
A Study on Polymorphing Superscalar Processor Dynamically

to Improve Power Efficiency

Sudarshan Srinivasan, Rance Rodrigues, Arunachalam Annamalai, Israel Koren and Sandip Kundu

Department of Electrical and Computer Engineering

University of Massachusetts at Amherst, MA, USA

Email: {ssrinivasan, rodrigues, annamalai, koren, kundu}@ecs.umass.edu

Abstract—Asymmetric Multicore Processors (AMP) have emerged as

likely candidates to solve the performance/power conundrum in the

current generation of processors. Most recent work in this area evaluate

such multicores by considering large (usually out-of-order (OOO)) and

small (usually in-order (InO)) cores on the same chip. Dynamic online

swapping of threads between these cores is then facilitated whenever

deemed beneficial. However, if threads are swapped too often, the

overheads may negatively impact the benefits of swapping. Hence, in

most recent work, thread swapping decisions are made at coarse grain

instruction granularities, leaving out many opportunities. In this paper,

we propose a scheme to mitigate the penalty imposed by thread swapping

and yet achieve all the benefits of AMPs. Here, a single superscalar OOO

core morphs itself into an InO core at runtime, whenever determined to

be performance/Watt efficient. Certain Intel processors already have a

similar mechanism to statically morph an OOO core to an InO core to

facilitate debug. We extend this existing capability to perform dynamic

core morphing at runtime with an orthogonal objective of improving

power efficiency. Results indicate that on an average, performance/Watt

benefits of 10% can be extracted by our proposed morphing scheme at

a very small performance penalty of 3.8%. Since this scheme is based

on existing mechanisms readily available in current microprocessors, it

incurs no hardware overheads.

Keywords-Core Morphing; Asymmetric Multicore Processor (AMP);

Out-of-Order (OOO); In-Order (InO)

I. INTRODUCTION

Modern multicore processors provide increased transistor density

which has enabled complex functionality and increased performance.

This, however, has led to a power density problem. The increase

in power density has become unsustainable at 100 W/cm2 due to

packaging limitation, resulting in packaging and microarchitectural

changes in processor. The processor industry responded to this

problem by incorporating multiple simple processors (Symmetric

Multicore Processor (SMP)) on the same die [1]. Such processors

are better suited for Thread Level Parallelism (TLP), but performance

suffers whenever sequential applications are encountered [2].

Asymmetric Multicore Processors (AMP) were introduced as a

potential solution to this conundrum. There have been a number

of proposals made in literature [3], [4], [5], [6], [7] and recently,

major corporations have released their own versions of AMPs [8].

Here, multiple cores of varying capabilities are included on the same

chip. Usually, these cores are of two types; big (OOO) and small

(InO). The big cores generally provide good performance while the

smaller ones are power efficient. During runtime, whenever deemed

beneficial, threads are swapped between the cores such that the

objective function (energy, performance/Watt etc.) is satisfied. These

multicores have been shown to significantly outperform the SMP

counterparts, for a given area and power budget [3], [6], [9].

Thread swapping between cores incurs a performance overhead.

This overhead can vary from a few thousand [6] to millions of cycles

[10], [11] depending on the shared cache hierarchy and the algorithm

used to make the swapping decisions. Hence, in most proposals,

thread swapping decisions are made at the granularity of hundreds of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

IP
C

Instructions retired

IPC(OOO)

IPC(Inorder)

0.12

0.14

0.16

0.18

5
0
0

2
0

0
0

3
5

0
0

5
0

0
0

6
5

0
0

8
0

0
0

9
5

0
0

IP
C

Instructions retired

Fig. 1. IPC comparison between the OOO and InO cores when executing the
workload mcf. In the main figure, each point on the horizontal axis represents
50K retired instructions. In the inset figure, IPC for the the instructions from
0 - 10K have been sampled at 500 instructions.

thousands to millions of instructions [3], [10], such that the overhead

associated with swapping threads is amortized over time. However,

such an approach misses out on numerous opportunities that present

themselves at a more fine grain instruction granularity [12]. This

point is illustrated in Figure 1 where the IPC resulting from running

the workload mcf on the OOO and InO cores is shown. In figure,

the IPC is sampled at coarse grain instruction granularities of 50K

instructions. Here, it can be seen that at no point is the IPC of the InO

core comparable to that of the OOO core. However, when considering

a more finer instruction granularity of 500 instructions (inset), it can

be seen that not only are the IPCs of the two cores comparable, but at

some points in the plot, the InO core outperforms the OOO core. The

InO is the power efficient core and from the figure, it is clear, that at

smaller instruction granularities, there is even more potential to make

gains in performance/Watt by switching operation from OOO to the

InO core. However, swapping threads at such a small granularity in

current AMPs, will likely negate all benefits. Hence, there is need

for a more fine grain switching mechanism that does not incur large

thread swapping penalties.

