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Abstract: Energy conservation is a major issue in the management of sensor networks. In this paper, 
we consider the problem of optimising the performance of energy-constrained sensor networks in the 
context of event-detection applications, with the performance metric being a weighted average of the 
numbers of missed events and false alarms. We propose two adaptive event-driven techniques, both 
simple to implement at the node level, that change the nodes’ duty cycles based on the patterns of 
detected events. Simulation results show that this approach is effective in both cutting down wasteful 
energy consumption as well as in improving the detection performance in applications characterised by 
long periods of quiescence followed by bursts of activity. 
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1 Introduction 

Sensor networks are used in a wide range of applications,  
from observing the environment (Werner-Allen et al., 2006),  
to studying animal behaviour (Mainwaring et al., 2002),  
to detecting intrusions (Arora et al., 2004). In addition to 
sensing capabilities, each node has limited processing and 
communication capabilities. Due to the small size and low cost 
of the components, nodes can be deployed on a large scale and 
in inhospitable terrain at no great cost. A major challenge in 
managing such systems is their energy-constrained nature: they 
are generally battery-powered with no means to recharge or 
replace the batteries once depleted (energy harvesting in sensor 
networks is still in its infancy). Managing the limited energy 
resource is therefore of primary importance in ensuring the 
usefulness of such systems. 

A common method for conserving energy and extending 
the system lifetime is duty-cycling. Nodes stay awake only a 
fraction of the time, and sensing and communication are 
done only during this wake time. Duty-cycling achieves  
the objective of prolonging lifetime, and has been studied 
extensively in the context of monitoring and periodic 
sampling applications. Considerable work has gone into 
making the communication between nodes effective and 
efficient (van Dam and Langendoen, 2003; Dubois-Ferriere 
et al., 2005; Ganeriwal et al., 2005; Buettner et al., 2006). 
However, event-detection applications such as detecting 
intrusion, lightning strikes or fires, present a different set of 
challenges (Dutta et al., 2005). In many such applications, 
the overall frequency of events is very low, but they tend to 
occur in clusters. The node then has to try and adapt its duty 
cycle so that it sleeps more during periods of inactivity and 
is awake more during the rare periods of activity. 

Several approaches have dealt with the rare-event 
problem (Begum et al., 2004; Gu and Stankovic, 2004; Dutta 
et al., 2005). They deal with it in means such as using radio 
waves to awaken nodes (Gu and Stankovic, 2004), using 
extremely low-power modules to awaken more power hungry 
modules during the occurrence of an event (Dutta et al., 
2005), or decreasing sleep times when events of interest are 
sensed (Begum et al., 2004). Most of these methods rely  
for their efficacy on specialised hardware and/or specific 
characteristics of the application, for example, the existence 
of low-power sensors to detect motion, which then awaken 
more capable, but more power-consuming, sensors. 

In this paper, we present two generic event-driven adaptive 
duty-cycling techniques. Our Simple Adaptive Technique 
(SAT) learns and adapts its duty cycle based on the observed 
arrival patterns of events. We then propose a more 
sophisticated approach based on Markov Decision Process 

(MDP) theory that controls the wake/sleep pattern of nodes 
based on event arrival patterns as well as on the available 
energy and residual mission time. Both techniques offer  
significant advantages in performance, energy efficiency and 
also generality; tuning the behaviour of a sensor network  
with respect to its operating environment can improve its 
performance as well as lengthen its operational lifetime. 

Our performance metric concentrates on the cost to the 
system of missed events and false alarms. Every missed  
event or false alarm has a cost associated with it; we aim  
to minimise the total expected cost during the designated 
period of operation (the mission lifetime). This cost is defined 
according to the requirements of the application. The 
performance of the system is affected by various system 
parameters, especially energy, duty-cycling, length of mission 
lifetime and event characteristics. We study these parameters 
and how they interact with each other to affect the cost of the 
system. We show that both our adaptive schemes provide 
significant gains, with minimal tuning, over non-adaptive 
schemes whose best performance occurs over a narrow range 
of parameter settings. 

