1 Introduction

The recently introduced low-power media/embedded processors share a common trait; the caches
consume a significant portion of the power consumed: 42% and 23% of the total processor power in
StrongARM 110 [21] and Power PC [4], respectively (see Figure 1). Therefore, saving cache energy
will have a considerable impact on the overall energy-consumption.

In an earlier paper about the FlexCache project [24], we described our vision of a multipartitioned
cache where memory accesses are separated based on their static predictability and memory footprint,
and managed with various compiler controlled techniques supported by instruction set architecture ex-
tensions, or with traditional hardware control. Here we apply our vision to data cache energy savings.
To implement this goal, we blur the boundary between the architecture and compiler layers. Parts of
this work were presented at the Workshop on Memory Performance Issues [30], MICRO-34 [31] and
HPCA-8 [32].

�
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(a) StrongARM (Source: IEEE JSCC,
Nov.96)

(b) PowerPC (Source: ISSCC, 94)

Figure 1. Power Consumption for Embedded/Media Processors

In particular, our contributions are:
� A compiler-controlled data remapping scheme directing scalar accesses to a small scratchpad

SRAM area. This scheme can be utilized in existing media processors and results in up to 38.2%
average energy savings without sacrificing performance.

� Hotlines, an embedded/media-sensitive compiler-enabled caching framework that eliminates cache
tags. Hotlines is up to 50% more energy efficient than a regular cache.

We adopt an incremental approach. In the first phase, we employ data partitioning for scalars. This ap-
proach requires few, if any, modifications to current architectures and compilers. We examined the mem-
ory footprint of scalars in embedded/multimedia applications and found them to be extremely small[30].
However, we also established that a significant percentage of memory accesses in those applications are
scalar accesses. These characteristics motivated us to direct the scalar accesses to a small scratchpad
SRAM area. Although accessed very frequently, this small SRAM is more energy efficient than when
scalar data are mapped into the large L1 cache.

In the second phase, we aim for greater energy savings through graceful but powerful architec-
tural/compiler paradigm redefinitions. We design and introduce a compiler-controlled tagless caching
framework, hotlines, which achieves significant energy savings. Our hotlines framework saves energy
without substantial performance loss, in some cases even beating traditional hardware-based cache per-
formance. The compiler-directed cache is a flexible, compiler-generated data cache that replaces the
tag-memory and cache controller hardware with a compiler-managed tag-like data structure. Being soft-
ware based, the cache is highly reconfigurable - such parameters as line-size and associativity can be
tailored to each application to provide maximum performance.

The virtual address to SRAM address translation, conventionally performed by the cache controller
however, must now be done by the software. Typical steps would involve extraction of tag, set, and
line-offset bits from the address, comparing the tags (the tag-structure is itself stored in the SRAM), etc.
This will take several cycles compared to just one for the hardware cache. Fortunately, there is a lot of
re-use of such address translation and the compiler can be modified to take advantage of it. Most of the
memory accesses for any application in general, and media applications in particular, are generated by
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array accesses which have a high degree of locality. Consider an array A[i] being accessed in a loop. If
A has 8-byte wide elements and the cache line is 256 bytes wide, we have 32 elements per cache-line.
Now if A[i] is being accessed sequentially, we will have one new address translation followed by 31
re-uses of this translation. This is where the hotline technique comes in. We have proposed an 8-entry
hotline register file that caches 8 virtual address to SRAM address translations. The hotline compiler
pass assigns each non-scalar (arrays, structures, etc.) a unique hotline register. Every time a non-scalar
is accessed, the emitted virtual address is compared with virtual address contained in the hotline register
associated with this non-scalar. If it matches, we have a hit (address translation re-use). On a miss, a
software exception handler is invoked to do the translation and update the hotline register with the new
translation. Since this re-use scheme is generated by the compiler, we call it static prediction. For the
applications tested, the static prediction rate is found to average around 80%.

This paper is organized as follows. In Section 2 we review related work and reiterate our motivation.
In Section 3 we present the architectural framework for our incremental techniques. We address com-
piler issues in Section 4. Section 5 explains our experimental setup. We divide our results section into
two: in Section 6.1 we analyze the energy efficiency of our scratchpad technique in isolation. We then
embed this technique in our proposed Cool-Cache framework together with our hotlines approach and
study the performance and energy savings of the complete Cool-Cache framework in Section 6.2. We
conclude in Section 7.

