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Abstract—Asymmetric multi-core processors (AMPs) comprise cores with different sizes of micro-architectural resources yielding very
different performance and energy characteristics. Since the computational demands of workloads vary from one task to the other,
AMPs can often provide a higher power efficiency than symmetric multi-cores. Furthermore, as the computational demands of a task
change during its course of execution, reassigning the task from one core to another, where it can run more efficiently, can further
improve the overall power efficiency. However, too frequent re-assignments of tasks to cores may result in high overhead. To greatly
reduce this overhead, we propose a morphable core architecture that can dynamically adapt its resource sizes, operating frequency
and voltage to assume one of four possible core configurations. Such a morphable architecture allows more frequent task to core
configuration re-assignments for a better match between the current needs of the task and the available resources. To make the online
morphing decisions we have developed a runtime analysis scheme that uses hardware performance counters. Our results indicate that
the proposed morphable architecture controlled by the runtime management scheme, can improve the throughput/Watt of applications
by 31% over executing on a static out-of-order core while the previously proposed big/little morphable architecture achieves only a 17%
improvement.

Index Terms—Asymmetric multi-core processors; Hardware Performance Counters; Morphable core; Design space exploration; Online
morphing.
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INTRODUCTION

take advantage of such opportunities, Lukefahr et al., [4]

S the focus of the microprocessor industry has
Ashifted from high performance computing to en-
ergy efficient computing, Asymmetric Multi-core Proces-
sors (AMPs) have emerged as a viable stride forward.
AMPs consist of cores that have the same ISA but
different power and performance characteristics to better
match various application behaviors [1], [2]. Commercial
AMP architectures, such as ARM’s big.LITTLE, consist
of a high performance Out-of-Order (OOO) core and a
smaller energy efficient In-order (InO) core [3]. AMPs
offer opportunities to achieve higher energy efficiency
by dynamically migrating an application from one core
type to another based on its current resource needs. The
key challenges are: (i) how to dynamically determine
which is the best core for the application to run on and,
(ii)) How often to allow such migrations, given that they
may entail considerable overhead.

Traditional thread migration in AMPs is facilitated by
sampling the application on each core for both perfor-
mance and performance/Watt and then assigning it to
the core that best suits its current needs [1]. The most
important drawback of this approach is that it involves
a substantial overhead that increases with the number
of core types. Consequently, task migrations can only be
performed at coarse grain instruction granularity [6], thus
missing opportunities at fine grain granularity. Recent
research has shown that considerable energy savings
opportunities exist at fine instruction granularities [4]. To
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have proposed a composite core architecture where an
OO0 core dynamically morphs into an InO core during
runtime. The use of a dynamically morphable core raises
the question whether allowing such a core to morph into
more than two distinct modes can further improve its
power efficiency.

Navada et al. explored AMP cores and showed that
applications can exhibit diverse program phase behavior
where each program phase can exhibit one (or more)
of common processor performance bottlenecks arising
from cache misses, limited execution resources or exe-
cution width, large degree of instruction dependencies,
or inherently low instruction level parallelism [5]. Con-
sequently, they proposed using a diverse set of cores
designed to address these bottlenecks, and showed that
the use of these cores can improve the performance and
provide higher performance/Watt.

Lukefahr et al. [4] and Khuaib et al. [6] proposed
dynamic morphing between a big OOO core and a
small InO core during run time. Such designs eliminate
the overhead associated with transferring the state of a
workload from one core to another upon a switch. This
allows morphing to take place at fine grain instruction
granularities (~1000 instructions) which reportedly re-
sults in significant energy savings with performance loss
up to 5% [4]. We observe that resource requirements
of applications can be quite diverse and consequently,
resource bottlenecks or excesses can vary considerably.
Thus, morphing between just two core modes may not
fully exploit power and performance improvement op-
portunities.

To test the potential benefits of having three or more



distinct morphable core configurations, we analyzed the
IPC/Watt of three OOO cores differing in execution
widths and core resources (which are scaled appropri-
ately for the chosen width), for workloads from the SPEC
2006 suite [7]. We call these cores the 4-way, 2-way and 1-
way cores where 4, 2, and 1 indicate the execution width.
Figure 1 shows that there are workloads that achieve the
highest IPC/Watt when run on the 4-way core while
for other workloads a 2-way or even a 1-way core
can provide the highest performance/Watt. The latter
workloads do not need the same amount of resources
as those that prefer the 4-way core. Hence, for such
workloads energy savings can be achieved by running
them on the reduced fetch width core with reduced
resource sizes, resulting in better performance/Watt.

Figure 2 shows the performance/Watt for the sjeng
benchmark from the SPEC 2006 suite [7] at fine instruc-
tion granularity, for the three OOO cores mentioned
above. Although when executing on a single core type,
sjeng prefers the 1-way core (see Figure 1), there are
time periods when a 4-way or a 2-way core will yield a
higher performance/Watt. Such a temporal variation in
demand for resources motivates studying a morphable
architecture that can morph between three (or more) core
modes as it may achieve a higher performance/power.

In this paper we perform a core design space ex-
ploration to select a set of core architectures that are
fundamentally different from the big/little architecture.
The architectures of the cores can differ in fetch width,
issue width, buffer sizes (e.g., ReOrder Buffer (ROB),
Load Store Queue (LSQ) and Instruction Queue (IQ)),
clock frequency and operating voltage. We then use the
selected core architectures to define the distinct core
modes of the proposed morphable architecture. Our self-
morphable core will dynamically morph into any one of
these execution modes and will, this way, mimic a high
diversity asymmetric multicore processor.

A morphable core architecture that can switch between
different core modes needs an effective online mech-
anism to determine the most efficient core mode for
the current phase of the application. Furthermore, since
many performance and power improvement opportuni-
ties exist at a fine instruction granularity, the morphing
decision and the morphing process must be done fast.
To this end, we propose an online decision mechanism
to identify the most power efficient core mode for the
current execution based on hardware performance mon-
itoring counters (PMCs).