We compare our schemes with the Probing Environment 
and Adaptive Sleeping (PEAS) algorithm (Ye et al., 2003) 
and with the ELECTION scheme (Begum et al., 2004).  
In PEAS, a node probes the neighbourhood to see if other 
nodes are awake, and wakes up only when there are no other 
nodes awake in the neighbourhood. ELECTION is similar 
to our simple adaptive scheme in that it adapts its sleep 
cycle to event arrival patterns. We show that because our 
techniques use the local state of the individual nodes and  
the perception of the external environmental state, they  
out-perform PEAS and ELECTION when event clustering 
exists. We use PEAS and ELECTION for comparison 
because they are adaptive algorithms which are the most 
similar, that we know of, to our algorithms. We describe 
these two algorithms in more detail in Sections 2 and 5. 

The rest of the paper is organised as follows: Section 2 
deals with related research, Section 3 explains the model 
used for the simulation, Section 4 describes our proposed 
techniques. Section 5 lists simulation settings and presents 
numerical results, and finally Section 6 concludes the paper. 

2 Related research 

A lot of research has been carried out in the field of sensor 
networks, focusing primarily on performance and energy 
efficiency. Performance has been studied from the point of 
view of energy (Sinha et al., 2000; Sinha and Chandrakasan, 
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2001; Ye et al., 2002; Chiasserini and Garetto, 2004), network 
issues (van Dam and Langendoen, 2003; Chiasserini and 
Garetto, 2004; Ganeriwal et al., 2005), and quality of sensing 
(Liu et al., 2003) among others. The issue of energy efficiency 
has been addressed at various levels in the sensor network 
architecture. Sinha and Chandrakasan (2001) deal with a system 
with multiple sleep states and employ a transition policy which 
uses event prediction to decrease energy consumption. They also 
propose dynamic voltage scaling to reduce energy consumption. 
Energy scaling algorithms have been studied in Sinha et al. 
(2000) where the trade-off between processing quality and 
energy efficiency offered by these algorithms is examined.  
A lot of the work has been done at the MAC layer; various 
MAC protocols have been introduced (Ye et al., 2002;  
van Dam and Langendoen, 2003; Polastre et al., 2004; Buettner 
et al., 2006), which try to reduce the power consumed due to 
medium access. These techniques are useful in applications 
where communication is frequent and dominates the energy 
consumption. Some authors have also studied applications 
where communication is rare. Ganeriwal et al. (2005) propose 
efficient radio communication techniques for such cases.  
In general, for applications that sense and report events that 
only occur rarely and aperiodically, we need to concentrate on 
conserving energy in other ways. A survey of sleep scheduling 
algorithms has been carried out by Wang and Xiao (2006). 
Adaptive duty-cycling has also been studied in one form or the 
other, in Dutta et al. (2005); Gu and Stankovic (2004) among 
others. Dutta et al. (2005) and Gu and Stankovic (2004) 
propose architectures that provide wake mechanisms for nodes 
when events occur. In the former, low-energy sensors stay 
awake throughout and wake the more energy hungry units as 
required. In the latter, the authors propose a radio wake-up 
circuit that uses the electromagnetic energy from radio waves 
to wake up the node. There is no periodicity involved in either, 
and both achieve the goal of reducing the idle wake period when 
there are no events occurring, however they are both application 
specific. Vigorito et al. (2007) propose adaptive duty-cycling 
for energy harvesting nodes. They use adaptive control theory 

to enable energy neutral performance. van Greunen et al. (2004) 
propose a robust adaptive sleep algorithm based on packet 
arrival rates to reduce network delay in dense networks. 

The focus of this work is on non-harvesting networks. 
The papers (Ye et al., 2003; Begum et al., 2004; Ghosh and 
Givargis, 2005) propose energy aware adaptive schemes, for 
similar systems. In the latter two, nodes wake up only when 
they do not sense nodes awake in the neighbourhood.  
In PEAS (Ye et al., 2003), nodes probe their immediate 
neighbourhoods to see if any other node is awake. If a node 
sees that another node is awake, it goes back to sleep for an 
exponentially distributed amount of time, else it stays awake 
till it dies. In Ghosh and Givargis (2005), a node wakes up 
only if its geographical range is not covered by other nodes. 
Both approaches aim to keep redundant nodes asleep, 
however, they still waste energy by keeping nodes awake 
needlessly. The main purpose of PEAS is reliability and 
robustness: it tries to maintain full coverage over the entire 
sensing area, while our adaptive schemes take a calculated 
risk of missing a few events in order to prolong lifetime  
and improve overall performance. ELECTION, proposed  
by Begum et al. (2004), comes closest to our schemes.  

In ELECTION, nodes adapt their sleep cycle according to 
event arrival patterns. However, their sleep adaptation does 
not take into consideration the state of the nodes or the 
remaining mission time (i.e. period of operation). 

