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ABSTRACT
Because most traditional homogeneous and heterogeneous proces-
sors have a fixed design that limits its runtime adaptability, they
are not able to cope with the varying application behavior when
one considers the axes of fault tolerance, performance, and energy
consumption altogether. In this context, we propose a new dynami-
cally adaptive processor design that is capable of delivering the best
trade-off among these three axes according to the application at
hand, or be tuned to optimize a specific metric. This is achieved by
extending a polymorphic processor that can change its issue-width
during runtime with specific mechanisms for fault tolerance, energy
optimization, and performance enhancement. They are controlled
by an optimization algorithm that evaluates and chooses which is
the best configuration according to given requirements. Consid-
ering a metric that weighs all three axes, the proposed adaptive
processor delivers a result that is 94.88% of the oracle processor
on average, while a static configuration (defined at design time
without runtime adaptation) only achieves 28.24% at most, which
means that dynamic adaptation is required to cope with different
application behaviors as there is not one specific configuration that
fits all applications.

CCS CONCEPTS
• Computer systems organization → Very long instruction
word; Reliability; Redundancy; • Hardware → Power estimation
and optimization;
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1 INTRODUCTION
As technology continues to evolve, more attention is paid to energy
consumption and fault tolerance when designing new processors.
While most of the embedded devices are heavily dependent on
battery power, General-Purpose Processors (GPPs) are being held
back by the limits of Thermal Design Power (TDP), highlighting
the importance of reducing energy consumption. In addition, the
need for fault tolerance on both space and ground-level systems
is increasingly present in current processor designs. As the fea-
ture size of transistors decreases, their reliability is getting more
compromised as they become more susceptible to soft errors [19].

On the other hand, current processors are designed to focus
on one or, at most, two of these axes. Achieving the ideal balance
among them is challenging, due to their conflicting nature. For
instance, reducing energy consumption will likely reduce perfor-
mance; increasing fault tolerance will increase energy consumption
and possibly reduce performance; and improving performance will
affect the energy consumption and possibly reduce fault tolerance.

Moreover, traditional core micro-architectures are not able to ef-
ficiently exploit the available resources to provide energy-efficient
computation. Most commercial processors have large out-of-order
cores (Intel Core i7) or small cores (ARM A15/A7). Large Out-of-
Order (OoO) cores provide high performance for single threaded
programs by exploiting Instruction-Level Parallelism (ILP), however,
they are extremely power-inefficient for Thread-Level Paralellism
(TLP) exploitation due to the complex OoO cores. On the other
hand, small cores are able to exploit the TLP without wasting en-
ergy and area at the cost of reduced single thread performance. In
order to cope with high ILP and TLP programs, heterogeneous chip
multiprocessors have been proposed. These processors provide a
few large cores for single thread performance and many small cores
for multithreaded applications. However, the number of cores of
each type must be chosen during design time, which restricts the
ability of the core to adapt itself for different applications that do
not fit the pre-determined number of cores, resulting in sub-optimal
performance and energy consumption [2].

To this end, we propose a new processor design capable of dy-
namically and transparently adapt the hardware to the current
application in order to deliver the best trade-off between fault
tolerance, energy consumption, and performance. The proposed
adaptive processor relies on a set of optimization techniques that
work together to improve each of the aforementioned axes. This
is achieved by extending a Very Long Instruction Word (VLIW)
processor [16], providing it with a dynamic optimization algorithm
that evaluates and chooses the best processor configuration for the
application at hand during runtime, and including the ability of
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switching between TLP and ILP modes (in a Morphcore fashion [9]),
so the processor can also balance ILP and TLP with fault tolerance
and energy consumption. In addition, we also enhanced the existent
fault tolerance mechanism by providing both temporal and spatial
instruction duplication, instead of only spatial, so we could enlarge
even more our design space and opportunities for optimization.

As case study, the polymorphic version of the ρ-VEX VLIW pro-
cessor [23], which is able to change the issue-width of the processor
during runtime, was modified to support instruction duplication
with rollback to improve fault tolerance, and power gating to re-
duce the energy consumption of the functional units. In addition,
a decision module that controls all these techniques dynamically
was implemented.

During the execution of each application, the optimization algo-
rithm changes the configuration of the processor for each execution
of a given kernel (i.e., a part of the program that is often executed
a large number of times during its execution [21]), and it evaluates
the outcome (a metric that considers the trade-off between fault
tolerance, energy consumption, and performance). Based on this
metric, the algorithm stops evaluating new configurations when the
best one is found (the one that delivers the best trade-off). There-
fore, a reduced number of steps can be performed by the learning
algorithm. In addition, multiple applications can be executed in
parallel, efficiently exploiting the available hardware.