The contributions of this paper are:

e We conduct design space exploration to identify
the best core modes for the morphable architecture. The
number of modes is determined based on the law of di-
minishing marginal utility. The design space exploration
has resulted in four distinct core modes appropriate for
fine grain switching.

e We study the throughput/Watt of the proposed mor-
phable architecture against previous publications and
show 17% improvement in throughput/Watt and 9%
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Fig. 1. IPC/Watt for SPEC benchmarks [7] running on
OO0 cores differing in fetch/execution/retire widths and
core resources.

——4-way 2-way =#—1-way

11
1

0.9 ———
Eos8 /“QL
; 0.7
S o6 PMV(‘
Q o5

04 j/ww,&

= a W

0.2

150 250 350 450 550 650
Instruction(thousands)

Fig. 2. IPC/Watt over a period of execution for the bench-
mark sjeng [7] sampled every few thousand of committed
instructions.

improvement in performance over morphable architec-
tures with only Big/Little cores. We also improve the
throughput/watt of applications by 31% over executing
on a static out-of-order core.

e We propose a simple on-line management solution
based on online estimation of throughput/Watt of the
application on all core modes. A counter selection al-
gorithm has been used to determine the appropriate
number of counters which will allow us to estimate the
power and performance in each of the core modes.

2 RELATED WORK

In this section we summarize selected previous research
related to asymmetric multicores and morphable cores.
This review is not meant to be a comprehensive survey
of related work. We only include those that are relevant
to the principles of our proposed scheme.

2.1 Asymmetric Multicore Processors (AMP)

Previous research on AMPs has explored their benefits
to both single and multi-threaded programs in terms
of performance and power. Annavaram ef al. advocate
using a big core for serial sections of a program, while
parallel sections are run on moderately resourced cores
[8]. This improves the overall performance of a multi-
threaded program within a given power budget. Sule-
man et al. presented an architecture consisting of a big



core and several small cores [9]. The big core was used
as an accelerator to eliminate serial bottlenecks.

Kumar et al. proposed using a mix of cores with differ-
ent power and performance characteristics, so that every
application phase is assigned to a core that achieves
the best power-efficiency [1]. For example, if a certain
program phase exhibits low IPC, it can be assigned to a
small core for greater power efficiency. In such a case,
boosting the frequency of the smaller core (within the
power dissipation constraints) may achieve both higher
performance and power efficiency. Core design space
exploration studies for performance/power have been
described in [10], [11]. Recently, Navada et al. considered
accelerating single threaded workloads by performing
complete design space exploration and identifying a set
of heterogeneous cores that would maximize perfor-
mance [5]. Their core design space exploration was done
at coarse grain instruction granularity to determine the
best set of core types for an AMP. In this work we try
to unearth new core types for which switching could be
performed at fine grain.

The above described AMP architectures make work-
load to core assignments online at the granularity of
an application phase change. If these AMP designs are
made to switch at fine grain instruction granularity,
the penalty of thread switching would be high, thus
negating the expected power benefits.

2.2 Morphable Asymmetric Cores

There are several publications advocating morphing of
a core at runtime to adapt to changing workload needs
and improve performance and/or power efficiency.

Some researchers have considered fusing several small
cores into a large OOO core on demand [12], [13]. This
approach introduces additional latencies in the pipeline
due to the layout and logic constraints.

Recently, Khubaib et al. proposed a morphable ar-
chitecture to support fine grain thread switching to
improve performance/Watt [6]. A traditional OOO core
is morphed into an highly threaded in-order SMT core
when Thread-level Parallelism (TLP) is available. Their
main observation was that a highly threaded in-order
core can achieve a higher energy efficiency than a more
powerful OOO core. Lukefahr et al. proposed a morphed
architecture where an OOQO core is morphed into an InO
by provisioning two execution back-ends in the same
core where one back-end engine is used in the OOO
mode and the other in the InO mode [4]. With their dual
back-end architecture they can switch between OOO and
InO modes at fine grain instruction slices.

These morphable architectures focus only on morph-
ing between two extreme architectures while we explore,
in this paper, morphing into a larger number of core con-
figurations (or modes). Such a morphable architecture is
more likely to match the demands of various workloads
by addressing a more diverse set of bottlenecks.

A less aggressive form of core morphing has been
discussed in [14], [15]. These configurable architectures

dynamically adjust the cache and storage buffers such
as ROB, LSQ and IQ to the application demands. The
resource adaptations are done at coarse grain granular-
ities by adjusting the size of each buffer independently.
The proposed configurable architectures do not consider
varying the execution width or changing the frequency
and voltage, as we do in this work.

2.3 Thread to Core Assignment in AMPs

Several prior papers have employed regression-based
analysis for thread to core assignment in AMPs [16], [17].
Such schemes characterize the behavior of the workloads
offline and this information is then distilled into a set of
runtime signatures that are used for online assignment of
threads to cores. In contrast, online learning schemes of-
fer a more practical approach to thread to core mapping.
These schemes learn the characteristics of the workloads
online and make informed assignment decisions.

These online learning schemes primarily employ
phase classification and sampling techniques [1], [18].
Whenever a stable phase change is detected, the new
phase is sampled on all the core-types in the AMP.
The sampling poses a significant overhead and hence
such schemes can only be employed at coarse grain
instruction granularities.

Estimation-based thread assignment schemes offer im-
provements over the offline profiling and online learn-
ing schemes. In such schemes, the performance and/or
power behavior of a particular workload on another
core in the AMP is estimated using event statistics such
as cache misses and pipeline stalls gathered on the
host core [4], [19], [20]. Thus, these estimation-based
schemes overcome the shortcomings of the above two
approaches.

The estimation-based schemes proposed so far con-
sidered only two core modes. In contrast, we allow a
larger number of architectural modes (each operating at
its own frequency/voltage) and we develop an online
mechanism which can estimate the power and perfor-
mance for all the available core modes to determine (at
a fine instruction granularity) the one that can provide
the highest power efficiency.

3 PROPOSED ARCHITECTURE

AMPs may contain multiple core types with each core
type specialized for specific workload characteristics. As
the multicore is constrained by the Thermal Dissipation
Power (TDP) limit of the package, the cores cannot
feature the largest possible size for all micro-architectural
structures and yet operate at the highest possible fre-
quency.