2 Previous Work

Previous cache partitioning research focused more on performance issues rather than energy. Pro-
viding architectural support to improve memory behavior include split caches which were discussed in
[22]. Albonesi [2] proposed selective cache ways, a vertical cache partitioning scheme. Benini et al.
[3] discuss an optimal SRAM partitioning scheme for an embedded system-on-a-chip. Panda et al. [25]
propose use of a scratchpad memory in embedded processor applications. Kin et al. [13] study a small
L0 cache that saves energy while reducing performance by 21%. Lee and Tyson [18] use the mediabench
benchmarks and have a coarse-granularity partitioning scheme: they opt for dividing the cache along OS
regions for energy reduction. Chiou et al. [9] employ a software-controlled cache and use a cache way
based partitioning scheme. A recent paper by Huang et al. [12] also uses a way-prediction scheme;
their cache partitioning includes a specialized stack cache and compiler implementation concerns are
addressed.

Combined compiler/architectural efforts toward increasing cache locality [20] have exclusively fo-
cused on arrays. A recent memory behavior study for multimedia applications has also primarily targeted
array structures [16]. Another recent paper by Delazuz et al. [11] discusses energy-directed compiler
optimizations for array data structures on partitioned memory architectures; they use the SUIF compiler
framework for their analysis. One previous work that also targeted multimedia systems [26], has con-
sidered dynamically dividing caches into multiple partitions, using the Mediabench benchmark in the
performance analysis, with comments on compiler controlled memory. Cooper and Harvey [10] look at
compiler-controlled memory. Their analysis includes spill memory requirements for some Spec ’89 and
Spec ’95 applications. Witchel et al. [34] propose a direct addressed cache which eliminates some
cache tag accesses and thereby saves energy. In their study of instruction fetch prediction, Calder et al.
[7] introduce a tagless memory buffer for next cache line and set prediction. Abraham and Mahlke [1]
evaluate memory hierarchies for embedded systems from a performance point of view.
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Our previous work [23, 24, 28, 29, 30, 31, 32] and the above research provide the framework and
the motivation for this study. Our unique contribution is the design of an energy efficient compiler-
controlled dynamically-configurable tagless caching framework. This work pushes caching further up
to the compiler layer.

3 Architectural Framework

3.1 Scalar Data Remapping

Our first energy-saving technique can be used in existing architectures: remap every scalar memory
access into a scratchpad memory area. No architectural modifications are necessary since many me-
dia/embedded processors have a scratchpad. For example, any entry in the cache in Fujitsu Sparclite can
be locked, in effect making the entry an element in the SRAM buffer. Part of the cache can be reorga-
nized as an SRAM scratchpad area in the Samsung ARM7 and Hitachi SH2. The recently introduced
Intel StrongARM SA-1110 [14] has a 512 byte minicache for frequently used data. In our previous
study of the Mediabench benchmarks [30], we found that a slightly larger scratchpad SRAM size of
1024 bytes is enough to map all the scalars. A scratchpad SRAM guarantees single-cycle access time to
scalars since there are no cache misses. Thus, we guarantee at least the same level of performance from
our scheme as compared to a regular non-partitioned architecture. In fact, since we decrease the cache
interference, we get better data cache performance by separating scalar accesses from array accesses
[30]. If the embedded/multimedia processor is not equipped with any kind of scratchpad mechanism,
then the ISA can be augmented with special load/store instructions which would channel the scalar data
to a separate cache area. The implementation is simple: encode a single additional bit in the instruction,
thus “marking” the load/store to be diverted. This is similar to the approach taken by Calder et al. [8]
for marking branch instructions.

3.2 Cool-Cache Architecture

Our caching architecture is completely compiler-managed and is therefore able to leverage static in-
formation that is lost in traditional hardware caches.

A Cool-Cache architecture combines four cache control techniques: (1) fully static, (2) statically
speculative, (3) hardware supported dynamic, and (4) software supported dynamic.