Results show that the proposed processor is able to achieve, on
average, 94.88% of the result delivered by an oracle processor when
the trade-off between all axes is considered. The oracle processor
executes all applications with the optimal processor configuration.
On the other hand, the proposed adaptive processor evaluates and
chooses the optimal configuration during runtime after a brief
period of learning. A static processor configuration is only able to
achieve, at most, 28.24% of the results from the oracle processor,
demonstrating that a dynamic approach is required to efficiently
match the hardware to the requirements of the application.

The remainder of this paper is organized as follows. Related work
is discussed in Section 2. Next, in Section 3, the adaptive processor
implementation is presented. In Section 4 the results are discussed
in terms of the trade-off among fault tolerance, energy consump-
tion, and performance. Finally, Section 5 presents conclusions and
discusses future directions.

2 RELATEDWORK
Next, some works that provide adaptive fault tolerance mecha-
nisms are discussed, in which the level of instruction replication is
adjusted during runtime, depending on the application behavior.
Then, wewill discuss other works that also adapt w.r.t. othermetrics.
NEDA [12] proposes to exploit temporal and spatial duplication in
order to provide more flexibility in the instruction replication, as
instructions that cannot be replicated in a given bundle are stored
in a buffer so they can be executed in a following cycle. The authors
evaluate the duplication (for fault detection only) and the triplica-
tion of instructions in order to provide fault tolerance. However, no
reliability, area, power, and energy results are presented, only per-
formance ones. In addition, the memory latency is not exploited to
execute duplicated instructions (i.e., execute instructions while the
processor is waiting for the memory). Aaron [3] tackles software

and hardware errors by using diversified software components in
the CPU spare cycles. Eight methods are used in this diversification.
The system load is estimated, and the scheduler chooses the best
variant to use the spare cycles (e.g., executing a reliability-oriented
variant, which takes longer to execute, but is able to provide fault
tolerance). Therefore, whenever load permits, more fault coverage
is achieved; but it is only able to detect errors, not correct them.

A few works have proposed to target all three axes (i.e., fault tol-
erance, energy consumption, and performance): Tricriteria Sched-
uling Heuristics (TSH) [1] proposes an offline scheduling heuristic
that produces a static multiprocessor schedule, based on a given
application graph and a given multiprocessor architecture. In or-
der to increase reliability, the instructions are replicated; and to
reduce the energy consumption Dynamic Voltage and Frequency
Scaling (DVFS) is applied. A greedy scheduling algorithm takes as
input the application and architecture graphs, power and reliability
constraints, and the execution time of the operation considering
the maximum frequency to meet the reliability and energy require-
ments and minimize the schedule length based on the aforemen-
tioned techniques. However, all processing and scheduling are done
statically.

The authors in [20] propose a multi-objective strategy to choose
the best core type considering power efficiency and reliability. Four
Alpha processor core configurations are considered, varying volt-
age; frequency; size of the instruction queue, load-store queue and
reorder buffer; and fetch and issue widths. Hardware counters
are used to estimate the power dissipation and the Architectural
Vulnerability Factor (AVF) of the processor, and with this data, a
Cobb-Douglas production function is applied to choose the best
core for a given part of the application. Even though reliability is
considered, no solution to protect the cores (i.e., fault tolerance
mechanism) is proposed.

In [13], a high-level reconfiguration approach is presented, which,
based on user-defined constraints, changes the configuration of
a heterogeneous multicore processor. Their approach is heavily
based on the profiling of the applications before the execution,
which must be done for all different processor frequencies in a het-
erogeneous processor. At every (pre-defined) number of cycles, a
reconfiguration is triggered. The reconfiguration engine receives as
input the defined reliability level, power budget, and performance
counters; then, it defines what will be the frequency and voltage,
and if the Error Correction Code (ECC) and the L2 cache should be
enabled. The ECC is used to provide additional reliability, and the
L2 cache can be disabled to save power. Therefore, this approach
relies on static profiling of the application, limiting the dynamic
adaptation.