Consequently, there are always trade-offs in core de-
sign. For example, to support a higher degree of instruc-
tion level parallelism (ILP), the pipeline width should
be increased. Such an increase would, in turn, limit the
allowed core frequency due to the TDP constraint. Thus,
a core specialized for high ILP may not meet the needs
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Fig. 3. Temporal changes in IPC and resource occupancy
for the benchmark sjeng as a function of instructions
committed.

TABLE 1
Core Design Parameters

Core Parameter
Fetch, Issue Width

Range of Values
12,345

ROB size 8,16,32,64,96,128,192,256,384
Issue Queue size 12,24,36,48,64
LSQ Size 8,16,32,64,96,128,192

Clock Period 0.4ns-1ns (steps of 0.Ins)

of a workload with extensive sequential instruction de-
pendency whose performance can only be improved by
increasing the frequency. Therefore, designing the right
mix of cores for an AMP that caters to the demands of
diverse workloads requires careful balancing.

A carefully selected mix of cores that can address dif-
ferent resource demands can also benefit the execution of
a single benchmark. For example, Figure 3 shows the IPC
variations (between 0.6 to 1.6) observed in the course of
executing the SPEC benchmark sjeng. The figure shows
that as the IPC varies, the usage of several core resources
also varies. We further observe that variations in ROB,
LSQ and IQ occupancy happen at a small instruction
granularity. Therefore, our proposed self-morphable core
should be capable of dynamically reconfiguring to adapt
to the current demands of the executing workload and
should allow such reconfiguration to be done at a fine-
grain instruction granularity. To this end, we do not
vary cache sizes upon core reconfiguration to avoid
costly migrations of cache content. The selected fixed
cache sizes were determined experimentally on a set of
benchmarks to be: 64KB for the I-cache and the D-cache
and 2MB for the L2 cache.

3.1

We wish to identify the distinct core modes that should
be supported by our morphable core. Table 1 shows the
range of core parameters for our core selection. Clock
frequency is varied within the common range of super-
scalars’ speed. The search would determine the core
modes that can provide the best performance/Watt for
fine grain instruction slices. If we allow the core param-
eters to assume all their possible values shown in Table
1, the resulting design space exploration would require

Design Space Exploration

experimenting with 11,025 combinations. However, core
sizing for improved performance/power in [17] has
shown that increasing the size of one resource without a
commensurate increase in other resources yields limited
benefits. Thus, certain parameter combinations such as
(ROB=8, 1Q=64, LSQ=192, Width=4) are not acceptable
design candidates as a small 64-entry ROB cannot sup-
port large IQ and LSQ and would not result in any
benefits. By performing design space pruning, we have
reduced the number of core design combinations that
need to be analyzed to 300.

The remaining 300 combinations were analyzed ex-
haustively with the objective of achieving the highest
possible IPS*/Watt by allowing switching between core
modes every 2000 instructions. The decision to switch
modes is based on the metric IPS*/Watt that assigns
higher significance to performance than to power. Unlike
the IPS/Watt metric (used, for example, in [21], [22]),
using PS> /Watt is more likely to avoid switching to
a core mode that reduces the power greatly but also
lowers considerably the performance. The reason for
choosing 2K as our fine grain instruction interval will
be explained in the next section. After each 2K retired
instructions interval we computed the IPS®/Watt for
every core configuration out of the 300 candidates. A
minor increase in the IPS? /Watt would not justify a core
mode switch but, more importantly, would not justify
adding a new core mode. Therefore, we had to choose a
threshold for the minimum improvement that will justify
an additional core mode. Each mode switch involves an
overhead (explained in Section 5.3) and thus we need
to determine the preferred number of modes as a large
number of modes may result in high morphing overhead
while too few modes may not benefit all benchmarks
and thus achieve a lower IPS®/Watt. Our experiments
revealed that selecting a IPS? /Watt threshold of less than
20% yields 10 core types but the additional IPS®/Watt
improvement achieved by most of these core types is
limited. Increasing the threshold to 20% reduces the
number of core types to four with a higher IPS*/Watt
improvement for most benchmarks. We have also ob-
served that the IPS*/Watt improvement and the details
of the core types are not very sensitive to small variations
(from 20%) in the threshold. A further increase in the
threshold to 30% (and higher) resulted in fewer core
combinations but the majority of benchmarks did not
sufficiently benefit from morphing. We have, therefore,
decided to use a threshold of 20% and have as a result,
four core modes.

3.1.1 Power Unconstrained Core Selection

The architectural parameters of the selected four core
modes that will best accommodate the diverse appli-
cation phase behavior (of the SPEC benchmarks) are
shown in Table 2. This set includes an Average Core
(AC) which targets most of the application phases and
a Larger Window (LW) core that has a bigger window
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Fig. 4. IPS?/Watt as a function of ROB size for the AC
core mode (power unconstrained).
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Fig. 5. IPS*/Watt as a function of frequency for the AC
core mode (power unconstrained).

size and targets application phases which have a win-
dow bottleneck. In addition, the set includes a Narrow
Core (NC) which targets application phases with low
ILP and accelerates sequential execution using a higher
frequency. The fourth mode is a Small core (SM) with a
lower frequency that caters to low performance phases
that exist at fine grain granularity.

To illustrate our core mode selection process, we show
the impact of changes in the ROB size of the AC mode in
Figure 4 for a subset of benchmarks that spent significant
amount of time in the AC mode. It can be observed that
ROB=128 (the chosen size for the AC mode), offers the
best IPS®/Watt. Figure 5 illustrates our process for de-
termining the frequency. We observe that at a frequency
of 1.6GHz the IPS®/Watt is the highest.