In this paper, we propose an architecture that reaps most of the

benefits of AMPs and yet incurs almost no penalty usually associated

with thread swapping. This is achieved by introducing heterogeneity

within the same core by morphing it from OOO to InO and vice-versa.

Intel’s processors feature a special debug mode in which the OOO

core turns into an InO core for debug purposes [11]. We propose to

extend this mechanism for power efficiency by dynamic entry into

and exit from the InO mode, which allows registers and the cache to

retain their states, reducing overhead of morphing.

In our scheme, only a single core is considered. In the baseline

mode, the core operates in the OOO mode providing high perfor-

mance. However, during low IPC phases, the operation mode may

2013 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-1331-2/13/$31.00 ©2013 IEEE 46

time

Decision point

Mode OOO
Mode InO

Mode OOO

Decision point

T1 T2

Fig. 2. Change in processor operating modes as a function of time. Initially,
the core operates in OOO mode. At time instant T1, it is determined that InO
mode is beneficial with respect to performance/Watt and hence the switch in
operation mode. Finally, at time T2, the benefits of the InO mode go away
and hence, the switch back to the OOO mode.

be switched to the InO mode for performance/Watt improvements.

A similar switch is made from InO to OOO when these benefits are

predicted to have diminished. The general operation of the proposed

morphable core is shown in Figure 2. By switching operation

modes on the same core, the proposed scheme takes advantage of

heterogeneity and at the same time, incurs no overheads usually

associated with thread swapping. It is thus capable of realizing the

opportunities that exist at fine grain instruction granularities which

results in significant performance/Watt gains.

Results indicate that when using an oracular decision making

mechanism to determine thread swapping, such core morphing can

result in average performance/Watt gains of 10% at a very small per-

formance penalty of only 3.8% for a wide variety of workloads. Since

the proposed scheme makes use of existing facilities in a processor, it

has the advantage of being completely designed and verified in silicon

and incurs no hardware overheads unlike several comparable schemes

[12], [13], [14], [15], [16] We make the following contributions:

1) Quantification of the performance/Watt benefits of using in-

built mechanisms designed for debug in modern proces-

sors [11].

2) Studies on the trade-off between performance loss and perfor-

mance/Watt gain by switching between OOO and InO modes

of operation on the same core.

The rest of the paper is organized as follows. In Section II, we

cover some of the recent advancements in thread scheduling on

AMPs. In Section III, the proposed architecture and implementation

details are presented. Experimental setup is presented in Section IV

which is followed by Results and Conclusions in Sections V and VI,

respectively.
II. RELATED WORK

With AMPs gaining traction in recent times, there have been

a number of proposals made on the subject. We cover some of

the recent advances made in AMP thread scheduling and dy-

namic/morphable multicores.

A. Thread scheduling in AMPs

Several proposals exist employing offline regression based analysis

techniques [17], [18], [19] for thread scheduling in AMPs. Here, the

characteristics of the workloads that will be run on the AMP are

learned offline which is then used online to schedule threads. Such

approaches need prior knowledge and hence in some cases may not

be practical.

Solutions that learn workload behavior online and based on this

make thread scheduling decisions offer a more practical and generic

solution to the AMP scheduling problem. Phase classification [20]

and sampling techniques have been used to perform scheduling [3],

[10], [21], [6]. Whenever an earlier detected phase is encountered

again, information gathered from history is used to make the best

thread to core assignment. However, sampling poses an overhead and

hence such scheme may not be scalable with increasing core counts

[7], [11], [22].

Estimation based scheduling is an improvement over such schemes.

Here, the performance and/or power of running a thread on another

core in the AMP is estimated using statistics such as cache misses

and pipeline stalls gathered on the host core [6], [7], [11], [12], [22],

[23].

Thus, it can be seen that several techniques exist for online thread

scheduling. In this paper, we assume the presence of performance

and power estimation schemes for dynamic decision making since,

our focus is the exploration of the benefits of core morphing. The

implementation of an online estimation scheme by using performance

counters and regression analysis is part of our future work.