The authors in [17] investigate the trade-off between the afore-
mentioned axes in a Multiple Clustered Core Processor (MCCP). In
order to modify the organization of the processor during runtime,
some clusters are turned off, therefore, allowing to change between
high-performance (2-issue dual core) and moderate performance
(single issue dual core) processors (both superscalar processors
are homogeneous). To improve fault tolerance, Redundant Multi-
threading (RMT) technique is used, in which the threads of the
application are duplicated and compared. Their contribution is to
choose which configuration will be applied to the next part of the
application, which is done solely based on the past Instructions Per
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C1 I0 I1 I2 I3 NOP NOP NOP NOP

P0 P1 P2 P3 P4 P5 P6 P7

C2 I4 I5 I6 I7 I8 I9 NOP NOP

C3 I10 I11 NOP NOP NOP NOP NOP NOP

Program instr. Spatial dup. Temporal dup.

(a) Unprotected Processor

C1 I0 I1 I2 I3 I0 I1 I2 I3

P0 P1 P2 P3 P4 P5 P6 P7

C2 I4 I5 I6 I7 I8 I9 I6 I7

C3 I10 I11 I4 I5 I11 I12 I8 I9

(b) Temporal and Spatial Dup.

Figure 1: Temporal and Spatial Duplication Exec. Example

Cycle (IPC). Therefore, power and reliability do not influence the
decision mechanism.

In [16], the authors propose a processor design that supports
instruction duplication with rollback, power gating to reduce the
energy consumption, and ILP control to increase the possibility of
replicating instructions and applying power gating. Thresholds are
defined to aid the decision to choose which techniques are going
to be applied to the next phase of the application. The proposed
adaptive processor extends the work from [16] by applying both
temporal and spatial duplication, increasing the flexibility and cov-
erage of the duplicated instructions. In addition, it exploits both TLP
and ILP by using the polymorphic version of the ρ-VEX processor
and a optimization algorithm is proposed to dynamically evaluate
and change the processor configuration to adapt it to the applica-
tion that is being executed, considering the trade-off between fault
tolerance, energy consumption, and performance.

3 PROPOSED ADAPTIVE PROCESSOR
The adaptive processor is based on the polymorphic version of the
ρ-VEX processor. The available dynamic issue-width adaptation
was used and extended so the proposed techniques could also dy-
namically change at runtime. The chosen techniques to be part of
this processor, in each of the axes, are detailed next.

3.1 Implemented Techniques
3.1.1 Fault Tolerance - Spatial and Temporal Duplication. Spatial

duplication exploits idle resources within the same bundle (i.e., in
the same cycle) to execute duplicated instructions (more details
in [16]). However, spatial duplication sometimes is not able to
duplicate all instructions in a bundle due to lack of empty slots.
Thus, temporal duplication takes this technique one step further
by allowing duplicated instructions to be executed in subsequent
cycles, increasing the duplication flexibility. An example of temporal
duplication is depicted in Figure 1. In Figure 1b, the instructions I4,
I5, I8, and I9 are duplicated one cycle later than the original bundle.
In case of an error, the faulty instruction is re-executed to correct
the error. In order to maintain the consistency of the register file
and the memory, after all duplicated instructions from a bundle
are executed, or after verifying that those instructions will not be
duplicated because the buffer is full, the results are committed.

Figure 2 depicts the additional modules for the adaptive proces-
sor, that includes two buffers: an issue buffer and a commit buffer
(the remaining modules will be discussed later). The issue buffer is
responsible for storing those instructions that could not be dupli-
cated when only spatial duplication was applied. In this case, the
pending (duplicated) instructions are kept in the buffer until there
is a free slot so they can be scheduled. The commit buffer stores
the bundles which still have pending instructions to be executed
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Figure 2: Adaptive Processor Overview

and checked. Once all instructions from a given bundle are verified,
the bundle is committed.

The instruction scheduler first applies spatial duplication when
each bundle is going to be executed. If there are instructions that
could not be duplicated because there were not enough empty slots,
these instructions will be stored in the buffers for temporal duplica-
tion. On the other hand, if there are still idle slots, the instruction
scheduler will get pending instructions from the buffer and fill the
bundle.

When the buffer is full, the temporal duplication is not applied
to the next instructions until there is space in the buffer. Therefore,
those instructions that cannot be stored in the buffer will be com-
mitted without verification. Temporal duplication also exploits the
memory latency to execute duplicated instructions; whenever there
is a cache miss, the instruction scheduler will start using those idle
cycles to schedule the instructions that were waiting in the buffer.
In the remaining cycles of the cache miss, the core is power gated
in order to reduce the energy consumption while the processor is
waiting for the memory. A similar approach that applies power
gating while the processor is stalled on long memory access is pre-
sented by [8]. In order to increase the flexibility for the scheduling
of the duplicated instructions, we have added extra functional units
in each pipelane, which means that each pipelane is able to execute
any instruction: memory, control, or logic. The extra cost of these
functional units are taken into account, and the area overhead is
further discussed in the results section.