3.1.2 Power Constrained Core Selection

In the previous section we searched for the best core
modes without restricting the overall peak power. Peak
power dissipation is important for processor design since
the thermal budget of processor, cooling cost, power
supply cost and packaging cost depend on the proces-
sor’s peak power dissipation [23]. We now repeat the
search (for the preferred core modes) but with a limit on

TABLE 2

Core parameters for a power unconstrained design
Core | F (GHz) Buffer size Width Average
Mode /V (IQ,LSQ,ROB) | (fetch,issue) | Power (W)
AC 1.6/08 36,128,128 44 22
NC 2/1 24,64,64 2,2 17
LW | 14/08 48,128,256 44 24
SM | 12/07 12,16,16 i 0.82

TABLE 3
Core parameters for a power constrained design (2W)

Core Freq Buffer size Width Average
Mode (GHz) | (IQ,LSQ,ROB) | (fetch,issue) | Power (W)
AC_2W 1.6 36,128,96 4,4 1.6
NC_2W 2 24,64,64 2,2 17
LW_2W 1.2 48,192,128 33 1.9
SM_2W 1.2 12,16,16 1,1 0.82
TABLE 4
Core parameters for a power constrained design (1.5W)
Core Freq Buffer size Width Average
Mode (GHz) | (IQ,LSQ,ROB) | (fetch,issue) | Power (W)
AC_1.5W 14 36,64,64 33 1.32
LW_15W 1 24,128,128 33 14
SM_1.5W 1.2 12,16,16 1,1 0.82

the power budget. We considered processor peak power
dissipation limits similar to those in prior works [5], [24],
ie., 2W and 1.5W. For a peak power constraint of 2W,
we obtained four somewhat different core modes, shown
in Table 3. Further reducing the power budget to 1.5W,
reduces the number of preferred core modes to three
with the narrow core excluded as shown in Table 4.

3.2 Dynamic Morphing

In the proposed mechanism, all core modes are derived
from a single OOO processor core with banked re-
sources, where each bank can be turned on or off and the
frequency can be raised or lowered to configure the core
to the modes described in Table 2. The buffers that are
dynamically resized are the ROB, LSQ and IQ. The fetch
width and issue width are also dynamically resized.
Decoding units are subsequently powered on/off when
the fetch and issue width is resized.

Our baseline execution mode is an average OOO core
(AC) that will be dynamically morphed into three other
modes, namely, a smaller core (SM), a narrow core (NC)
or a larger window (LW) core during runtime. Although
each of the four modes has a distinct combination of
buffer sizes, fetch and issue width and frequency, they
all have the same cache size. This allows us to resize
resources while leaving the contents of the cache intact,
which in turn allows fine grain switching with low
overhead to take advantage of every opportunity for
power savings or performance enhancement.

Switching from one mode to another is determined
by estimating the power and performance in all other
modes based on performance counters’ values in the
currently executing mode. We reconfigure into another
core mode only when the reconfiguration is predicted
to result in a sufficiently higher IPS?/Watt. An in-depth
description of our runtime switching mechanism is pro-
vided in Section 4.

3.3 Adaptive Buffer Re-sizing

In the proposed morphable core, the ROB, IQ and LSQ
are implemented as banked structures where each bank



can be independently powered on/off. The bank size for
ROB, LSQ and IQ needs to be determined carefully. A
too small a bank may result in larger resizing overhead
in terms of layout area and design cost. It has also been
shown that a too big bank size causes a significant in-
crease in energy consumption whereas bank sizes of 8, 16
or 32 have only small differences in energy consumption
[25]. Therefore, the bank size for the ROB and LSQ has
been set to 16 and for the IQ it was set to 8.

4 RUNTIME MORPHING MANAGEMENT

The proposed dynamic morphing/reconfiguration relies
on online estimators to select the best core mode for the
current needs of the executing application. The previ-
ously proposed morphing in [4] has determined the core
to morph into by computing the performance (online)
without taking power into account. Also, prior config-
urable architectures did not provide an effective online
management scheme for run time morphing decisions
[14], [15]. We design an online power and performance
estimation scheme that is fast and sufficiently accurate
to support the morphing decision process. The key
challenge here is the fact that while the program is
executing on the current core mode, we need to estimate
the IPSQ/ Watt for all four core modes.

To estimate power and performance on-line for com-
puting the IPS”/Watt metric we need to select an appro-
priate set of hardware performance counters. We start
with a large number of counters that have good corre-
lation with power and identify a smaller set of counters
that can be used to estimate power and performance
online in each of core modes at a sufficient accuracy.
Linear regression is then used to derive expressions for
estimating the performance and power in the other core
modes using hardware performance monitoring coun-
ters (PMCs) in the current core mode. Prior works [19],
[26], [27] that derived expressions for estimating power
and/or performance have considered only a big/little
architecture and without changes in voltage/frequency.
In this work we show how accurately we could estimate
power and performance in each of the cores modes
which are architecturally different and are running at
different voltages and frequencies.

4.1 Power and Performance Estimations based on
PMCs

We use PMCs to estimate the power and performance
of each of the different core modes and based on these
values and the known frequencies of all the core modes,
we compute the metric IPS*/Watt. The PMCs chosen for
our study are listed below.

1) IPC: The longer the processor takes to execute an
application, the more power it dissipates.

2) Cache activity: Cache misses at any level in the
hierarchy directly impact the performance and in
turn, the power consumption. Therefore, the num-
ber of hits and misses at both Level 1 (L1h, L1m)

and Level 2 (L2m, L2h) caches are important when
estimating the power and performance.

3) Branch activity: Branch mispredictions cause con-
siderable loss in performance and power. There-
fore, we track the number of Branch mispredictions
(Bmp) and the total number of Fetched instructions
(Fi).

4) Instructions committed: Each instruction type (in
the ISA) utilizes a separate set of resources. Thus,
hardware counters which count the number of
Integer (I NT), Floating-point (F'P), Load (L), Store
(St) and Branch (Br) instructions committed serve
to estimate the power consumption.

5) Buffer-full stalls: The performance of a processor
suffers when the pipeline stalls due to lack of
entries in the ROB, LSQ, IQ or RAT.

4.1.1 Shortlisting Performance Counters

Our goal is to find the smallest set of counters that
would allow us to estimate the power and performance
on each of the core modes as monitoring fewer counters
reduces the required hardware overhead. PMC values
are available only for the currently executing mode but
we need to estimate the power and performance for
the other three core modes as well. For example, if
the application is currently running on the AC mode,
we need to estimate the power of this configuration
and the power and performance for the other three
configurations, namely the NC, LW and SM modes using
the PMCs of the current AC mode.