3 System model 

This section describes the sensor network and environment 
model that we use. 

3.1 The node model 
Nodes are uniformly and randomly distributed over a given 
area. They have uncoordinated and adaptive wake/sleep cycles; 
the starts of their wake cycles are independent of one other.  
A node detects an event if it sees a signal whose amplitude is 
greater than some specified threshold θ. If an event is detected, 
the node sends a message announcing this to the base station. 
Any appropriate routing algorithm can be used to implement 
message routing. Nodes are stationary. They have a finite, ideal 
battery, i.e. a battery whose performance does not degrade with 
the residual energy level. Nodes consume energy while staying 
awake and during communication. We ignore the energy 
overhead in incorporating duty cycles. Such an assumption is 
valid because of the simplicity of the heuristics and also due to 
the fact that duty-cycling is conceptually simple; only a timer 
need be set. 

The base station collects reports from the various nodes 
and decides whether an event has occurred or not, depending 
on whether the number of reports received for an event is at 
least a specified threshold M or not. 

3.2 The environment model 
The environment is modelled as consisting of two states, 
hostile and benign. Events are more likely to occur during  
the hostile state than during the benign state. Typically, the 
environment is in the hostile state only for a small fraction  
of the time, and the bulk of the events occur in that state.  
This simple model is relevant to many practical applications. 
For example, in a system detecting lightning strikes, the 
environment is hostile mostly during thunderstorms. Lightning 
usually occurs during a thunderstorm, but the environment is in 
that state for only a small fraction of the time. The duration of 
each environmental state is usually long enough for the system 
to adapt as events are being sensed, while the time slices used 
for duty-cycling can be at much smaller time scales. 

3.3 The event model 
The events of interest follow a given distribution for signal 
characteristics (amplitude and attenuation). In addition to 
the real events, we also consider noise events of two types: 
internal and external. External noise arises from external 
sources and could potentially trigger sensors on multiple 
nodes. For example, motion sensors could be set off by 
birds. Internal noise events are generated within the node 
circuitry itself; by active or passive receivers. This type of 
noise can be seen only by the node in which it occurs, and  
is typically quite rare. 
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Events can occur randomly anywhere in the field, 
according to some distribution. The signal amplitude attenuates 
according to a power α of the distance. The field is assumed to 
be flat, without any physical obstructions. A node has no way 
of distinguishing real events from noise; it reports any signal 
whose amplitude it detects to be greater than the threshold θ. 

3.4 Cost function 
Costs result from the base station either missing an event  
or generating a false alarm. The cost of each is application-
dependent. The total cost is the weighted sum of the expected 
number of missed events and the expected number of false 
alarms: 

Total Cost = CME × NME + CFA × NFA (1) 

where CME and CFA are the costs per missed event and  
false alarm, respectively, and NME and NFA are the expected 
numbers of missed events and false alarms (at the base 
station), respectively. 

4 Adaptive duty-cycling 

It is very common for event-detection applications to have 
long periods of inactivity followed by a burst of activity.  
If nodes can distinguish between periods of activity and 
inactivity, they can adapt their duty cycles accordingly.  
The adaptation process may vary in complexity. We present 
two techniques: a SAT where a node bases its decision on 
its last wake fraction and the evidence of its current wake 
cycle, and a more sophisticated one based on MDP theory, 
where the node takes into account its remaining energy and 
the remaining mission time as well as its perception of the 
state of the environment. 

4.1 SAT – simple adaptive duty-cycling technique 
Our simple SAT algorithm operates as follows: If a node sees n 
events in its current wake cycle, it increases its wake fraction 
by nδinc, believing it is in a high activity (hostile) period and 
expecting, as a result, to see more events in the immediate 
future. If it sees no events in the current cycle, it believes it is in 
a benign period and reduces its wake fraction for the next cycle 
by δdec, in order to conserve energy. A reduction is made 
subject to the constraint that the wake fraction can never drop 
below some predetermined fraction f. Clearly, a node cannot 
drop its wake fraction to zero, or it would be taking itself 
permanently out of the network since it would have no 
opportunity to observe an event and as a result increase its 
wake fraction. Similarly, the wake fraction can never exceed 1. 
The trade-off here is obviously between staying awake to see 
more events, or going to sleep to conserve energy. 