3.1.2 Energy Optimization - Power Gating. A Power Gating (PG)
mechanism, which is applied to the functional units of the processor,
was implemented so both dynamic and static energy can be reduced.
When all functional units from a given pipelane are turned off, the
whole pipelane is also turned off to reduce energy consumption
even more. A header transistor is used to turn off the supply voltage
to the circuit block, which creates a virtual Vdd. Considering the
technology parameters used in this work, the wake-up time of this
transistor is three cycles [7].

To control when PGwill be enabled, a small memory, called Basic
Block History Table (BBHT) (direct mapped memory to store the
PG configurations), is employed. Every time a program Basic Block
(BB) ends its execution (reaches a branch instruction), the Program
Counter (PC) of the next BB to be executed is searched in the BBHT.
In case the configuration for the next BB is not found (because that
BB was never executed before or because it was replaced), a PG
configuration is built. If the entry is found, the processor will turn
off the functional units according to the correspondent bits in the
PG configuration. Therefore, dynamically profiling the application
and detecting phases in which PG can be applied.
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3.1.3 Performance - Multiple Applications. As the ρ-VEX pro-
cessor has eight pipelanes, up to four applications can be executed
concurrently (each one executing in a 2-issue core) considering the
current implementation of the processor [23], which is similar to
the Morphcore processor [9].

3.2 Optimization Algorithm
The runtime adaptation process for the aforementioned techniques
comprises: modify the buffer size, enable or disable the power gating
mechanism, and change the issue-width. Figure 2 also depicts the
additional modules for the optimization algorithm, which comprises
two main phases: learning and runtime (detailed in the next subsec-
tions). The buffers contain several banks, which can be shutdown
to dynamically re-size the available buffer size. The bank size can
be configured during design time, and each bank can be powered
on/off independently by a bypass switch that enables or disables
the power supply to a given bank [11, 22]. The PG mechanism
is enabled and disabled through a control flag, and the hardware
modules responsible for these functions are shut down when these
mechanisms are disabled. Finally, the polymorphic ρ-VEX provides
the issue-width adaptation through a switch network.

The Configuration Memories are two small memories that are
used to store (1) the list of configurations that are going to be eval-
uated by the optimization algorithm and (2) the best configuration
(for each benchmark, identified by its Process ID (PID)) after the
learning phase is complete. The Application Dispatcher is responsi-
ble for scheduling the applications considering the available issue
slots and the configurations that were dynamically chosen by the
optimization algorithm, therefore, minimizing the idle hardware.
Finally, the Reconfiguration Controller is responsible for changing
the configuration of the processor during runtime. The whole pro-
cess of reconfiguring the polymorphic processor takes 8 cycles,
which is the time required to flush the pipeline, decode the new
configuration and start the execution [6].

3.2.1 Learning Phase. A learning algorithm was implemented
to evaluate different configurations and find which one delivers
the best trade-off considering fault tolerance, energy consumption,
and performance. This learning is done by changing the hardware
configuration (polymorphic behavior) at runtime so each execution
the application’s kernel can be evaluated with a different configu-
ration. For this, the kernel of the application is identified by using
pragmas (that can be inserted by a simple script), so the compiler
is able to generate a code that will inform the hardware which are
the regions that need to be evaluated. Therefore, the basic idea of
the learning algorithm is to evaluate a different hardware config-
uration each time a given kernel is executed until the best one is
found. This means that the application may run with a sub-optimal
configuration until the algorithm converges to the ideal. However,
as we will demonstrate in the results section, this learning phase
can be performed with minimal overhead.