To select the PMCs that exhibit the highest correla-
tion with the required estimates (of power and perfor-
mance) and then obtain the corresponding expressions
(using linear regression) we select a training set of eight
SPEC2006 benchmarks [7] that includes sjeng, h264ref,
soplex, omnetpp, bzip2, namd, gobmk, hmmer where each
of these benchmarks has application phases that prefer
one of the four different core modes.

The values of the above listed 14 counters were
tracked at fine grain instruction granularity, i.e., after
every 2K instructions committed, during the execution
of the benchmark. To select a suitable subset of coun-
ters, we use an iterative algorithm based on the least
squared error. The algorithm seeks to minimize the
sum of squares of the differences between the estimated
and actual power values. The correlation coefficient R?
provides a statistical measure of how close the data are to
the fitted regression line. Starting with a set of counters,
we iterate through all remaining counters to determine
which among them is the best to add to the existing set.
The candidate counter that yields the highest correlation
coefficient is selected.

Figure 6 shows the value of the coefficient R?> when
the PMCs of the average core mode (AC) are used to
estimate the power and IPC on the other three core
modes. The figure shows that four to five counters are
sufficient as the R? value saturates afterwards. Note
also that estimating the power in the same core yields
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TABLE 5
Power (P) and performance (IPC) estimation for the other three
modes using the performance counters values in the AC mode.

1.02

R? Coefficient

1 2 3 4 5 6 7 8 9
Counters chosen

Fig. 6. R? coefficient as a function of the number of
chosen PMCs. PMC AC => Power NC denotes using
the performance counters of the average core mode to
estimate the power on the narrow core mode.
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Fig. 7. Average error in estimating power and IPC in
all core modes using the PMCs of the current mode.
E.g., PMC AC = Power/IPC denotes the average error in
estimating power and IPC in all other core modes using
the PMCs of the average core (AC) mode.

a higher R? value than in other core modes indicating
higher estimation accuracy. For IPC estimation we need
a minimum of four counters to estimate the IPC on the
SM and NC core modes but R? saturates at five counters
for the LW core. Similar analysis was carried out for the
estimations on the other three core modes.

After selecting the most suitable counters, linear re-
gression was used to derive expressions for the perfor-
mance and power estimation. Table 5 shows the expres-
sions obtained for estimating the power and IPC for
each of other three modes and the power of the AC
mode using the values of the PMCs monitored while
executing in the AC mode. For the sake of brevity, we
show only the expressions when using the PMCs of the
AC mode. Similar expressions have been obtained for
the other three cases.

4.1.2 Accuracy of Power/Performance Estimation

The accuracy of the power and performance estimations
is shown in Figure 7. The estimation error study was
conduced for a set of 17 workloads that consists of a
mix of SPEC2000 and SPEC2006 benchmarks [7], [28].
We observe that the average error in estimating power
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AC = Power AC
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Fig. 8. Estimation error distribution when using the PMCs
of the NC mode to estimate the IPC for the remaining
three core modes.

is 8% which is significantly lower than the 16% average
error in estimating IPC. Although the average estimation
error is reasonably low, the actual estimation error may
be considerably higher at some time instances and this
may cause wrong morphing decisions. Therefore, we
analyzed the temporal distribution of errors and the
results are shown in Figure 8. This figure depicts the
error in IPC estimation for the other three core modes
using the PMCs of the NC core mode. We observe
that the deviation of the errors from the mean is low
and the majority of sample points (80% of them) lie
between + 10% from the mean. This demonstrates that
the average error is a sufficiently good indicator for the
instantaneous estimation error. In our experiments we
have observed very few decision errors.

4.2 Morphing Controller

To enable morphing between different core modes, we
need an on-chip controller that governs all the required
changes in the core configuration upon morphing. We
envision this controller to be a variant of similar con-
trollers for core morphing [4]. It obtains periodically



PMC values from the current core configuration and
estimates the IPS?/Watt for the current and alternative
core modes. The estimation is based on the expressions
described previously. We assume that the controller in-
cludes a multiply and accumulate (MAC) unit that is
pipelined and capable of completing 1 MAC operation
per cycle, and is power gated when not in use. The
PS> /Watt estimates are used to determine the best mode
to morph into. If the estimated IPS*/Watt for one of the
modes is sufficiently higher than for the current mode, a
mode transition is initiated. Mode switches incur some
overhead especially if a change in voltage/frequency
is required as the PLL must be relocked to the new
operating conditions. The overheads imposed by the
controller are discussed in the next section. The con-
troller sets the voltage and frequency by placing values
in the Voltage Control Register (VCR) and the Frequency
Control Register (FCR). The Voltage Regulator Module
(VRM) reads the VCR and sets up the new voltage.
Similarly, the FCR controls the frequency division within
the PLL. Finally, the controller also features a Configu-
ration Control Register (CCR) that directs which units
should be powered on and which shall remain off. We
would like to emphasize that the morphing controller for
the big/little architecture in [4] guarantees the resulting
performance to be within 95% of running on the big
core, whereas we do not provide such performance guar-
antees. Still, our proposed morphing scheme achieves
significant performance improvements as shown in the
results section.

5 EXPERIMENTAL SETUP
5.1

To evaluate our proposed morphable core architecture
we have used Gem5 as a cycle accurate simulator with
integrated McPAT modeling framework to compute the
power of the core and L1 caches [29], [30]. We ran ex-
periments using 17 benchmarks from the SPEC2006 and
SPEC2000 benchmarks suites [7], [28]. The benchmarks
were cross compiled using gcc for Alpha ISA with -O2
optimization. In the simulation experiments we executed
4 billion instructions of each benchmark after skipping
the first two billion.