The fully static cache management is based on disambiguation between the scalar and non-scalar
accesses. As described in [30], although the scalars typically have a very small footprint, they are
frequently accessed, and have considerable interference with non-scalar accesses. The Cool-Cache ar-
chitecture, by statically diverting the scalar and non-scalar accesses to the scratchpad memory and the
SRAM, respectively, not only eliminates this interference but also saves power by only accessing a
small scratchpad memory instead of a much larger data-array. Although our current implementation is
based on statically mapping scalars, a generalization of this idea is to map frequently accessed memory
references that have a small footprint into the scratchpad area.

The second technique in the Cool-Cache architecture is based on a compile-time speculative approach
to eliminate tag-lookup for non-scalar memory accesses. In addition, some of the cache logic found in
associative caches can also be eliminated. The idea is that if a large percentage of cache accesses can be
predicted statically, then we can eliminate the tag-array and the cache logic found in associative caches
and thus reduce power consumption.
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The scalars are directly mapped to the scratchpad memory; no additional runtime overhead is required.
The non-scalars however, if managed explicitly in the compiler, require virtual-to-SRAM address map-
pings or translations at runtime. This mapping is basically a translation of virtual cache line addresses
into SRAM lines, based on the line sizes assumed in the compiler. Note that the partitioning of the
SRAM into lines is only logical: the SRAM is mainly accessed at the word level, except during fills
associated with cache misses. This translation can be done by inserting a sequence of compiler gen-
erated instructions, at the expense of added software overhead. But as discussed in [23], for many
applications, there is a lot of reuse of these address mappings. Our findings for multimedia applications
also confirm this. The compiler can speculatively register-promote the most recent translations into a
small new register area - we call it the hotline register file. With special memory instructions, similar to
those proposed in the FlexCache architecture [24], the runtime overhead of speculation checking can be
completely eliminated.

The third technique helps to avoid paying the high penalty of a software-based recovery mechanism,
(i.e., during a statically miss-predicted access) we use a small 16-entry fully associative cache TLB
to cache address mappings for memory accesses that are miss-predicted. We found that a 16-entry
cache TLB is enough to catch most of the address translations that are not correctly predicted statically.
This approach is similar to caching frequently used page table entries in the TLB, to minimize address
translation overhead in virtual memory systems. Further, because the hotline check can be performed
at an early pipeline stage, and is very quick, we can access the cache TLB on hotline mispredictions
without any performance penalty.

The fourth technique used in Cool-Cache is basically a fully reconfigurable software cache. This
technique is more of a backup solution, and it can implement a highly associative mapping. Our im-
plementation is based on a four-way associative cache with random replacement. The mapping table
between virtual cache lines and physical SRAM lines is implemented similarly to an inverted page table.
We have assumed a 25 cycle overhead associated with this software backup mechanism (in addition to
any further cache miss latencies). Our results show that the combined static and cache TLB techniques
capture more than 99% of the memory accesses for most of the multimedia applications.

Figure 2 gives an overview of the Cool-Cache architecture. All the memory accesses are diverted
by the compiler to either the scratchpad or the hotline architecture. The scratchpad access mechanism
consumes very little power due to its small size (we assume a 1Kbyte structure in our experiments)
compared to the regular SRAM data array.

The non-scalar memory instructions carry a hotline index. This identifies the hotline register, predicted
by the compiler to contain the address translation for the current memory access. Using this index, the
corresponding hotline register is read from the hotline register file.

The hotline register contains the virtual cache line address to SRAM line address mapping. If the
memory reference has the same virtual address as that contained in the hotline register, we have a correct
static prediction. Upon a correct static prediction, the SRAM can be accessed through the SRAM address
contained in the hotline register that is combined with the offset part of the address, and the memory
access is satisfied. If we have a static misprediction, though, the cache TLB is checked for the translation
information.

If the cache TLB hits, the hotline register is updated with the new translation, and the memory access
is satisfied. A cache TLB miss invokes a compiler-generated software handler. This handler checks the
tag-directory (which itself is stored in a non-mapped portion of the SRAM) to check if it is a cache
hit/miss. On a miss, a line is selected for replacement and the required line is brought into its place, the
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Figure 2. The Cool-Cache Architecture

replacement being handled by software. The cache TLB and the hotline register are updated with the
new translation, and the memory access is satisfied by accessing the SRAM.

