
On Dynamic Polymorphing of a Superscalar Core

for Improving Energy Efficiency

Sudarshan Srinivasan, Rance Rodrigues, Arunachalam Annamalai, Israel Koren, Fellow, IEEE,

Sandip Kundu, Fellow, IEEE

Department of Electrical and Computer Engineering

University of Massachusetts at Amherst, MA, USA

Abstract—The computational needs of a program change
over time. Sometimes a program exhibits low instruction level
parallelism (ILP), while at other times the inherent ILP may
be higher; sometimes a program stalls due to a large number
of cache misses, while at other times it may exhibit high cache
throughput. Asymmetric Multicore Processors (AMP) have been
proposed to allow matching the computing needs of a thread
to a core where it executes most efficiently. Some of the recent
works focus on AMPs consisting of a monolithic large out-of-
order (OOO) core and a small in-order (InO) core. Dynamic
swapping of threads between these cores is then facilitated
to improve energy efficiency of the threads without impacting
performance too negatively. Swapping decisions are made at
coarse grain instruction granularities to mitigate the impact of
migration overhead. This excludes many opportunities for swap
at a fine granular level. In this paper we consider a single
superscalar OOO core that can morph itself dynamically into
an InO core at runtime. In order to determine when to morph
from OOO to InO and vice-versa, we rely on certain hardware
performance monitors. Using these performance monitors we
estimate the energy-delay-squared product (ED

2
P) for both

modes of operation, which is then used to make morphing
decisions. The morphing hardware support is simple and is
already available in certain Intel processors to facilitate debug.
The proposed scheme has low migration overhead, that enables
fine-grain morphing to achieve more energy efficient computing
by trading a small loss of performance for much greater energy
reduction.

Keywords—Core Morphing; Asymmetric Multicore Processor
(AMP); Out-of-Order (OOO); In-Order (InO); Performance Mon-
itoring Counter (PMC)

I. INTRODUCTION

Advancements in technology have resulted in increased
circuit performance and the ability to pack more transistors into
a small area. The higher device density and rising frequency
led, unfortunately, to a power density problem which paved
the way for the multicore era [1]. In current processor ICs, a
single and very powerful processor has been replaced by many
symmetric cores (Symmetric Multicore Processor (SMP)),
each with more modest computational capabilities.

Symmetric multicore processors are better suited for
Thread Level Parallelism (TLP), and thus, the performance
suffers whenever sequential applications with high instruction
level parallelism (ILP) are encountered [2]. Furthermore, it is
known that different workloads require different computational
resources to maximize performance/power. Even during the
execution of a given workload, resource requirements may vary
with time due to changes in program phases [3]. Asymmetric

Multicore Processors (AMP) with the capability to cater to
the diverse needs of workloads were introduced as a potential
solution to this conundrum [4]. Often, the explored AMPs
employ two kinds of cores: out-of-order (OOO) big cores
and in-order (InO) small cores. The big cores provide higher
performance while the in-order small cores are more power
efficient. As the benefits of such AMPs are highly dependent
on a proper thread-to-core assignment, the threads are swapped
between the cores at runtime so that the objective function
(e.g., performance, performance/power, or energy) is improved
for the current program phase.

Thread swapping, however, incurs non-negligible costs.
The swapping overhead can vary from a few thousand to
millions of cycles [5] depending on the algorithm employed
to swap threads and the mechanism to exchange contexts. To
amortize the large overhead associated with thread swapping,
in most proposals, thread swapping decisions are made at
the granularity of hundreds of thousands to millions of in-
structions [5]. Unfortunately, numerous opportunities to im-
prove performance/power and/or energy-delay-squared product
(ED

2
P) at a more fine grained instruction granularity are

missed by such approaches [6]. Therefore, there is need for
a mechanism to take advantage of such opportunities without
incurring large thread swapping penalties.

In this paper we propose a novel core morphing mechanism
that reaps most of the benefits of AMPs, without incurring the
high penalty associated with thread swapping. Our proposed
mechanism introduces heterogeneity within the same core by
morphing it from OOO to InO core and vice-versa. Certain
Intel processors feature a special debug mode in which the
OOO core turns into an InO core [7]. We extend the use
of this mechanism for improving energy efficiency by oppor-
tunistically switching to the InO mode, if deemed beneficial.
As the morphing is performed within the same core and the
architectural states are retained, the overheads associated with
our scheme is negligible.