Simulator and Benchmarks

5.2 Determining the Window Size

Power and performance estimates are calculated after
a fixed number of committed instructions referred to
as window. To prevent switching too frequently (e.g.,
after every window) we wait until the particular phase
of the currently executing application has stabilized. To
this end, we wait for a fixed number of windows to
elapse before making a decision to switch modes. We
call this number of windows history depth. A decision to
switch modes is then made based on the most frequently
recommended core mode during the windows in this
period. This way, short periods of transient behavior of

% Average increase in

1K 2K 3K 4K 1K 2K 3K 4K 1K 2K 3K 4K

Window length 250 Window length 500 Window length 1000

Fig. 9. Percentage increase in IPS*/Watt over the AC core
mode for several values of window size and history depth.

the executing application will not result in a core mode
switch.

We denote by n the total number of retired instructions
during this period where n = history depth x window
length. For example, if for the past n committed in-
structions, moving from the average core to the nar-
row core mode was the most frequent recommendation,
we conclude that the application has entered a phase
where the narrow core may provide a higher IPS® /Watt
and we switch from the average to the narrow core
mode. We have conducted a sensitivity study to quantify
the impact of the window length and history depth on
the achieved results. The window size and history depth
combination that yields the highest IPS®/Watt for the
entire program execution would be the best choice. The
window length was varied from 250 to 1000 instructions
in steps of 250. Within a particular window, the history
depth was varied from 1 to 10. For example, a window
length of 500 and history depth of 4 means that we
make a reconfiguration decision at the end of every
2K instruction (500 x 4). Figure 9 shows the achieved
increase in the average IPS*/Watt when switching to the
preferred core mode from the current AC mode for the
SPEC benchmarks. Based on this figure, a window length
of 500 and history depth of four provide the largest
improvement in IPS*/Watt. Thus, in all our remaining
experiments, a reconfiguration decision is made at the
end of every 2K instructions.

5.3 Morphing overhead

In the proposed scheme, the voltage and frequency may
change at a fine instruction granularity. The potential
overhead of frequent voltage and frequency scaling must
be taken into account. Traditionally, DVFS has been
applied at coarse instruction granularity, of the order of
millions of processor cycles, due to the high overhead
that is involved in scaling voltage and frequency using
an off-chip regulator [31]. Recently, Kim et al. has pro-
posed the use of an on-chip regulator which reduces the
time needed for scaling voltage to tens of nanoseconds
or hundreds of processor cycles [32]. Using an on chip
regulator, a low overhead (hundreds of cycles) DVFS
can be performed at a fine grain instruction interval. A
hardware-based fine grain DVFS mechanism that uses



an on chip regulator was implemented by Eyerman et
al. where DVFS was performed upon individual off-chip
memory accesses [33]. We assume that such an on chip
regulator has been included in the processor design. The
authors of [32] have estimated the DVFS latency to be
200 cycles. In our experiments we have used this 200
cycles DVES latency that constitutes a major component
of the overall core morphing overhead. As the latter is
design dependent, the result section includes analysis of
the impact of higher overheads on the core performance.

Overheads associated with power-gating /power-up of
banks of ROB, LSQ, IQ and partial powering on/off
of fetch and decode units are also taken into account.
When power gating individual units/banks, no dynamic
energy is consumed and the static energy consumed by
these idle units is low. Power-gating/power-on of all
the blocks simultaneously may lead to a sudden power
surge and therefore, we assume staggered power gating
where only a single bank is gated in a given clock cycle.
Powering off a single bank is expected to take tens of
clock cycles [27]. The bank selected to be turned off is
the one with the smallest number of used entries. If the
selected bank is not empty we must wait until all its
entries are vacated before switching it off.

Calculating IPS®/Watt using the PMC-based perfor-
mance and power estimates involves a computational
overhead. To compute IPS?/Watt, 7 expressions (shown
in Table 5) must be evaluated online, which require four
MAC operations per expression. The resulting computa-
tion overhead is about 30 clock cycles. Once the mode
switch decision is made, the controller needs to set the
voltage and frequency registers with new values and
initiate a mode switch which incurs an additional over-
head. Taking into account all the individual overheads
we, conservatively, estimate the total overhead to be 500
cycles. As the frequency of core reconfiguration is not
high (as will be shown in the next section), even a higher
morphing overhead will have a negligible impact.

6 EVALUATION
6.1

As noted in Section 1, applications exhibit diverse phase
behavior and the core mode on which an application
runs most efficiently changes during the course of ex-
ecution. The decision to switch mode is based on the
metric IPS?/Watt that assigns higher significance to per-
formance than to power. To avoid frequent switching,
the expected increase in IPS®/Watt must be at least 5%
to trigger reconfiguration. A lower switching threshold
will result in more frequent switching for insignificant
gains in IPS*/Watt.

Figure 10 shows the percentage occupancy in each of
the four core modes in the unconstrained power case.
The figure demonstrates the diversity in the use of four
core modes by the different benchmarks and also shows
that each of the four modes is highly utilized (more
than 40% of the time) in some of the benchmarks. The
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Fig. 10. Tenancy of core modes for the unconstrained
power core.
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morphable architecture presented in [4] consists of two
core modes (OOO and InO) and only benefits appli-
cations that have memory intensive phases or phases
with high branch mis-prediction rates, as these phases
are mapped to the power efficient InO core. Compute
intensive benchmarks do not benefit as much from the
two-mode morphable architecture as they have very few
phases with low performance that could be mapped
to an InO core. Our proposed morphable architecture
caters to more diverse application phases due to the
four distinct core modes that relieve diverse resource
bottlenecks.

The percentage improvement in IPS®/Watt for the
SPEC benchmarks executing on our proposed morphable
architecture when compared to executing completely on
the AC core mode is shown in Figure 11. On an average
(using geometric mean), we achieve an IPS®/Watt im-
provement of 37% compared to the baseline architecture
of the AC core. Benchmarks which are memory intensive
or have high branch m1s—pred1ct10n rates, such as mcf,
soplex, and art, achieve larger IPS*/Watt improvements
since they can be mapped to an energy efficient core
mode. Compute intensive benchmarks, such as hmmer,
bzip2, and h264ref, also take advantage of the proposed
morphable architecture. We observe on average of 34%
improvement in IPS®>/Watt for the compute intensive
benchmarks compared to the 38% improvement for
memory intensive ones. The morphable core should
allow a wide variety of applications to run effectively
on different core modes. We ran benchmarks from the
MiBench and Mediabench [34] suites to test our mor-
phable core capabilities on applications apart from SPEC
benchmarks. As seen in Figure 12, we obtain on average
15% IPS* /Watt improvement demonstrating the benefits
of the morphable cores for a wide range of applications.
Note however, that the MiBench and Mediabench appli-
cations achieve a lower benefit as they do not have as
diverse program phases as the SPEC benchmarks.