B. Morphable or dynamic multicores

There have been several proposals that advocate dynamic morphing

of multicores or single cores such that performance and power

efficiency is enhanced at run time.

In a number of proposals, the starting point is a multicore

consisting of small cores which then fuse together into a large

OOO core on demand [13], [14], [15]. Such approaches suffer from

additional latencies that arise from combining resources from various

cores. A different scheme was adopted by Khubaib et al. in [16]

where they start with a baseline OOO core that morphs itself into

Simulteneously Multithreaded InO core depending on the number of

incoming threads. All such schemes require significant changes to

the microarchitecture to be realized in practice.

Dynamic sharing of processor resources for power and perfor-

mance benefits is also a well explored area. Kumar et al. [24] explore

sharing of various large structures in the multicore for energy and

area savings. In [6], Rodrigues et al. explored dynamic exchange of

execution units such that performance/Watt is improved. However,

all such schemes require extra circuitry that must be designed and

verified.

In, [12], Lukefahr et al. make a proposal that is similar to ours.

In their scheme heterogeneity is introduced into the same core by

provisioning two execution backends to the same core. One backend

is OOO while the other InO. Both backends share the same caches

and fetch units. However, there are several differences between

theirs and our proposal. Firstly, Lukefahr et al. employ two different

backend pipelines (register file, execution units etc.) and decode

unit while our scheme uses the same for both modes (OOO and

InO). The additional units increase the core area, design/verification

effort and time. More importantly, during operation mode switch,

their scheme requires the architectural states to be transferred across

the two pipelines which adds to the overhead. In contrast, the same

register file is used by the two modes in our scheme. Finally, our

scheme differs with respect to operations performed at the time of

a mode switch (OOO to InO and vice versa). Whenever the scheme

decides to switch from OOO to InO, the ROB is power gated and

the subsequent instructions are re-fetched in InO mode. Unlike [12],

our scheme does not delay the OOO to InO mode switch until all

the other speculative instructions are drained from the ROB. Hence,

we fully capitalize on the power benefits of moving to the InO mode

while keeping the switching complexity and overhead at bay. When

switching from InO to OOO mode, the ROB is powered back on and,

the head and tail pointers of the ROB are re-initialized to point to the

same slot. Hence, the ROB is presumed to be completely empty when

the core is morphed back to the baseline OOO mode. Our scheme

thus has simplicity and relies on existing mechanisms (used by Intel

for debug [11]) for core morphing which makes it a very attractive

and practical proposal.

47

L1 I-Cache

Front End

Fetch

BP

Decode

Reg

File

OOO Backend

Execution units

RAT ROB LSQ

L1 D

Cache

L2

Cache

L1 I-Cache

Front End

Fetch

BP

Decode

Reg

File

Backend

Reduced Execution

RAT ROB LSQ

L1 D

Cache

L2

Cache

(a) Baseline 4-way OOO core

(b) Baseline core morphed to an in-order core

Fig. 3. (a) High-level view of the 4-way OOO baseline core. (b) The InO core obtained by morphing the baseline core. The blue shaded regions indicate
the units that are power-gated during InO execution. BP - Branch Predictor.

III. PROPOSED SCHEME

In this section, the proposed core morphing scheme which has

the capability to switch between OOO and InO modes at fine-

grained time intervals is described in detail. Figure 3(a) shows the

considered baseline core which is a 4-way issue OOO complex

superscalar core. To facilitate OOO execution and InO commit, the

backend is provisioned with register alias table (RAT), load/store

queue (LSQ) and ROB. The exact sizes of these resources are

discussed in Section IV. A significant performance benefit is achieved

by executing the thread on the baseline core (OOO) during high-

ILP phases. However, when the processor stalls due to dependencies

or is waiting for long-latency memory operations to complete, most

of the core resources are idle wasting static power. An InO core

with reduced fetch width and downsized core resources may be

more power efficient during such phases. To that end, during low-

ILP/memory intensive phases, we make use of the existing debug

facilities such as that in Intel processors and switch operation from

OOO to InO [11]. Further, we power off the ROB, RAT, LSQ and half

of the decoders (since fetch width is also reduced to 2) completing

the transition from the baseline OOO core to an InO core. The

configuration of the processor in the InO mode is discussed in Section

IV. The InO core (see Figure 3(b)) is thus more power efficient than

the OOO core. While in InO mode, if the program moves to a high-

ILP phase, the shut down units are powered on, reverting back to the

baseline OOO execution.