Because the software handler is accessed so seldom, its overhead has minimal effect on the overall
performance. The Cool-Cache can, in fact, even surpass a regular hardware cache in terms of perfor-
mance. For one, the interference between scalar and non-scalar accesses has been eliminated resulting
in higher hit-rate, and better cache utilization. Secondly, a high associativity is emulated, without the
disadvantage of the added access latency in regular associative caches. Since the SRAM access mecha-
nism is much less complicated than a regular tagged hardware cache, there is a possibility of reduction
in cycle time. As shown in [33], the tag-access is on the critical path and can add as much as 30% to
access time of associative caches. Consequently, many designs either place the tag-access on a separate
pipeline stage or try to balance the latency between the data-array path and the tag-path [33]. Finally, an
optimal line size can be chosen on a per-application basis.
From a power perspective, the Cool-Cache has substantial gains compared to a hardware cache for two
reasons. First, there are no tag-lookups on scalar accesses and correctly predicted non-scalar accesses.
Second, the SRAM is used as a simple addressable memory - the complicated access mechanisms of a
regular cache consume more power.

Our results (in Section 6.2.1) show that, except for one application, the hotline prediction system
performs better for higher line sizes. Specifically, a line-size of 1024 bytes gives the best result, among
the tested line-sizes, for most of the applications. Such a big line-size can be an issue however, when
interfacing with higher-level caches or the DRAM. Filling a 1K-wide cache line on a miss can take a
large number of cycles. The problem of supporting different line-sizes, and especially the larger ones,
can be mitigated to quite an extent by having an interleaved structure of DRAM banks and a slightly
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wider bus between the SRAM and the external memory. See a recent paper by Delaluz et al. [11] for a
discussion of energy conscious interleaved memories.

4 Cool-Cache Compiler

The overall complexity of the Cool-Cache compiler is not much higher than that of a regular com-
piler. Figure 3 shows a high-level picture of the stages involved. The sources are first converted to the

Footprint 
Analysis

Code
Generation

Analysis
Hotlines 

Analysis
Alias 

Transformations
High−Level 

Figure 3. Cool-Cache compiler stages

intermediate format and high-level optimizations are performed. This, the most time consuming task, is
common to both the Cool-Cache and a regular compiler. Following that is the Alias Analysis stage. It
enables the hotline analysis to more economically assign hotlines to references. Without the alias analy-
sis, we would liberally assign each memory reference a new hotline number. This will have a degrading
effect only if the number of references within inner loop bodies is more than the number of hotlines,
resulting in the same hotlines being assigned to references that could be spatially far apart. This would
cause interference and result in lower prediction rates. For many applications, this does not happen and
we can omit the alias analysis stage altogether without any noticeable effect on the prediction rates.

Next we have the hotline analysis stage: this is a greatly simplified version of the algorithm used in
the FlexCache paper, because alias analysis information is disregarded. Algorithm 1 shows the pseu-
docode. The scalar footprint analysis [30] then calculates the footprint requirements of scalars. Having
done with all the higher level stages, code generation is performed next. This stage is modified from
a regular compiler to generate the modified memory instructions: they contain the scratchpad/hotline
annotations. In terms of the final binary output, the only changes we have are the additional bits in
memory instructions that carry the annotations. This means that the binary can even be run on a regular
hardware cache architecture that disregards the annotations. The code is exactly the same size, differing
only in addresses.

5 Methodology

Since our target application is multimedia, we use Mediabench [17] in our experiments. See Table 1
for a short description of the benchmarks included in our analysis.

Figure 4 shows a block diagram of our framework. We needed a detailed compiler framework that
would give us sufficient feedback, is easy to understand, and allows us to change the source code for
our modifications. With this in mind, we chose the SUIF/Machsuif suite as our compiler framework.
SUIF [27] does high-level passes while Machsuif [19] makes machine specific optimizations. We have
modified SUIF/Machsuif passes for our memory remapping schemes and used the SUIF annotation
mechanism to propagate them. First, all the source files are converted into SUIF format and merged into
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Algorithm 1 The Hotline Algorithm
/* For each routine, start the annotation process by starting on the first block */
for each routine do

E = entry basic block;
Hotline Annotate E;

end for
/* procedure to Hotline Annotate a block X */
for each non-scalar access through variable name V do

if !(V.hasHotline) then
increment current Hotline; /* current Hotline is a global variable */
if (current Hotline) � 8 then

current Hotline = 1;
end if
V.Hotline = current Hotline;
V.hasHotline = true;

end if
annotate this memory reference with V.Hotline;
workList = successors of X;
while !empty(workList) do