6.2 Comparison to Other Switching Schemes

We compare our PMC-based fine-grain core mode
switching scheme, referred to as FineGrain_PMC, to three
other switching schemes, namely: (i) Sampling based
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Fig. 11. IPS? /Watt improvement of the proposed morph-
ing scheme compared to execution on AC mode for SPEC
benchmarks.

N
[$3)

nN
o

=
[$3)

=
o

% Increase in IPS?/Watt
compared to baseline OOO(AC)

) &
QQ\ & ch,& ’\zjbo
© A

Fig. 12. IPS?/Watt improvement of the proposed mor-
phing scheme compared to execution on AC mode for
Mediabench/Mibench benchmarks.

switching within a morphable architecture, referred to as
CoarseGrain_sampling; (ii) Oracular scheme referred to as
Oracular_Switch; and (i4i) PMC-based switching at coarse
grain granularity, referred to as CoarseGrain_PMC.

To this end, we have implemented the morphable
architecture presented in this paper with morphing deci-
sions made based on sampling. The parameters used for
this implementation include a switching interval of 1M
instructions and a sampling interval of 10K instructions
[5]. We have also implemented the oracular scheme
where an oracle determines, every 2K instruction, which
is the best core mode for the next interval of 2K in-
structions. The third implemented scheme is a PMC-
based one making switching decisions at a coarse grain
granularity of 1M instructions.

Figure 13 compares the IPS*/Watt and the energy
savings obtained for the four switching schemes. The
CoarseGrain_sampling yields 14% less energy savings than
the FineGrain_PMC. The reason for lower energy savings
for the sampling-based scheme is twofold. First, sam-
pling is wasteful when the program is already running
on the best available core. Second, sampling is per-
formed at a coarse grain level thus missing opportunities
available at finer granularity. Thus, our PMC-based run-
time decision mechanism helps in making the right mor-
phing decisions glielding higher energy savings. We also
compare the IPS”/Watt of the coarse grain and fine grain
PMC-based schemes. FineGrain_ PMC yields an 11%
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Fig. 13. Comparing the IPS*/Watt and Energy saving of
four morphing schemes.

higher IPS? /Watt compared to CoarseGrain_PMC. This
scheme also does much better than CoarseGrain_sampling
due to a smaller performance overhead in PMC schemes
compared to sampling based ones. The oracular scheme
achieves a higher IPS? /Watt, by 10%, than our Fine-
Grain_PMC scheme. As the oracular scheme cannot be
implemented in practice, it provides an upper-bound
for the maximum IPS?/Watt that could potentially be
achieved by our approach.

Figure 14 compares the IPC improvements over the
baseline average core for the four switching schemes.
The IPC value obtained for the power budget of 2W and
1.5W is normalized to that of the corresponding average
core (AC) mode obtained with 2W and 1.5W power
constraint, respectively. For the unconstrained case, we
observe a 9% improvement in IPC over the baseline (AC)
core mode using the FineGrain_PMC scheme compared
to the 3% achieved by the sampling-based scheme. The
oracular scheme shows an upper bound of 12% IPC
improvement. For a 2W power budget, a 7% improve-
ment in IPC is achieved by the FineGrain_PMC scheme
compared to 2.5% for the sampling-based scheme. These
results show that our morphing scheme improves per-
formance although its main goal is to improve the per-
formance/Watt.

Figure 15 shows the reduced performance improve-
ment experienced by the different morphing schemes
for increasing values of the core morphing overhead. Al-
though our initial estimated cost (overhead) of morphing
is 500 cycles, the actual overhead is calculated during the
simulation accounting for draining of banked resources.
As mentioned previously, the morphing overhead is
design dependent and thus it is important to estimate
the impact of a higher overhead. Figure 15 shows that
as the overhead increases from 500 to 1K cycles, the per-
formance drops by 3.5% for our FineGrain_PMC scheme.
Higher increases in the morphing overhead result in
larger performance losses indicating that switching at
fine granularity must have a fast switching mechanism.

Figure 16 shows the number of switches in our 4-mode
morphable architecture at various instruction granulari-
ties. As expected, a greater number of reconfigurations
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constrained cores for various switching schemes.
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Fig. 15. The impact of morphing overhead on IPC.

takes place at lower instruction granularities, thus yield-
ing higher IPS*/Watt when compared to coarse grain
switching at instruction granularity of 10K and above.
For our selected 2K instruction interval the number of
switches on average is 12500 in 100M instructions, i.e.,
after every 2K instructions we have a probability of 25%
to perform a mode switch.

Figure 17 shows the impact of power constraints
on the IPS*/Watt improvements and the energy sav-
ings achieved by our morphing scheme. For the un-
constrained power case, we obtain a 37% PS> /Watt
improvement and 33% energy savings (compared to the
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Fig. 16. Number of switches per 100 million instructions
for a range of instruction granularities for the power un-
constrained 4-mode morphing scheme.
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Fig. 17. IPS?*/Watt and energy savings for the power con-
strained and unconstrained cases compared to execution
on the average OOO(AC) core.
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Fig. 18. Comparison of the IPS?*/Watt improvement
(over execution on the AC mode) between our Fine-
Grain_PMC morphable core and the 2-mode morphable
core (AC,In0O).

average core mode), while for the 2W power budget
case, the IPS?/Watt improvement is only 27% and the
energy savings drop down to 24%.