We next explain in detail our scheme that decides when to morph

at runtime.

A. Oracular morphing scheme

As we study the potential benefits of core morphing at fine-grained

instruction granularities, we employ an oracular scheme to govern the

control of morphing the core to adapt to the time-varying program

behavior. Such an oracular scheme would provide an estimate on the

upper bound on the performance/Watt benefits that could be achieved

by morphing. Note that the implementation of a performance and

power estimation scheme [7], [11], [12], [22] is part of future work.

The InO core with many of the core resources powered off con-

sumes much less power at the potential cost of performance. Hence,

it would be worthwhile to explore the potential performance/Watt

benefits of morphing within a given performance constraint. In line

with earlier proposals [12], we assume an overall performance loss

of (5-10)% is tolerable relative to running the application completely

on the baseline OOO core.

The program thread, by default, begins its execution in OOO mode.

The performance and performance/Watt of executing fixed number

of committed instructions on both operation modes, referred to as

window, is assumed to be known to the oracle. For most of the

windows, the OOO mode is expected to deliver higher performance

while the InO mode is expected to achieve higher performance/Watt.

At the end of each window, the oracle determines the best mode

(OOO or InO) to execute the program phase. An OOO to InO switch

is effected if the following conditions are met for that window:

1) Performance improvement achieved by the OOO mode relative

to the InO mode is less than a predefined threshold.

2) Performance/Watt achieved in InO mode is greater than that in

OOO mode.

It should be noted that the above threshold could be very different

from our performance constraint goal (of overall performance loss of

<5%) as the thread may not be run in InO mode for majority of the

windows. For lower threshold values, the first condition implies that

no significant performance difference is observed between the two

modes and hence, it would be better to execute the thread in InO

mode to save power. The scheme morphs back from InO to OOO

mode if the above two conditions are not satisfied for a window.

Under such circumstances, the potential benefits of InO mode are

deemed to have diminished.

The parameters of the scheme; namely the window size and the

value of threshold need to be determined such that the performance

constraint goal is met. As there is no analytical means to determine

these parameters, they were obtained experimentally, the details of

which are explained in Section V.

B. Morphing overheads

The overheads associated with earlier morphing [25], [12] or

thread swapping [3], [7], [10] schemes are prohibitive, limiting core

re-configurations (morphing/swapping) to occur at coarse-grained

granularities. These overheads mainly stem from the communica-

tion latency to send/receive data operands/results [25], exchanging

architectural states and the additional time required to warm up the

dedicated caches and branch predictors [10], [11]. As the morphing

happens within the same core in the proposed scheme, all the critical

units (e.g., register file, caches and branch predictors) are already

intact, completely avoiding all the above overheads. As shown in

Figure 3(b), the only overhead associated with our scheme arises

from partial powering off/on of the fetch, decode and execution units

and complete shut-down/power-up of ROB, RAT and LSQ to switch

48

TABLE I
CONSIDERED BASELINE CORE PARAMETERS. THE VALUES WITHIN

PARENTHESIS REPRESENT THE CHANGE WHILE IN INO MODE.

Param Value Param Value

Issue 4 (2) INTREG 96 (NA)

FPREG 80 (NA) INTISQ 36 (NA)

FPISQ 24 (NA) LS units 3 (1)

LSQ 32 (NA) ROB 128 (NA)

L1(I/D) 32K L2 2M

Freq (GHz) 2.4 Type OOO (InO)

TABLE II
EXECUTION UNIT SPECIFICATIONS FOR THE BASELINE CORE. (P -

PIPELINED, NP - NOT PIPELINED, PP - PARTIALLY PIPELINED).THE

VALUES WITHIN PARENTHESIS REPRESENT THE CHANGE WHILE IN INO
MODE

FP DIV FP MUL FP ALU

1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 (1) units, 3 cyc, P

INT DIV INT MUL INT ALU

1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 (2) units, 1 cyc, P

between InO and OOO modes. Power gating or power up of all these

blocks simultaneously may result in large power surge. Hence, we

assume a staggered gating where only a single block is power gated

every clock cycle totaling to 6 cycles for 6 blocks. Therefore, all our

results assume an overhead of 10 cycles (with additional margin of

4 cycles) for each mode switch.