In order to evaluate the trade-offs among the aforementioned
axes and choose the best configuration, the Mean Work Per Unit
of Energy to Failure (MWPUETF) metric is proposed. This metric
is composed of the Mean Work to Failure (MWTF), which was
adapted from [14], and the energy consumption of the application.
The MWTF equation is presented in (1), where the core utilization is

the ratio between the number of program instructions and the total
number of instructions (program instructions plus No-Operations
(NOPs)). With that, it is possible to capture the trade-off between
performance and fault tolerance. This allows to evaluate the relia-
bility of different issue-widths after removing the influence of the
NOPs and the difference in execution time when the issue-width is
changed. To obtain the failure rate, a fault injection campaign was
conducted and faults were injected at the design’s gate-level, using
the Simbah-FI framework [15]. The metric MWPUETF is depicted
in (2), which is the ratio between the MWTF and the energy con-
sumption. Each of these metrics is obtained at runtime by using
hardware counters, except the failure rate, which is obtained from
a previous fault injection campaign.

MWT F =
amount of work
number of er rors

=
core util ization

(f ailure rate) × (exec . t ime)
(1)

MW PU ET F =
MWT F

enerдy consumption
(2)

Algorithm 1 presents the learning phase. It has a list of configu-
rations to be evaluated that can be selected during design time (and
stored in one of the configuration memories), and it receives the
kernelList as a parameter, which is the identification of the target
applications’ kernels.

The following optimization decisions are made regarding the
learning flow:
• The issue-width is evaluated in the following order: 2, 4, then
8-issue. In addition, the number of evaluations is reduced if
the MWPUETF decreases when increasing the issue-width.
As an example, if the 4-issue core results in a worse MW-
PUETF when compared to the 2-issue, the 8-issue core will
not be evaluated, because it will result in a MWPUETF that
is lower than the 2-issue. This is explained by the following
reasoning, the 8-issue spends more energy (which negatively
affects MWPUETF), but the improvement in performance in
most cases is much lower than the theoretical 2x (when go-
ing from 4-issue to 8-issue) because the compiler is not able
to fill all bundles with independent instructions. Therefore,
the energy consumption weighs more than the performance
in this scenario.
• For the temporal duplication, there are a few parameters
that can be modified to trade-off performance, reliability, and
energy consumption, such as the buffer size, and the use of
PG. During the learning, the buffer size stops being evaluated
when the MWPUETF gets worse than for the previous buffer
size. When this happens, it means that increasing the energy
consumption (larger buffer) does not outweigh the increase
in the number of duplicated instructions (if any, because
the previous buffer size could be enough to duplicate all
instructions that were stored in the buffer).

Therefore, by applying these two optimization strategies, it is
possible to reduce the number of steps performed by the learning
algorithm, since those additional steps would not improve the result.

After the first kernel of the queue is obtained in Algorithm 1,
the optimization module verifies if there are enough idle slots to
schedule this kernel with a given configuration (l. 4-5), if there is,
the defined configurations are evaluated, one for each execution
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Algorithm 1: Optimization Algorithm - Learning Phase
1 optQueue ← kernelList
2 while kernel in optQueue do
3 currentKernel ← get first application of optQueue
4 if currentKernel was not tested in this time-slot and there are idle slots

then
5 if currentKernel fits in the current unused issue-slots then
6 for testConf iд in conf iдList do
7 if testConf iд = ”T emporalDuplication” then
8 for buf f erSize in buf f erSizeList do
9 for TDconf iд in TDconf iдList do

10 Execute currentKernel with
testConf iд, TDconf iд, buf f erSize

11 if currentResult > previousResults
then

12 Save currentResult

13 if r esultCurrentBuf f er <

r esultPreviousBuf f er then
14 Break to the next testConf iд

15 else
16 Execute currentKernel with testConf iд
17 if currentResult > previousResults then
18 Save currentResult

19 if currentResult is better than the previous issue-width then
20 if current issue-width < max(issue-width) then
21 currentKernel .next I ssue ← next issue-width
22 Put currentKernel back in the optQueue

23 else
24 Save currentResult as the best one

25 else
26 Mark the previous result as the best one

27 else
28 Put currentKernel back in the queue

29 else
30 Put currentKernel back in the queue
31 if there are idle slots then
32 Apply PG on idle slots

33 Wait for an application to end and update time-slot

34 return the best configuration for each application

of the given kernel. While testing the temporal duplication, if the
result for the current buffer (resultCurrentBu f f er ) is better than
the result for the previous buffer, it is saved in the configuration
memory (l. 12), otherwise, it stops testing further buffer sizes (l.
14). Then, the result for the current issue-width of this kernel is
compared to the one from the previous issue-width (l. 19), if it is
better, the next issue-width is evaluated (until it tests the maximum
issue-width), otherwise, the best result is the currentResult . This is
repeated for all kernels that fit in the available issue-slots (l. 4). For
example, in a given moment, four kernels running on 2-issue mode
can be executed in parallel. When all issue-slots are occupied, the
optimization module waits for a kernel to end, so it can evaluate
the next kernel to be scheduled (l. 30-34). In case there are still idle
slots after all kernels tried to be scheduled (because they did not
fit in the available slots), PG is applied to those slots, to reduce the
energy consumption (l. 31-32).