B = next basic block in workList;
if B.annotated then

continue;
end if
/* Traverse through the CFG by making recursive calls */
Hotline Annotate B;
B.annotated = true;

end while
end for

one SUIF file. Then, the hotline pass (which is a SUIF pass) is run on this merged file to produce a
modified SUIF file. The hotline pass analyzes the file and annotates the non-scalar accesses with hotline
numbers. Next, we run this SUIF file through the Machsuif passes. The Machsuif Raga pass annotates
all the scalar accesses as such. The resulting assembler code targets the Alpha processor and contains
two kinds of annotations that are of interest to us: hotline and scalar annotations. We amended the as-
sembler code by inserting NOP-like instructions around the annotated memory operations, thus marking
them.

We then used the Wattch [5] tool suite to run the binaries and collect the energy results. Wattch
is based on the Simplescalar [6] framework. The simulators have been modified to recognize the an-
notations in the marked code, do hotline register checks, cache TLB checks, etc. Such statistics as the
number and energy of scalar and hotline accesses, correct static predictions, cache TLB hits, scratchpad
cache and Cool-Cache tagless SRAM accesses are output by the simulators.

Our baseline machine model is an ARM-like single-issue in-order processor. Lee et al. [18] use an
identical configuration in their power dissipation analysis of region-based caches for embedded pro-
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Benchmark Description
ADPCM Adaptive differential pulse code modification audio coding
EPIC Image compression coder based on wavelet decomposition
G721 Voice compression coder based on G.711, G.721 and G.723 standards
GSM Rate speech transcoding coder based on the European GSM standard
JPEG A lossy image compression decoder
MESA OpenGL graphics clone: using Mipmap quadrilateral texture mapping
MPEG Lossy motion video compression decoder
PEGWIT Public key encryption coder generates a public key from a private key
RASTA Speech recognition application

Table 1. Applicable Mediabench benchmarks.

Wattch / Simplescalar 3.0Wattch / Simplescalar 3.0

(porky, swinghnflew)

Low−level Machsuif 
passes (agen, raga, afin,
printmachine)

assemble to binary)gcc (

High−level SUIF passes
optimizations

code generation
Cool−Cache specific

Cool−Cache specific

Figure 4. Experimental Setup Block Diagram

cessors. We modified Wattch to calculate the energy consumption of the additional hardware blocks
required in Cool-Cache. The added blocks and their power consumption as modeled by Wattch are
shown in Table 2. Wattch uses an analytical cache energy dissipation model, similar to [15]. The added
blocks are modeled as an SRAM (for the tagless cache), a register file (for the Hotline registers) and a
CAM (for the cache TLB). We use the activity sensitive conditional clocking power model in Wattch,
i.e., the cache consumes power when it is accessed. This is the model that gives the most conservative
energy savings. Note that other Wattch power models reported even higher savings for our framework.
An example is the cc3 model which includes leakage power, we eliminate the separate tag-structure
and logic (tags are seamlessly stored along with with data in the SRAM), we save significantly on the
static/dynamic power associated with the tags. To determine the baseline cache size, we did a survey
of data cache sizes of current multimedia processors. As Table 3 indicates, the trend is towards larger
caches. Therefore we have selected a 64Kbyte 2-way cache as our baseline. We also examine 32K and
128K caches in our sensitivity analysis. See Table 4 for the baseline configuration.
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Hardware Block Name Modeled as Power (W.)
64bit Wide L1 Memory SRAM 6.86
256bit Wide L1 Memory SRAM 5.58
1Kb Scratchpad Memory SRAM 0.68
8 Hotline Registers Register File 0.16
16 Entry Cache TLB CAM 0.34

Table 2. Cool-Cache specific hardware power consumption. Note that L1 data memory is tagless.

Processor L1 Size L2 Size
ARM ARM10 32K None
Transmeta Crusoe TM3200 32K None
Transmeta Crusoe TM5400 64K 256K
Intel StrongARM SA-110 16K None
Equator Map-CA 32K None

Table 3. Data cache sizes for typical media processors.