IV. EXPERIMENTAL SETUP

To evaluate the proposed core morphing scheme, we used a

complex superscalar OOO processor as the baseline core. The list

of the considered core parameters and execution latencies are shown

in Tables I and II, respectively. Most of the core parameters and

latencies were taken from [26]. It can be seen from Table I that the

baseline core with large core resources (e.g., integer and floating-

point registers, issue queues, L2 cache) is suited for high-end appli-

cations and is representative of modern superscalar processors. After

mode switch to the InO mode, all OOO logic (ISQ, RAT, ROB, LSQ)

is switched off. The resulting core configuration for the InO core is

shown in Tables I and II in the brackets.

We used SESC for performance simulation [27] and employed

CACTI [28] and Wattch [29] to calculate power with modifications

to account for static power. The evaluation was carried out using 10

benchmarks from the SPEC2K [30] and Mediabench suites [31]. The

benchmarks were carefully chosen to be diverse in nature and were

run for 500 million instructions after skipping the initial 5 billion.

V. RESULTS AND ANALYSIS

We now present the experimental results of our proposed core

morphing scheme. Determination of window size length (discussed

in Section III-A) i.e. the number of retired instructions after which

morphing decision must be made, is an important parameter of the

scheme. Too small a window size may result in too frequent switching

between operation modes, negating the potential performance/power

benefits. On the other hand, too large a window may not realize

any benefits at all. Once the window size is determined, results

are presented on performance/Watt savings for varying performance

loss thresholds. Finally, we present the overall performance/Watt

improvement achieved using our scheme over the baseline core for

all the considered workloads.

A. Determining the window size

To determine the window size, we make an assumption that a small

performance loss (5-10)% for a substantial gain in performance/Watt

is acceptable (25-30)%. We experimented with various window sizes

0

5

10

15

20

25

30

35

40

0

100

200

300

400

500

600

700

800

250 500 750 1K 5K 10K 50K

%
In

cr
ea

se
 i

n
 I

P
C

/W
a
tt

S
w

it
ch

es
 p

er
 m

il
li

o
n

 i
n

st
ru

ct
io

n
s

Window length in instructions

Switches per million instructions (mcf)

Switches per million instructions (equake)

%Increase in IPC/watt Morph over OOO (mcf)

%Increase in IPC/watt Morph over OOO (equake)

Fig. 4. Sensitivity analysis on window size vs. achieved performance/Watt
improvement over baseline OOO mode and number of switches between
operation modes.

varying from 250 to 100K retired instructions to explore the horizon.

At the end of each window, our proposed scheme makes the decision

regarding the best mode of operation (OOO or InO) based on the

oracular knowledge.

Figure 4 shows the percentage improvement in performance/Watt

of the proposed core morphing scheme over the baseline OOO mode

(see Figure 3(a)) and the number of switches/million instructions

for 2 benchmarks (equake and mcf) for different window sizes.

We show results for these workloads since benefits observed for

these were the largest. In the figure, Morph core represents the core

with the proposed core morphing capability where the execution

switches between the OOO and InO modes depending on current

operating conditions. For small window sizes, a substantial gain

in performance/Watt over the baseline OOO mode for both mcf

and equake is observed which starts to decrease with increasing

window sizes. This is expected as smaller the interval, more are the

opportunities presented [12]. Hence, theoretically in the absence of

mode switching overheads, the smaller the interval the better. From

the figure, it can be seen that increasing the window size from 250

to 500 results in less than 2% gain in performance/Watt for both

workloads but the number of switches in operation modes between

OOO and InO drops significantly (700 to 226 for mcf and 440 to

150 for equake per million instructions executed). This will result

in smaller mode switch overhead. Increasing the instruction interval

further results in significant performance/Watt loss (≥ 4%) and no

appreciable decrease in number of mode switches. The optimum

instruction window length that would provide siginifcant increase

in performance/Watt without adding too much overhead due to the

number of switches required was thus found to be 500. Hence, in the

rest of this paper, we use a window size of 500 instructions.