Our SAT algorithm is summarised below: 

wake_fraction + = nδinc 
if (wake_fraction > 1) wake_fraction = 1 

else 
wake_fraction − = δdec 
if (wake_fraction < f) wake_fraction = f 

The decision that a node makes when it adjusts its duty 
cycle is based on its perception of the state of the external 
environment, which is the triggering force for the events.  
The detection of an event makes the node believe that the 
environment is hostile, hence it makes sense to increase  
the wake fraction with every arriving event, as this decision 
is generally accurate when events arrive in clusters and 
when the rate of event arrival in the hostile environment is 
much greater than the rate of event arrival in the benign 
state. The algorithm is therefore sensitive to the rate at 
which new events arrive. Even if the decision is false and 
the event was a one-off, the node does not lose much 
because it will get back to a lower wake fraction in the next 
cycle. The benefit of event-driven adaptivity manifests itself 
when there is a reasonable difference in the event arrival 
rates in the environmental states. If there is little difference, 
a node in the adaptive scheme will have, at the time of 
dying, spent the same amount of time in the wake state as 
one in the static scheme, the starting energy in both being 
equal, although they might die at different times. No benefit 
is accrued from adaptivity in this case. 

Because our algorithm attempts to adapt itself to the 
environment, we need to estimate the speed at which  
it responds to changes in the environment state. We do this 
by modelling the wake fraction in a given cycle as a Markov 
chain. For simplicity of presentation, we assume that  
δinc = δdec = δ, and denote by state k, a wake fraction of kδ. 
We next denote the probability of observing n events in a 
cycle with a wake fraction of kδ by πk(n). The probability 
transition matrix is given by: 

,
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Suppose events arrive according to a Poisson process with rates 
λB, λH in a benign, hostile environment (respectively). Suppose 
the system is in state 1 with f = 0.15 and δ = 0.15, when the 
environment changes from the benign to the hostile state. 
Figures 1(a–c) show how the wake fractions converge as  
a function of time. A similar calculation can be done to 
demonstrate the convergence back to the benign state. 

4.2 Adaptive algorithm based on Markov decision 
process theory 

The second algorithm we propose uses an MDP at the  
node level, in order to minimise the expected cost over  
the lifetime of the system as seen by the base station. The 
decision is made by each node, at each cycle, and takes into 
account the node’s level of energy and the residual mission 
time in addition to the state of the environment. 
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Figure 1 State probabilities as a function of time 
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(c) State 6  

An MDP is characterised by the set of states that the 
decision-maker (in this case, the node) can be in, the set  
of possible actions it can take in each state, the reward or 
cost (in our case, cost) associated with each action, the 
probability distribution of the next state (which distribution 
depends on the current state and the action selected) and the 
time to the end of the mission. 

We define the state of a node to include the number of 
energy units left in a node and its perception of the external 
environment. The node’s perception of the external environment 
is characterised by its perceived probability that the external 
environment is hostile. Each node starts off with a (low) initial 
probability. If it sees an event during the current cycle, it 
updates the probability to the next higher value in a set. If it 
does not see an event, it chooses the next lower value. 

The action that a node takes is choosing its wake-up 
probability for the next cycle out of a set of allowed wake-up 
probabilities, based on its current state (energy and 

environment) and the residual mission time. Based on the 
selected probability, the node then decides whether or not  
to wake up for the rest of the cycle. This results in a 
randomised sleep/wake cycle rather than the deterministic 
one used in the simple algorithm. By randomising the 
waking of each node, we ensure that nodes in a locality do 
not wake up and sleep in a synchronised manner, thereby 
creating blind spots in the system: such synchronisation 
could be caused by neighbouring nodes seeing similar event 
arrival patterns. 

The costs resulting from the nodes’ actions are incurred 
at the base station. If at least M nodes report a specific 
event, the base station declares an event. Cost could be a 
false alarm, or a real event that is missed if fewer than  
M nodes report it to the base station. 

The MDP approach sets up an expression for the 
expected cost over the system lifetime. At each decision 
epoch, the system can take one of a set of allowed actions. 
Each action has an immediate future consequence and the 
overall expected cost is the sum of the contributions of each. 
The expected immediate cost of taking action a when the 
system is in state s is expressed by the function K(s, a).  
The expected future cost is calculated recursively as 
follows. Suppose V(s, t) is the expected cost of running the 
system which is currently in state s for an additional t time. 
Then, the expected future cost of taking action a is given by 

( ) ( , 1)as
P s s V s t
′

′ ′→ −∑ . The first term is the probability of 

the system making a transition to state s′; the second is the 
expected cost associated with starting at state s′ (which the 
system does at the beginning of the next decision epoch) 
and running for a further t − 1 time (the unit of time is the 
duration between successive decision epochs). 