At a base level, we consider a single complex superscalar
core that operates in the OOO mode providing high perfor-
mance. However, during low IPC phases of the program, the
operation mode may be switched to the InO mode for energy
reduction. A similar switch is made from InO to OOO when
these benefits are predicted to have diminished. To achieve
energy benefits without impacting performance significantly,
we use the energy-delay-squared product (ED

2
P) as our

optimization metric. The central idea of our proposal is the
online estimation of the expected ED

2
P of the executing

thread in the other mode, while it is being executed in the

978-1-4799-2987-0/13/$31.00 ©2013 IEEE 495

Fig. 1. High-level view of the proposed core morphing scheme. The baseline OOO mode is shown at the top. The shaded regions indicate the units of the
baseline core that are power-gated to facilitate in-order execution in InO mode.

current mode. The estimation is made possible by employing
the performance monitoring counters (PMCs) of the baseline
core.

Since the proposed scheme makes use of existing facilities
in a processor, it incurs no hardware overheads unlike several
comparable schemes [6], [8], [9], [10]. The key contributions
of this paper are:

1) Dynamic morphing within the same core between
OOO and InO modes using existing debug mecha-
nisms in current microprocessors.

2) Online estimation scheme to estimate power and
performance on the same core as well as on other
cores which help us to make best thread to core
assignment.

II. RELATED WORK

There have been a number of studies on dynamic morphing
of multicores processors for reducing power or improving
energy efficiency. Kim et. al. and Tarjan et. al. proposed
morphing schemes that fuse multiple simple cores together into
a large OOO core on demand [8], [9]. These approaches suffer
from additional latencies in the pipeline that arise from com-
bining resources from various cores. Khubaib et al. described
a morphing scheme where a baseline OOO core morphs itself
into a Simultaneously Multithreaded InO core depending on
the number of incoming threads [10]. These schemes require
significant changes to the designed microarchitecture. Lukefahr
et al. presented a morphing scheme where heterogeneity is
introduced into the same core by provisioning two execution
backends for the same frontend [6]. One backend is an OOO
while the other is InO. Both backends share the cache and
fetch units. Our scheme differs from Lukefahr et al. in that we
have a common execution backend while they have two. Apart
from larger area, their scheme requires the architectural states
to be transferred from one backend to the other, which creates a
larger migration overhead. In our scheme, morphing between
InO and OOO can occur at much finer granularity. To take
advantage of this opportunity, we need to assess and predict
the benefits of morphing dynamically. In this paper, we present
an estimation technique for assessing whether the program will

be better-off running in the other mode based on statistics
collected using certain hardware performance counters. This
is the main thrust of this paper.

III. PROPOSED APPROACH

In this section, we describe both the architectural and
implementation details of the proposed core morphing scheme
that supports switching between OOO and InO modes at fine-
grained time intervals.

A. Architectural Details

Figure 1 shows the considered baseline core which is a 4-
way issue OOO superscalar core. The backend of the baseline
core includes a register alias table (RAT), load/store queue
(LSQ) and Re-Order Buffer (ROB) to facilitate OOO execu-
tion and in-order commit. During high-ILP program phases,
significant performance benefits are achieved by executing the
thread on the OOO baseline core. However, when the processor
is waiting for long-latency memory operations to complete or
stalls due to dependencies, most of the core resources are idle
wasting static power.

For such low-IPC phases, a low-power InO core may
be more energy efficient. In order to identify the difference
between the power consumption in the OOO and InO modes
of operation, we analyzed the various components of the power
spent in each mode of operation. As expected, the OOO
mode consumes considerably more power than the InO mode.
The OOO mode relies heavily on speculative execution by
making use of data structures such as the ROB and reservation
stations to ensure OOO execution but in-order commit. Data
movements between these structures is a major contributor
to power consumption. For some phases of a program, this
increase may not be commensurate with the performance
benefits resulting in poor energy efficiency. We also see that
in the issue and execution stage, power for the OOO mode
are significantly higher than in the InO mode. These are the
stages where the data structures are used and accessed the
most. When such an increase in power is not accompanied
with a significant performance gain, a switch in mode from
OOO to InO may be beneficial. To this end, during low-
ILP/memory intensive phases, we power off the ROB, RAT,

496

and LSQ, enabling only in-order execution/commit. Thus, the
baseline OOO core is opportunistically morphed into an InO
core providing significant power benefits. As the performance
of the core in InO mode is expected to be low, we reduce
the fetch width of the core from 4 to 2, and further, power
off half of the decoders and shut-down few of the multiple
execution units. The InO mode (see Figure 1) is thus more
power efficient than the baseline OOO mode. While in InO
mode, if the program moves to a high-ILP phase, the shut
down units are powered on, reverting back to the baseline OOO
execution. The architecture for this morphing is considerably
simpler than that presented in [6]. Certain Intel processors are
already reported to have support for switching from OOO to
InO mode [7].

Morphing from the OOO to InO modes of operation needs
to be done at runtime. This requires a mechanism that makes
dynamic decisions depending on the characteristics of the
currently executing workload. A description of the proposed
mechanism is presented next.