B. Analysis of performance threshold variation

Morphing to the InO mode of operation incurs a small overhead

due to power gating the various unused structures. Further, in some

cases it may make sense to run in the InO mode, even if the perfor-

mance in that mode is smaller than but close (within a percentage

threshold) to that in the OOO mode such that performance/Watt is

maximized. To explore the potential benefits of such sacrifice in

performance on performance/Watt gains, we conducted experiments

with various performance thresholds. Decisions are made at the end

of every 500 executed instructions as determined in the previous

section. Our oracular scheme follows the greedy approach and tries

to switch to the InO mode whenever possible. At the end of every

interval, the oracle computes the performance difference between

49

Fig. 5. Variation of performance(IPC) threshold vs percentage increase in
IPC of OOO core over Morph core for mcf

0

50

100

150

200

250

300

350

400

450

-5

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80

#
 S

w
it

ch
es

p

er
 m

il
li

o
n

 i
n

st
ru

ct
io

n
s

%
 D

ec
re

a
se

 i
n

 I
P

C
 (

IP
C

/W
a

tt
)

o
v

er

O
O

O
 (

In
-O

rd
er

 c
o

re
)

% Threshold

% Decrease in IPC/Watt of morph over InO core

% Decrease in IPC of morph over OOO core

Switches/million instructions

Fig. 6. Plot showing the variation of IPC, performance/Watt and number of
switches of morphed core with performance threshold for mcf

that obtained in the OOO mode and the InO mode. In Figure 5,

the %increase in IPC of the OOO mode over the morph core is

plotted for various performance thresholds for the workload mcf.

Threshold of 60% indicates that the switch from OOO mode to InO

mode may be made if the % increase in IPC of OOO mode to InO

mode is less than or equal to 60%. If this condition is satisfied, the

oracle then computes the resulting gain in performance/Watt after

switching. A switch in operation mode is triggered only if both the

above 2 conditions are satisfied for a particualr window. As shown

in Figure 5, for low performance threshold between (10-40)%, the

overall % increase in IPC of OOO core with respect to running in

the morphed core is extremely small. This is expected, since for low

performance threshold, number of switches from OOO mode to InO

mode is quite small . For a performance threshold of greater than

50%, there is more opportunity for switching to InO mode. From

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

%
T

im
e

sp
en

t
o

n
 t

h
e

 I
n

-
O

rd
er

 (
In

O
)

co
re

%
 I

n
cr

ea
se

(d
ec

re
a
se

)
in

 I
P

C
/W

a
tt

 (
IP

C
)

o
f

M
o

rp
h

 c
o

re
 o

v
er

 O
O

O
 c

o
re

% Increase in IPC/Watt of Morph core over OOO core

% Decrease in IPC of Morph core over OOO core

%Time spent on the In-Order (InO) core

Fig. 7. Plot showing the maximum performance/Watt achieved still maintaing
the overall performance loss within (5-10)%

Figure 5, we conclude that if the performance threshold is about

60%, the overall performance loss of morph core with respect to

OOO core is less than 10% and hence may be within the acceptable

limit when running the workload mcf.

More in-depth analysis for choosing the appropriate switching

threshold is shown in Figure 6. We need to find an optimum

performance threshold such that overall performance loss is tolerable

(5-10)% and there is substantial overall gain in performance/Watt. As

shown in Figure 6, at a threshold between (55-65)% we find that %

decrease in IPC of the morph core over OOO core is less than 10%.

Plot showing the % decrease in performance/Watt of morphed core

over InO core is also shown in Figure 6. This plot is of significance,

since it helps us understand the % performance/Watt that has been

lost by running the core in morphed core as compared to running the

application completely on the InO core. Again, at a threshold point

between (55-60)%, the % decrease in performance/Watt is between

(5-10)% and the number of mode switches per million instructions

is between (200-250). For performance threshold greater than 60%,

the number of switches increases significantly with not much of a

gain in performance/Watt. Performance loss suffered by morphed

core also increases steeply for threshold greater than 60%. Thus we

conclude that optimum performance threshold lies between (55-60)%

for the workload mcf. We add a guard band to prevent oscillation

between operating modes. Hence, for the benchmark mcf the decision

points are threshold of 55% for entering and 65% for exiting the InO

mode. Different benchmarks have different charactersitics and we

have conducted an extensive analysis for all the benchmarks similarly

to find the appropriate performance threshold. We have found that

there exists a different performance threshold for each workload.

Our objective is to find the upper bound on the benefits of the core

morphing scheme. Hence, in this paper we use the most optimum

threshold for each workload. Exploring a common threshold over

all workloads is part of future work. The threshold used for each

workload is shown in Table III.