5.1 Scalar Data Remapping

Our main focus is Machsuif’s register allocator pass, Raga. Raga uses a graph coloring heuristic to
assign registers to temporaries. We have made modifications to Raga to annotate scalar memory ac-
cesses. The scalar memory accesses consist of spills and register promotion related memory accesses.
Obviously, this could only be done if the memory footprint of the scalars are smaller than the scratchpad
area. We presented the compiler algorithm that extracts the footprint size in [30].

Processor Speed 1GHz
Process Parameters 0.35 micron, 2.5V
Issue In-order Single-issue
L1 D-cache 64Kb, 2-way associative
L1 I-cache 32Kb, 2-way associative
Scratchpad 1Kb
On-chip L2 cache None
L1 D-cache hit time 2 cycles
Scratchpad hit time 1 cycle
L2 cache hit time 20 cycles
Main memory hit time 100 cycles

Table 4. Baseline Parameters.
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6 Results

6.1 Scratchpad Energy Savings

Unless otherwise stated, all the results in this section are with a scratchpad of size 1024 bytes,
and the baseline cache is 64Kbyte 2-way associative. We ran the benchmarks using the modified
Wattch/Simplescalar and collected the data cache energy results. Figure 5 shows the percentage en-
ergy savings for our 32 general-purpose register media processor model. Compared to the baseline
monolithic cache, we save 10.7% energy on average by using our scheme.

Many media processors such as the ARM have a smaller number of registers, usually 16. Therefore,
we have repeated our energy analysis for a 16-register version of our media processor. For 16 registers
we have significantly more scalar memory accesses due to register pressure. The results are also shown
in Figure 5. Our technique saves in this case an average of 38.2% of energy.

In fact, we show that we can be just as energy-efficient with a 16-register media processor with a

Figure 5. Scratchpad Energy Savings.

scratchpad SRAM as a 32-register processor with no scratchpad, see Figure 6. Actually, the overall
energy savings are even greater since we just concentrate on the data cache energy consumption: a 16-
register file consumes substantially less power than a 32-register file.

Mediabench supplies two input sets: the second input set is larger and therefore exercises the caches
more. We used this alternative input set and ran the applications for a study of the sensitivity of the
energy savings to the input data set. Although the data cache energy consumption of the second set is
higher, the results in Figure 7(a) suggest that the energy savings are independent of the input sets in-
cluded in the Mediabench.

Next we explore the sensitivity of the energy savings to the cache associativity and size. We com-
pared our baseline cache with a 64K 4-way cache. The results in Figure 7(b) show that the savings are
fairly independent of cache associativity. We have also looked at the impact of cache size. Figure 8(a)
shows the energy consumption in millijoules for three cache sizes. Figure 8(b) shows the corresponding
energy savings for these cache sizes. Although the energy consumption differs according to cache size,
the energy savings due to our method remain almost independent of the size.
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Figure 6. 16-register architecture with scratchpad can be more energy efficient than 32-register
architecture without scratchpad.

6.2 Cool-Cache Performance and Energy Savings

6.2.1 Prediction Rates

The prediction rates of the hotlines scheme are shown in Figure 9. The sensitivity of the prediction
rates to both cache line size and cache size are also shown. Figure 9(a) shows the hit rate variation as a
function of cache size where the line size has been fixed at 256 bytes. The three bars for each application,
starting from the left, are for cache sizes of 32Kb, 64Kb, and 128Kb, respectively. Figure 9(b) has the
cache size fixed at 32Kb with line sizes of 1024b, 256b, and 64b.

From the second graph, it can be concluded that the prediction rates (both static and dynamic)
increase as the line size increases. There are two reasons for this. First, since the media applications
exhibit high spatial locality, even a line-size as large as 1Kb does not degrade cache performance (except
for pegwit, where the cache-miss rate is seen to drop as line size decreases). Second, as the line size
increases, the memory area covered by each hotline becomes larger and there is a higher chance of
correct static prediction.