The MDP equation is therefore as follows: 

( )(

( ) ( )

( , ) ,

, 1

∈

′

=

⎞′ ′+ → − ⎟
⎠

∑

a A

s

V s t min K s a
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where 

( , ) (event reported by less than  nodes
|event occurs in cycle)
+  event reported by at least  nodes
|noise occurs in cycle)

= ME

FA

K s a C P M

C P M
 

and the notation is as follows: 

• s is the current state, a function of residual energy  
and perception of external environment 

• t is the time remaining in the mission 

• A is the set of possible actions 

• a is the action taken at state s at (residual) time t  
from the set A 

• K(s, a) is the expected cost for the next cycle at  
state s when taking action a 

• s′ is the state resultant from taking action a 
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• Pa(s → s′) is the probability that s′ will be the next  
state when taking action a 

• V(s, t) is the expected minimum future cost at  
state s with t time remaining 

• CME is the cost of a missed event 

• CFA is the cost of a false alarm 

• M is the threshold of nodes required for the base  
station to declare an event 

• P (event reported by fewer than M nodes ⎪event occurs 
in cycle) = ( ) ( ) 11

1

0
1− −

=
−∑M n in i

ii
a a  where n1 is the 

number of nodes in the given  node’s vicinity observing 
this event 

• P (event reported by at least M nodes ⎪noise occurs in 
cycle) = ( ) ( )2 22 1 −

=
−∑ n n in i

ii M
a a  where n2 is the number 

of nodes in the given node’s vicinity. 

Calculating the appropriate action that a node should take is 
computationally intensive, hence the calculations can be done 
offline and each node can be provided with a look-up table 
which it uses in order to look up the action it should take.  
We address concerns about the size of the look-up table in 
Section 5. The appropriate action is selected based on the 
node’s current energy level, its current perception of the 
external environment and the residual time to the end of  
the mission. The size of the table depends on the number  
of states, mission time and the granularity of the environment 
perception values. We can compress the table based on time 
or state aggregation depending on the amount of memory 
available at the node. In Subsection 5.2.10, we demonstrate 
that reducing the table to a feasible size causes only a  
token degradation in the system performance. There is an 
assumption made here that we have prior idea about system 
characteristics; it required in order to calculate the event 
arrival probabilities in different states. We could otherwise 
use statistics gathered during operation; however that would 
be costly. The simple algorithm provides an effective, 

responsive and cheap alternative to the above. The MDP 
algorithm is also useful as a benchmark to evaluate lighter 
algorithms. 

5 Simulation results 

5.1 Simulation settings 

We assume that nodes know their own position and that  
of their immediate neighbours and the base station. GPS or 
other means (Savvides et al., 2002; Maroti et al., 2005; 
Stojmenovic, 2005; Patwari and Hero, 2006) can be used to 
achieve localisation. The routing protocol used is Greedy 
Perimeter Stateless Routing (Karp and Kung, 2000), which 
greedily passes on the message to the neighbour which  
is geographically closest to the base station. It was used  
 
 

because it is simple and guarantees delivery if the network 
is connected. If the node happens to be at a local minimum, 
that is, it has no neighbour which is geographically closer to 
the base station than itself, it routes the message around the 
perimeter of the region using the well known right-hand 
rule, till it reaches either the base station or a node which  
is geographically closer to the base than the node which 
originated the perimeter routing. If the hop count of the 
message exceeds a given threshold, the message is dropped. 
To save energy, nodes may aggregate reports of the same 
event from different nodes and forward a single, aggregated 
message. The communication channel between the nodes 
and the base is assumed to be error-free. The radio may  
or may not be duty cycled; it is independent of the sensor 
duty cycle that is the focus of this paper. Efficient radio 
communication between nodes with low duty cycles has 
been studied and implemented elsewhere (Ganeriwal et al., 
2005). Just before a node runs out of energy and dies,  
it communicates the fact to its neighbours, so that its 
neighbours can adjust their routing metric accordingly. 
Nodes die only when they run out of energy. 