C. Morphing benefits on performance/Watt

The performance/Watt benefit obtained for different benchmarks is

shown in Figure 7. Memory bound benchmarks like mcf and equake

obtain significant improvement in performance/Watt when compared

to the baseline scheme where the benchmarks are run completely

in OOO mode. For mcf we achieve close to 35% improvement

in performance/Watt while running in morphed core. This increase

comes at the cost of a performance overhead of only 10%. For equake

we achieve performance/Watt improvement of close to 15% with drop

in performance of only 5%. For other benchmarks, we have achieved

close to 5% improvement in performance/Watt without much loss

in performance. On an average, the proposed scheme achieves a

performance/Watt benefit of 10% at an overall performance loss of

just 3.8% considering all the workloads. In Figure 7, we also show the

percentage of time spent in the InO mode. More the time spent, more

is the expected gain in performance/Watt and consequently more is

the expected performance loss. It can be seen that in general this is

the case. In particular, the InO mode is used for around 80% of the

time when executing mcf which is a memory intensive application.

This shows that for low IPC applications, the proposed scheme is

capable of extracting significant performance/Watt benefits at a small

performance loss.

In Table III, we also show the average number of mode switches

per million instructions as made by the oracular mechanism. The

number of switches is high for benchmarks that show significant

increase in performance/Watt. Due to complete sharing of resources

50

TABLE III
PERFORMANCE THRESHOLD INDICATING THE ENTRY AND EXIT

CONDITIONS FOR THE MORPH MODE AND NUMBER OF SWITCHES IN

OPERATING MODE PER MILLION INSTRUCTIONS

Benchmark Threshold (range) Switches/million

determined instructions

mcf 55-65 230

equake 55-60 180

sha 50-55 300

pi 50-55 100

swim 55-60 105

art 55-60 60

gcc 65-70 120

bzip 65-70 120

twolf 60-65 170

between OOO and InO operation modes, fine grain switching is

possible at the cost of very low switching penalty. On an average,

the overall impact in performance due to switching was found to be

less than 1%.

VI. CONCLUSIONS

AMPs have emerged as the likely solution to the perfor-

mance/power problem faced by the current generation of multicore

processors. Prohibitive thread swapping overheads limit the potency

of these architectures. In this paper, we have presented an architecture

that provides the benefits of AMPs and does away with thread

swapping. We propose to bring about heterogeneity within a core.

This is made possible by using the debug mechanisms currently

in use in the industry where operating mode of a core may be

switched from OOO to in-order (InO). In the baseline mode, the

considered processor operates in the OOO mode providing high

performance. During low IPC phases, the core switches operation

mode to InO such that performance/Watt is maximized. To explore

the upper bound on the benefits of the architecture, an oracular

decision making mechanism was employed to determine time instants

of mode switch. Results indicate that core morphing can result in

average performance/Watt gain of 10% which comes at a very small

performance penalty of just 3.8%.

VII. ACKNOWLEDGEMENT

This research was supported in part by grants 0903191 and

1201834 from the National Research foundation.

REFERENCES

[1] J. Held et al., “White paper from a few cores to many: A tera-scale
computing research review,” 2006.

[2] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33 –38, july 2008.

[3] R. Kumar et al., “Single-isa heterogeneous multi-core architectures:
the potential for processor power reduction,” in Microarchitecture,

2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International

Symposium on, dec. 2003.

[4] ——, “Core architecture optimization for heterogeneous chip multipro-
cessors,” in Proceedings of the 15th international conference on Parallel

architectures and compilation techniques, ser. PACT ’06, 2006.

[5] M. A. Suleman et al., “Accelerating critical section execution with
asymmetric multi-core architectures,” SIGPLAN Not., vol. 44, no. 3, pp.
253–264, Mar. 2009.

[6] R. Rodrigues et al., “Improving performance per watt of asymmetric
multi-core processors via online program phase classification and adap-
tive core morphing,” ACM Trans. Des. Autom. Electron. Syst., vol. 18,
no. 1, pp. 5:1–5:23, Jan. 2013.

[7] ——, “Scalable thread scheduling in asymmetric multicores for power
efficiency,” in Computer Architecture and High Performance Computing

(SBAC-PAD), 2012 IEEE 24th International Symposium on, 2012, pp.
59–66.

[8] P. Greenhalgh, “Big.little processing with arm cortex-a15 and cortex-a7,”
sep. 2011.