The first graph shows that the static and dynamic prediction rates are almost independent of cache
size. The prediction rate is dependent on the rate of reuse of cache lines. A high prediction rate implies
that 24 cache lines (8 of which are in the hotline register file and 16 in the cache TLB) are being heavily
reused. As long as these 24 lines are not replaced from the cache during this period of heavy reuse, the
prediction rate will stay the same, regardless of the cache size. For a 256byte wide line, this translates to
6kbytes. Therefore, for cache sizes above, say 8Kb, the prediction rate will be fairly constant. Figure 10
shows the sensitivity to the input data size, where the cache and line sizes have been fixed at 32kb and
1024bytes, respectively. The first bar corresponds to a small input data. The second one is for a much
bigger data set. As can be seen, the rates are fairly independent of the data size.
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Figure 8. Energy consumption and savings for different cache sizes

6.2.2 Performance

We now study the impact of the Cool-Cache on performance. Figure 11 shows the memory performance,
i.e., the cycles spent on memory instructions. The values have been normalized to a scale of 0-1, where
1 represents the hardware cache performance. There are 3 stacked bars for each application - for a 32K
Cool-Cache with line sizes of 1024b, 256b, and 64b, respectively. Each bar has several components.
Starting from the bottom, they are: time spent on scratchpad accesses, on correctly predicted hotline ac-
cesses, hotline mispredictions that hit the cache TLB, TLB mispredictions that hit the cache, and cache
misses. Since the Cool-Cache is reconfigurable, the line that gives the best performance can be chosen.
The worst performer is pegwit, for which the memory instructions take double the time taken on a hard-
ware cache. Note though that these performance numbers are based on cycle counts and not time, the
simpler access mechanism in Cool-Cache as compared to a hardware cache, can lead to shorter cycle
times.
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Figure 9. Hit Rate for different configurations

Figure 12 shows the overall performance values (again normalized to a 0-1 scale) for the same cache
size and line size parameters. Since the memory instructions are a fraction of the total executed instruc-
tions, the overall performance boost/degradation is less than the memory performance boost/degradation.
Note that for four of the benchmarks, we perform better than a hardware cache. Two benchmarks have
the same performance, and for two benchmarks we have worse performance. However the worst perfor-
mance degradation is 4%; while the best performance gain, for Epic, is 14%.

6.2.3 Energy Savings

We now evaluate the energy savings of our Cool-Cache framework over traditional hardware caching. As
in Section 6.1, this analysis is performed for two different media processor configurations: a 16-register
and a 32-register CPU. Note that the actual energy savings from Cool-Cache is even higher: unlike a
traditional set associative hardware cache, Cool-Cache does not need set selection multiplexers. We do
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Figure 10. Hit rate sensitivity to benchmark input
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Effective performance is the best performance shown for each application.

Figure 11. Cool-Cache memory performance.

not account for the energy impact of eliminating this hardware block, since Wattch does not model the
power consumption of the set selection multiplexers. As explained in Section 5, we account for the
energy consumption of additional Cool-Cache hardware blocks as well.

We consider two Cool-Cache configurations, SRAMs with 8-byte and 32-byte widths, and compare
these against two traditional hardware caches, a direct mapped and a 4-way set associative cache. The
results in Figure 13 are for 64K caches, the Cool-Cache has a hotline size of 256 bytes. As seen in
the figure, Cool-Cache savings are higher for the 16-register configuration. The 32-byte width Cool-
Cache achieves higher percentage energy savings than the 8-byte width Cool-Cache. Cool-Cache is
substantially more energy efficient than not only the direct mapped traditional cache but also the 4-way
set associative one. Note that the scratchpad-only energy savings are somewhat more sensitive to the
register file size (Figure 5), whereas substantial energy savings are possible with the Cool-Cache even
for an aggresively sized register file, see Figure 13(b). This is due to the efficiency of the statically-
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Figure 12. Cool-Cache performance

speculative hotlines component of Cool-Cache.

(a) 8-Byte and 32-Byte wide SRAM Cool-Cache 16-
register CPU

(b) 8-Byte and 32-Byte wide SRAM Cool-Cache 32-
register CPU

Figure 13. Cool-Cache energy savings

7 Conclusion

Our Cool-Cache framework achieves substantial energy savings for multimedia applications without
compromising performance. Our research covers the architectural and compiler domains. We consider
both scalars and non-scalars in our techniques and partition scalars into a energy-efficient minibuffer. We
also propose and evaluate a new flexible compiler-controlled caching architecture that eliminates cache
tags. The ideas presented in this paper could be applied for chip-wide energy saving schemes as well.
A natural extension of this work would be using statically speculative compiler-architectural methods to
drive fetch and issue stage energy optimizations.
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