B. Implementation Details

Prior knowledge about the computational resource re-
quirements of different applications is generally not available
beforehand. Hence, there is a need for an online mechanism to
characterize the time-varying program behavior and determine
the appropriate mode (OOO or InO) at runtime such that the
ED

2
P of the executing application is minimized.

The current characteristics of the application being exe-
cuted on a core can reveal considerable information about
how suitable the core is to that application. For example,
an application phase that results in a significant number of
misses in the level-1 cache will result in low performance
and high energy consumption. Executing this phase on an
InO core would make more sense with respect to energy
usage. The optimization metric we target is energy-delay-
squared-product (ED

2
P). This metric gives higher priority to

performance over energy while a simple EDP metric would
favor InO nearly always, costing in performance for a dynamic
morphing scheme. In order to assess the current characteristics
of the application being executed, we make use of Performance
Monitoring Counters (PMC).

To estimate the ED
2
P , both performance and energy

(power) need to be measured or estimated. Performance mea-
surement is straightforward, while real-time power or energy
measurement is not. PMCs have been used as a proxy to
estimate power in the past [11], [12] and we follow a sim-
ilar approach. Note that most previous work makes use of
PMCs to estimate power on the same core while we need to
estimate power and performance on the currently active mode
(OOO/InO), as well as the other mode (InO/OOO) to make an
informed decision.

a) PMCs explored in this study: There are many events
that take place in a modern processor but some of them provide
better hints than others about the performance and power of the
currently executing application. To this end, we have explored
fourteen different performance counters. We considered (i) the
number of retired instructions of each type (integer, floating-
point etc.), (ii) memory hit and miss counters (level-1, level-2
and TLB), (iii) number of mis-predicted and correctly pre-
dicted branch instructions, (iv) number of instructions fetched

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14

R
2
C

oe
ff

ic
ie

nt

Number of counters

Fig. 2. Variation in the R2 coefficient while estimating the performance in
InO mode using the values of PMCs observed in the OOO mode.

and instructions retired per cycle (IPC), and (v) pipeline stalls
which consist of stalls resulting due to lack of reservation
stations, load/store queue, RAT and ROB slots.

b) Shortlisting the PMCs: In general, we expect a
higher estimation accuracy using a large number of counters.
However, there is a limit on the number of counters that
may be accessed at the same time. This limit varies from
one architecture to another. For example, in the Intel XScale
processor [11], only two counters may be accessed while for
the AMD Phenom processor, at most five counters may be
accessed at the same time [12]. There is, therefore, a need to
find a minimal subset of PMCs that have the most impact on
power and performance both in the currently active mode, and
the other mode.

To accomplish the task of making the right choice of PMCs,
we devised an efficient heuristic that searches the counter
space iteratively. During each iteration, our counter selection
algorithm picks a new counter that best fits the estimating
parameter (performance or power) along with the set of
counters already chosen in previous iterations. We tried only
linear models for curve-fitting and the best fit is qualified by
the R2 correlation coefficient. During the initial few iterations,
the value of R2 increases steeply as more counters are added,
but it tends to saturate later. The best set of counters is around
the region where the R2 coefficient is saturating.

The result of one such counter selection experiment is
shown in Figure 2. Here, the expected performance of the
application in InO mode is estimated using the values of
PMCs observed in the OOO mode. As expected, increasing
the number of counters yields higher R2 values. However,
we arrive to the point of diminishing returns after 6 counters.
These 6 counters were IPC, number of retired load and store
instructions, pipeline stalls, branch mis-predictions and level-
1 cache hit rate. Similar experiments were run to obtain
expressions that can be used to estimate both performance and
power in the two modes using PMCs.

The average error observed when using PMCs in one mode
(OOO/InO) to predict the power in that mode as well as the
performance and power in the other mode (InO/OOO) is shown
in figure 3. While estimating the OOO parameters (IPC and
power) from the InO mode using PMCs in the InO mode, the
average error in estimating IPC and power is around 16% and
10%, respectively. Similarly, the average error in computing
the InO parameters from OOO mode was found to be 15%

497

Fig. 3. % Average error observed in estimating IPC and power of OOO
(InO) mode using InO (OOO) counters.

and 8%, respectively.

C. Dynamic Switching between OOO and In0 core

We have seen how ED
2
P can be estimated using PMCs.

A decision to move to the alternate mode of operation is
made if it is expected to provide a better (lower) ED

2
P . The

decision to switch the mode of operation should be one of
high confidence. Otherwise, we risk running into oscillations
between the two modes. This will likely negate all benefits
of the proposed scheme. Hence, it is necessary to ensure that
the decision to change operation mode is made only if the
resulting benefit is expected to be long term. Thus, we plan to
rely on the estimated ED

2
P in our future work as explained

below.