[9] E. Grochowski et al., “Best of both latency and throughput,” in Com-

puter Design: VLSI in Computers and Processors, 2004. ICCD 2004.

Proceedings. IEEE International Conference on, oct. 2004.
[10] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-

neous multiprocessor architectures,” in Proceedings of the 3rd confer-

ence on Computing frontiers, ser. CF ’06, 2006.
[11] D. Koufaty et al., “Bias scheduling in heterogeneous multi-core archi-

tectures,” in Proceedings of the 5th European conference on Computer

systems, ser. EuroSys ’10.
[12] A. Lukefahr et al., “Composite cores: Pushing heterogeneity into a

core,” in International Symposium on Microarchitecture (MICRO), 2012

IEEE/ACM International Symposium on, dec. 2012.
[13] C. Kim et al., “Composable lightweight processors,” in Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitec-

ture, ser. MICRO 40. Washington, DC, USA: IEEE Computer Society,
2007, pp. 381–394.

[14] D. Tarjan et al., “Federation: Repurposing scalar cores for out-of-order
instruction issue,” in Design Automation Conference, 2008. DAC 2008.

45th ACM/IEEE, june 2008, pp. 772 –775.
[15] M. Pricopi and T. Mitra, “Bahurupi: A polymorphic heterogeneous

multi-core architecture,” ACM Trans. Archit. Code Optim., vol. 8, no. 4,
pp. 22:1–22:21, Jan. 2012.

[16] Khubaib et al., “Morphcore: An energy-efcient microarchitecture for
high performance ilp and high throughput tlp,” in International Sym-

posium on Microarchitecture (MICRO), 2012 IEEE/ACM International

Symposium on, dec. 2012.
[17] O. Khan and S. Kundu, “A self-adaptive scheduler for asymmetric multi-

cores,” in Proceedings of the 20th symposium on Great lakes symposium

on VLSI, ser. GLSVLSI ’10, 2010.
[18] D. Shelepov et al., “Hass: a scheduler for heterogeneous multicore

systems,” SIGOPS Oper. Syst. Rev., vol. 43, April 2009.
[19] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous

multi-core processors,” in Proceedings of the 46th Annual Design

Automation Conference, ser. DAC ’09, 2009.
[20] T. Sherwood et al., “Phase tracking and prediction,” in Proceedings of

the 30th annual international symposium on Computer architecture, ser.
ISCA ’03, 2003.

[21] J. A. Winter et al., “Scalable thread scheduling and global power
management for heterogeneous many-core architectures,” in Proceedings

of the 19th international conference on Parallel architectures and

compilation techniques, ser. PACT ’10, 2010.
[22] V. Craeynest et al., “Scheduling heterogeneous multi-cores through

performance impact estimation (pie),” in Proceedings of the 39th Annual

International Symposium on Computer Architecture, ser. ISCA ’12,
2012, pp. 213–224.

[23] S. Srinivasan et al., “Efficient interaction between OS and architecture in
heterogeneous platforms,” SIGOPS Oper. Syst. Rev., vol. 45, pp. 62–72,
February 2011.

[24] R. Kumar et al., “Conjoined-core chip multiprocessing,” in Proceedings

of the 37th annual IEEE/ACM International Symposium on Microarchi-

tecture, ser. MICRO 37, 2004, pp. 195–206.
[25] R. Rodrigues et al., “Performance per watt benefits of dynamic core

morphing in asymmetric multicores,” in Parallel Architectures and

Compilation Techniques (PACT), 2011 International Conference on, oct.
2011, pp. 121 –130.

[26] A. Fog, “The microarchitecture of Intel, AMD and VIA CPU,” Copen-
hagen University College of Engineering, Tech. Rep.

[27] J. Renau, “Sesc: Superescalar simulator,” 2005.
[28] P. Shivakumar et al., “Cacti 3.0: An integrated cache timing, power, and

area model,” Tech. Rep., 2001.
[29] D. Brooks et al., “Wattch: a framework for architectural-level power

analysis and optimizations,” in Computer Architecture, 2000. Proceed-

ings of the 27th International Symposium on, june 2000.
[30] SPEC2000, “The Standard Performance Evaluation Corporation (Spec

CPI2000 suite).”
[31] C. Lee et al., “Mediabench: a tool for evaluating and synthesizing

multimedia and communicatons systems,” in Proceedings of the 30th

annual ACM/IEEE international symposium on Microarchitecture, ser.
MICRO 30, 1997.

51