3.2.2 Runtime Phase. In the runtime phase, the best configu-
ration was already determined by the learning mechanism, and it

Power Gating

App. 1

Temp. Dup.

Buffer size: 128

PG: True

App. 2

Temp. Dup.

Buffer size: 64

PG: False

App. 3

Temp. Dup.

Buffer size: 16

PG: False

App. 4

Temp. Dup.

Buffer size: 32

PG: True

P0-P1 P2-P3 P4-P5 P6-P7

Power Gating

App. 5

Temp. Dup.

Buffer size: 16

PG: False

T
im

e

Figure 3: Application Scheduling Example

was stored in the configuration memory. Therefore, the application
dispatcher is responsible for continuing the execution of the appli-
cations while trying to schedule as many applications as possible
in parallel. The execution time of each kernel was already saved
by the learning phase, so in the runtime phase the applications are
sorted by the descending order of the execution time (in order to
allow more flexibility in the scheduling for the other benchmarks)
and the applications are scheduled to fill the available slots.

An execution example is depicted in Figure 3, in which the App.
1 and App. 2 continue the execution after the learning phase in
the best configuration for each of these applications, which is the
2-issue processor with temporal duplication and buffer size of 128
with PG for App. 1 and a buffer of 64 without PG for App. 2. At the
same time, the other four pipelanes are occupied with App. 3 having
a buffer size of 16 without PG. After App. 3 finishes the execution,
App. 4 is scheduled, maintaining the 4-issue configuration with
another buffer size and PG configuration. Finally,App. 5 is scheduled
in the 8-issuemode, occupying all pipelanes. Note that power gating
is applied to the empty slots that cannot be used to fit another
application (between Apps. 1 and 5, and Apps. 2 and 5).

4 RESULTS
4.1 Methodology
The Cadence Encounter RTL compiler was used to obtain power
dissipation and Application-Specific Integrated Circuit (ASIC) area,
using a 65nm Complementary Metal-Oxide-Semiconductor (CMOS)
cell library from STMicroelectronics (the operating frequency was
set to 200MHz). CACTI-P [10] was used to estimate the area and
energy consumption of the following modules:

• BBHT: 256 lines of 64 bits each, one write and one read port.
• Buffer sizes for the temporal duplication: buffers of 16, 32,
64, and 128 entries.
• Configuration memories: Comprises two small memories, the
first with 32 read-only entries for storing the list of configu-
rations that are going to be evaluated by the optimization
algorithm (27 configurations are used in the current evalua-
tion); the second with 16 entries to store the best result and
the corresponding configuration for each benchmark during
the learning phase (11 entries are used as we are evaluating
11 benchmarks).
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• Cache: the instruction and data caches have 16KB for the
8-issue configuration (the 4-issue and 2-issue will access 8KB
and 4KB, respectively, therefore, maintaining the 16KB for
the whole polymorphic processor). The caches are 4-way
associative with a block size of 4 bundles (128B for the 8-
issue) and a next-line prefetch mechanism, which will also
fetch the following line whenever a cache miss occurs.
• Main memory: a 512MB memory is used, having a miss
latency of 30 cycles.

All the previous memories and buffers have ECC enabled. For
the area and energy consumption evaluation, all additional modules
that were implemented are taken into account, which include those
that were synthesized and the memories simulated with CACTI.

In addition, the polymorphic core requires that the number of
registers to be quadrupled in order to have four contexts (4x2-issue)
of 64 registers each, resulting in a total of 256 registers. The same
reasoning applies to the buffer sizes: each configuration supports
up to 128 buffers, so a total of 512 entries is required. For the
energy consumption estimation, when there is no switching activity,
only static power is considered. Otherwise, the average switching
activity of the circuit is considered to be 30% [4] for the dynamic
power dissipation.

The benchmark set is composed of 16 applications from the
WCET [5] and Powerstone [18] benchmark suites. In-house sim-
ulators were used to simulate the polymorphic processor and the
proposed techniques, while hardware modules were implemented
and synthesized to estimate power and energy.