After a certain number of retired instructions, referred to
as window, a tentative morphing decision about the best mode
(OOO or InO) could be made based on the estimated ED

2
P .

To avoid too frequent switching between the modes (InO
and OOO), we plan to wait until the new execution phase
is stabilized. To that end, we base our morphing decision
on the most frequent tentative decision made for the past
n retired instructions. Morphing overheads for our scheme
is estimated to be low as there is no need to change the
state of the register file, caches and branch predictors as in
previous schemes. The overhead associated with our scheme
is due to the power gating/power up of the ROB, RAT and
LSQ units and partial power on/off of fetch, decode and
execution units while switching between OOO and modes. Due
to the low overhead associated with our morphing scheme, we
can dynamically morph from one mode to another at a fine-
grained instruction granularity. As mentioned earlier, the InO
mode with reduced architectural units provides better energy
efficiency at the cost of lower performance. It is critical that we
move into InO mode only when we expect increased energy
benefits without compromising performance significantly. To
minimize the performance loss encountered while running in
this dynamic configuration (OOO + InO modes), using ED

2
P

as the decision metric assigns higher weight to performance
than energy.

IV. CONCLUSIONS

Applications experience a change in characteristics over
time. Hence, different core configurations may be better suited

for lower energy and higher performance at different time
instances. Traditionally, Asymmetric Multicores (AMP) have
been considered to support the diverse needs of applications. In
a typical scenario, depending on the current application char-
acteristics, threads are swapped between the available cores
in an AMP such that the target objective function related to
energy and performance is optimized. Excessive thread migra-
tion overheads limit the instruction granularity at which such
thread swapping decisions may be made, even though many
opportunities present themselves at fine grain granularities. In
this paper, we have considered an architecture that is capable of
realizing these benefits at finer instruction granularities. In the
proposed scheme, depending on the application characteristics,
a superscalar OOO processor may morph itself into an in-
order (InO) core at runtime, if deemed to be beneficial. Such
morphing is already been supported in certain Intel processors,
bearing testament to the feasibility and practicality of this
approach.

V. ACKNOWLEDGEMENT

This research was supported in part by grants 0903191 and
1201834 from the National Research foundation.

REFERENCES

[1] J. Held et al., “White paper from a few cores to many: A tera-scale
computing research review,” 2006.

[2] M. Pericas et al., “A flexible heterogeneous multi-core architecture,”
in Proceedings of the 16th International Conference fmdahlon Parallel

Architecture and Compilation Techniques, ser. PACT ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 13–24.

[3] R. Kumar et al., “Single-isa heterogeneous multi-core architectures:
the potential for processor power reduction,” in Microarchitecture,

2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International

Symposium on, dec. 2003.

[4] R. Rodrigues et al., “Performance per watt benefits of dynamic core
morphing in asymmetric multicores,” in Parallel Architectures and

Compilation Techniques (PACT), 2011 International Conference on, oct.
2011, pp. 121 –130.

[5] M. Becchi and P. Crowley, “Dynamic thread assignment on het-
erogeneous multiprocessor architectures,” in Proceedings of the 3rd

conference on Computing frontiers, ser. CF ’06, 2006.

[6] A. Lukefahr et al., “Composite cores: Pushing heterogeneity into a
core,” in International Symposium on Microarchitecture (MICRO), 2012

IEEE/ACM International Symposium on, dec. 2012.

[7] D. Koufaty et al., “Bias scheduling in heterogeneous multi-core archi-
tectures,” in Proceedings of the 5th European conference on Computer

systems, ser. EuroSys ’10.

[8] C. Kim et al., “Composable lightweight processors,” in Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microar-

chitecture, ser. MICRO 40. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 381–394.

[9] D. Tarjan et al., “Federation: Repurposing scalar cores for out-of-order
instruction issue,” in Design Automation Conference, 2008. DAC 2008.

45th ACM/IEEE, june 2008, pp. 772 –775.

[10] Khubaib et al., “Morphcore: An energy-efficient microarchitecture for
high performance ilp and high throughput tlp,” in International Sym-

posium on Microarchitecture (MICRO), 2012 IEEE/ACM International

Symposium on, dec. 2012.

[11] G. Contreras and M. Martonosi, “Power prediction for Intel XScale reg;
processors using performance monitoring unit events,” in Low Power

Electronics and Design, 2005. ISLPED ’05. Proceedings of the 2005

International Symposium on, aug. 2005, pp. 221 – 226.

[12] K. Singh et al., “Real time power estimation and thread scheduling via
performance counters,” SIGARCH Comput. Archit. News, vol. 37, no. 2,
pp. 46–55, Jul. 2009.

498

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