6.3 Comparison of the 4-mode Morphable Core to the
Big/Little architecture

To compare our 4-mode morphable core to the previ-
ously proposed 2-mode architectures (OOO and InO) [4],
[6] we analyzed an OOO/InO morphable architecture
similar to the one proposed in [4] but differs in that,
both core modes (OOO and InO) share common front
and back ends and as a result, architectural states do
not need to be transferred. Whenever a decision is made
to switch from OOO to InO the fetch width is reduced,
half the decoders are powered off, some of the functional
units are shut down (e.g., INT ALUs reduced from 4 to
2, FP ALUs reduced from 2 to 1) and the ROB and RAT
are powered off. Turning off structures (while moving
to InO mode) by clock gating was employed in [6].
When a mode switch happens, the pipeline is drained
and several units are powered on/off depending on the
core mode we are morphing into, and then instruction
execution starts in the new mode.
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morphable core.

The selected architectural parameters for the OOO
core are those of the AC mode in Table II. The InO core
has a fetch/issue width of 2, IQ with 36 entries, and
cache sizes and frequency identical to those of the AC
core. Note that the InO core that we have modeled is
somewhat different from a regular InO core in terms
of power efficiency as a regular InO core might have
smaller cache sizes, a shorter pipeline and no Load /Store
queue. The instruction granularity at which core switch-
ing decisions are made was set to 2K instructions after
performing a sensitivity analysis similar to that shown
in Figure 10. The decision to morph is based on the esti-
mated IPS?/Watt using a PMC-based estimation mech-
anism. The IPS*/Watt improvement achieved by the
2-mode morphable core (AC,InO) (over executing on
the AC mode) is compared to that achieved by our 4-
mode core in Figure 18. On average, the 2-mode core
achieves a 21% increase in IPS®/Watt versus the 37%
achieved by our 4-mode core. Figure 19 compares the
average increase in IPS®/Watt, IPS/Watt and energy
savings achieved by our 4-mode FineGrain_PMC with
those obtained when using the 2-mode (OOO(AC),InO)
scheme. On average, the 4-mode scheme achieves a
12% higher IPS/Watt and a 14% higher energy saving
compared to the 2-mode (OOO(AC),InO) scheme.

The goal of the next experiment is to determine
whether including an InO mode is necessary or it can
be replaced by our SM mode that is still an OOO core
but has a width of 1. We compare two schemes: one has
two core modes, OO0 (AC) and OOO (SM) while other
has three core modes, namely, OOO (AC), OOO (SM)
and InO. We have observed that the 3-mode morphing
scheme that includes an InO mode provides an addi-
tional 6% IPS?/Watt improvement. We conclude that the
inclusion of the InO core does not sufficiently improve
IPS®/Watt to justify the increased design complexity
of supporting the two very different core architecture
styles. We have, therefore, excluded the InO mode to
keep the micro-architecture simple.

6.4 Benchmark Analysis

In this section we focus on the characteristics of different
benchmarks and try to understand why some bench-
marks prefer one mode of the morphable architecture
over the others. The characteristics that we study include
branch mis-predictions, occupancy of buffers (LSQ, 1Q,
ROB), L2 cache misses and IPC.

Benchmarks with high branch mis-prediction rates
have a low ILP and are not expected to benefit from
a higher frequency. Such benchmarks would therefore,
prefer the small core mode (SM) that runs at reduced
frequency and has small resource sizes. To illustrate this
we show in Figure 20 the temporal behavior of the
benchmark astar, that has high branch mis-prediction
rates, and compare its performance while running on the
SM and AC core modes. During this period of program
execution astar exhibits a high branch mis-prediction
rate and as a result, the IPC difference between the AC
and SM modes is small but executing in the SM mode
improves the IPS? /Watt.

Memory-bound applications, e.g., libquantum, mcf and
xalancbmk, experience a large number of L2 misses and
generate many parallel loads. Thus, these benchmarks
prefer running in the narrow (NC) mode which has a
higher frequency and reduced buffer sizes. The higher
frequency helps when many independent loads are in-
voked. A similar observation was reported in [5]. Figure
21 shows a portion of the behavior, as a function of time,
of the benchmark mcf and compares its IPC when run-
ning on the NC and AC modes. The section of program
shown in the Figure 21 has a high L2 miss rate. When
the L2 miss rate is high, the NC core mode provides a
higher IPC than the AC mode since its higher frequency
helps in issuing independent loads. The performance
difference between the two core modes is large for high
L2 miss rates. The IPS*/Watt is improved by up to 7%
by running in the NC rather than the AC mode.

Compute-bound applications, like bzip2, hmmer and
h264ref, have high IPC and their performance is limited
by the issue width and buffer resources and not by
L2 cache misses or branch miss predictions. Therefore,
these benchmarks tend to prefer the Large Window
(LW) core mode. Figure 22 compares the execution of
the bzip2 benchmark in the LW and AC modes. The
number of times when one the buffers, ROB or LSQ
or IQ, became full while running in the AC mode is
also shown in the figure. We observe that providing
larger resources alleviates the problem of buffers getting
full and improves the IPC. Improved IPC and reduced
frequency while running in the LW mode, compared to
the AC mode, provides an IPS? /Watt improvement of
up to 6%.

7 CONCLUSIONS

We have presented in this paper a morphable core
design that can assume one of four different core modes.
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Apart from the baseline average core mode, the ad-
ditional core modes are suited to address most com-
mon performance bottlenecks found in the considered
benchmarks. Based on a small number of performance
counters, a novel runtime mechanism estimates the per-
formance and power across all core modes and uses
this information to determine the core mode that offers
the best power efficiency. The cache was not resized
across core modes to support fast switching from one
mode to another enabling fine-grain morphing. We have
shown that the proposed four-mode morphing offers
higher power efficiency than the two-mode morphing
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Fig. 22. Analysis of the benchmark bzip2 at a fine instruc-
tion granularity: comparing its execution in the LW and AC
modes.

considered earlier. It was also shown that fine-grain
switching between core modes outperforms switching
at a large instruction granularity which misses power
saving opportunities. Our results indicate that the four-
mode morphable core achieves an IPS®/Watt gain of
37% compared to a standard OOO core and 16% higher
energy efficiency compared to big/little morphable ar-
chitectures. Importantly, unlike previous self-morphing
schemes that only improve throughput/power but not
performance, we also improve the performance by 9%.
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