4.2 Design Space Exploration
In this section, static configurations using the aforementioned tech-
niques are evaluated. We show that each benchmark has a specific
configuration in terms of the parameters for the temporal duplica-
tion, PG, and issue-width that results in the best trade-off between
fault tolerance, performance, and energy consumption. Therefore,
motivating the use of a dynamic adaptation technique to cope with
these different application characteristics. In Section 4.3, the dy-
namic behavior of the core will be further explored.

Figure 4 (note that the Y axis is in logarithmic scale) shows the
MWPUETF for each issue-width (2, 4, and 8). The first observation is
that it is not possible to find a single configuration (in terms of issue-
width) that will be always better than the others considering all axes
and benchmarks. TD means Temporal Duplication, and PG Power
Gating. We use the 8-issue as the baseline, in order to evaluate the
relationship between different issue-widths. For each configuration
of the temporal duplication, there are two extra options: enable or
disable the power gating, and the buffer size. For instance, for the
CJPEG, the 8-issue delivers the best MWPUETF, the same goes to
the CRC with the 4-issue and the DFT with the 2-issue. By applying
temporal duplication, the MWPUETF can be improved by up to 2K
times (Sumswith a buffer of 128) when compared to the unprotected
processor.

By increasing the buffer size, more instructions can be stored
for duplication, however, more power will be dissipated by these
buffers. Therefore, each benchmark will have an ideal buffer size
considering its behavior, increasing the buffer after the point where
the benchmark effectively uses it will only result in increased power

Table 1: Best Configuration for Each Benchmark

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264
F 8-i 4-i

16 T 4-i
F

32 T
F 4-i 8-i

64 T 8-i
F 4-i

128 T 2-i 2-i 2-i 2-i

dissipation, while reducing the size of the buffer may affect the
reliability as fewer instructions will be stored for the temporal
duplication. Similar reasoning can be applied to the PG mechanism,
which will turn off more hardware, at the cost of reducing the
number of duplicated instructions in some cases.

Due to space constraints, each of the axes will be only briefly
discussed next. The duplication ratio varies from 9% to 100% de-
pending on the application and processor configuration. The 2-issue
requires a large buffer for most benchmarks in order to duplicate
all, or almost all instructions. While in the 4-issue, high duplication
ratio is achieved with intermediate buffer sizes and in the case of
the 8-issue, small buffers are able to provide high duplication levels.
Note that even for applications that are able to duplicate 100% of
the instructions, the checker remains vulnerable to faults and such
vulnerability is considered in the reliability evaluation. When the
temporal duplication is used without applying PG and with a buffer
size of 128, the average performance overhead is 27.80%, 7.39%, and
1.25% for the 2, 4, and 8-issue, respectively. Finally, when the PG
is turned on, the overhead goes to 31.29%, 15.47%, and 12.78%. On
average, the temporal duplication increases the energy consump-
tion by 65.04%, 30.17%, and 43.30% for the 2, 4, and 8-issue. The
4-issue presents the lowest energy overhead because the 2-issue has
high performance overhead, while the 8-issue has elevated power
dissipation, both influencing the energy consumption.

Table 1 depicts the best configuration for each benchmark con-
sidering theMWPUETFmetric (the 2-i, 4-i, and 8-i represent the 2, 4,
and 8-issue processors). Each application has an ideal configuration
and issue-width that needs to be applied in order to provide the
best trade-off among all axes. Therefore, an adaptive processor that
dynamically adjusts itself to the application is required to execute
each benchmark in the best possible configuration (discussed next).

4.3 Optimization Algorithm Evaluation
In this subsection, first, the number of steps of the learning algo-
rithm required by the adaptive processor to find the best configura-
tion for each application will be evaluated. Then, its ability to cope
with different applications’ behavior will be assessed through the
MWPUETF metric.

4.3.1 Number of Steps to Find the Best Configuration. Consid-
ering that we are evaluating a total of 27 possible configurations
(unprotected: 3 issue-widths, and temporal duplication: 4 buffer
sizes, 3 issue-widths, and enable or disable the PG), the maximum
number of steps that the optimization algorithm may perform is
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Figure 4: MWPUETF Comparison (8-issue baseline)

Table 2: Number of Kernel Executions and Number of Steps to Find the Best Configuration

CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264
Num. of steps 19 19 23 19 21 17 19 19 19 19 23
Num. of iterations 215500 400 44440 200 40000 600 200 250 2000 138500 1000
Tests-Iterations ratio 0.01% 4.75% 0.05% 9.50% 0.05% 2.83% 9.50% 7.60% 0.95% 0.01% 2.30%

27. Table 2 presents the number of executions for each kernel, and
the number of steps required to find the best configuration for
each application. For these benchmarks, the number of steps of
the learning algorithm varies from 17 to 23. Thus, the optimization
algorithm is able to find the best configuration without evaluating
all possible scenarios. The average number of steps is 19.65.

The same table also shows the ratio between the number of
steps and iterations, which vary from 0.01% to 9.5%. The latter
occurs in the Engine application: 19 out of 200 kernel executions
are performed by the learning phase, then, the other 181 iterations
are executed in the best configuration. As each execution is already
an iteration of the kernel and the learning phase contributes to
the final result of the application, a given iteration is not executed
twice after finding the best configuration. In addition, all overheads
for the configuration switching are taken into account, which is
lower than 0.003% in terms of performance for all benchmarks.

4.3.2 MWPUETF Comparison - Adaptive Processor. In order to
evaluate the proposed adaptive processor, we compared it to the
best static configuration on average from the configurations eval-
uated in Section 4.2, for each issue-width. In addition, each static
configuration is able to execute multiple applications concurrently.

An Oracle processor is also used for comparison and each of these
configurations is detailed next.

• Temporal Duplication 2-2-2-2 : On average, the best 2-
issue configuration is the 128 buffer with PG. Also, four
applications can be executed in parallel in this configuration.
• Temporal Duplication 4-4 : The best configuration is the
128 buffer without PG and it runs two applications.
• Temporal Duplication 8 : It has a 64 buffer without PG as
the best configuration, running one application.
• Adaptive Processor : The adaptive processor is able to switch
between different issue-widths and configurations consider-
ing fault tolerance, energy optimization, and performance.
Each benchmark is dynamically evaluated and the best con-
figuration is found according to the aforementioned opti-
mization algorithm (Algorithm 1).
• Oracle Processor : The oracle processor executes all ap-
plications in the best possible configuration for each one,
providing an upper bound for comparison.

Figure 5 presents the MWPUETF results normalized to the Ora-
cle Processor . The Adaptive Processor is able to get from 86.01%
to 99.99% of the oracle’s result, having an average of 94.88%. This
means that the Adaptive Processor is able to deliver almost the
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Figure 5: MWPUETF Normalized to the Oracle Processor

same result as the Oracle Processor , but in a completely transpar-
ent, automatic, and dynamic manner. The small decrease in the
final MWPUETF is due to the learning phase, which executes the
application in a sub-optimal configuration. On the other hand, the
best static configuration (Temporal Duplication 4-4) is only able
to achieve 28.24% of the result from the Oracle Processor , followed
by the Temporal Duplication 8 with 20.24%, and Temporal Du-
plication 2-2-2-2 with 9.21%.

Finally, all modules for the adaptive processor, including the fault
tolerance and PG mechanisms, result in an area overhead of 26.82%
when compared to the unprotected processor. In addition, if one de-
cides to restrict the steps of the learning algorithm to configurations
that are most likely to result in higher improvements, for example,
by eliminating the evaluation of the unprotected configurations, the
Adaptive Processor can get even closer to the Oracle Processor ,
as fewer steps will be performed to find the best configuration.

Therefore, the proposed Adaptive Processor is able to dynami-
cally choose the most appropriate processor configuration for each
application, and it provides results close to the Oracle Processor
when the trade-off among fault tolerance, energy consumption, and
performance is considered.

5 CONCLUSIONS AND FUTUREWORK
In this work, an adaptive processor was developed to trade-off
the axes of fault tolerance, energy consumption, and performance,
by implementing specific mechanisms for each of these axes. The
multi-objective optimization algorithm dynamically evaluates the
applications that are being executed and chooses the best config-
uration of the processor to maximize the MWPUETF, on average
achieving 94.88% of the results of an oracle. This demonstrates that
the optimization algorithm is able to quickly and accurately select
the best configuration for each benchmark. In addition, the applica-
tion dispatcher maximizes the number of applications executing in
parallel to exploit the available pipelanes.

As future work, additional techniques for these axes may be
integrated into the proposed processor, e.g., apply PG to the register
file as well. In addition, the sensitivity of the instructions will be
assessed, so critical instructions can be prioritized in the temporal
duplication (in this work, a first-in-first-out approach was applied).
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