For the environment, we consider the simplest two-state 
environmental model shown in Figure 2. The system stays  
in either state for an exponential amount of time. The 
environment changes from benign to hostile with rate μB→H 
and from hostile to benign with rate μH→B. All events follow a 
Poisson process, but their rate of arrival depends on the state 
of the environment. The rate of event arrival in the benign 
state is λB, while the rate in the hostile state is λH. Typically, 
λ λH B . Real and noise events’ signal amplitudes follow  
a normal distribution with different parameters (Table 1) and 
attenuate with the square of distance. Noise events, of either 
kind, are not affected by the environment. 

Figure 2 Environment model 

λB Hλ
B

B−>H

μ

H

μ

H−>B  

The values of the various parameters used in the simulations 
(unless otherwise stated) are given in Table1. 

5.2 Numerical results 

We next present numerical results, based on extensive 
simulation experiments, comparing our two adaptive schemes 
(SAT and MDP) to three other algorithms: (1) the static 
scheme which has fixed duty cycles, (2) PEAS (Ye et al., 2003) 
and (3) ELECTION (Begum et al., 2004). 
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Table 1 Parameter values used 

Parameter Value 

Arrival rate of events in hostile state, λH 4 
Arrival rate of events in benign state, λB 0.1111  

Arrival rate of external noise, λext 0.05 
Arrival rate of internal noise, λint (per node) 0.001 
Transition rate from hostile to  
benign state, μH→B 

0.2 

Transition rate from benign to  
hostile state, μB→H 0.01056 

Communication energy 1 
Base station threshold for declaring  
an event, M 2 

Awake energy (per unit time) 0.1 
Incrementing step size for adaptive  
algorithm, δinc 

0.10 

Decrementing step size for adaptive  
algorithm, δdec 

0.10 

Avg. area in which noise can be seen by node 20.9% 
Avg. area in which events can be seen by node 62.8% 
Hostile environment probability  
set used by MDP {0.1, 0.5, 0.95} 

Action set used by MDP {0.1, 0.2, 0.3, 0.7, 
0.8, 0.9} 

PEAS works by minimising the number of nodes that stay 
awake at any given point in time. Nodes wake up at random 
intervals to probe their neighbourhood to see if any node  
is awake. If they get an acknowledgement from an awake 
node, they go back to sleep, else they stay awake till  
they run out of energy and die. The duration between 
polling intervals is changed adaptively to provide a balance 
between energy efficiency and minimising blackouts. The 
scheme ensures that the entire sensing area is covered by  
'as few nodes as possible. While PEAS aims to maximise 
lifetime, it also seeks to provide full geographic coverage as 
much as it can. This, in the context of our application, has 
the major drawback that nodes stay awake during benign 
periods which not only wastes energy but also markedly 
increases the number of false alarms. 

ELECTION follows the same principle as our adaptive 
schemes, in that the node sleeps more during periods of  
low activity and less during periods of greater activity.  
The scheme is presented in the context of a continuous 
monitoring application, the example given being process 
monitoring in a chemical factory. Sleep is reduced in a 
geared manner if the rate of change in the monitored  
value increases. The scheme does not lend itself readily to 
adaptation in a 1/0 event model such as ours, so we tailored 
it such that an event occurrence triggers reduction of sleep 
(by half), and if no event is observed during a time slice the 
sleep duration doubles for the next cycle. When nodes  
see that the rate of change is high enough to warrant 
reporting to base station, they elect a cluster-head from 
among themselves which collects reports from the nodes  
and reports it. The cluster-head scheme, while having  

the advantage of better energy efficiency, reduces fault 
tolerance because it introduces a single point of failure, i.e. 
the cluster-head. More importantly, the scheme does not 
take into consideration the energy state of the node or the 
mission time of the application. Because our purpose is to 
compare the duty-cycling approach of ELECTION with 
ours, we simulated a modified version of ELECTION which 
makes its communication scheme consistent with PEAS and 
our schemes. 

The main performance metric we use in our numerical 
results is the cost, i.e. the weighted average of the numbers 
of missed events and false alarms. An auxiliary metric we 
use is the number of dead nodes at the end of the mission, 
indicating how efficient is the algorithm’s energy use. 

The performance of all algorithms depends on various 
system attributes such as: 

• Starting energy, which determines how constrained  
the system is and how important energy conservation 
algorithms are. 

• Node density, which might be used to cut down on both 
missed events and false alarms by requiring multiple, 
corroborating, reports of events. 

• Event characteristics, which determine how useful an 
event-driven adaptive scheme can be; if a pattern exists 
that the scheme can adapt to, the benefits can be quite 
substantial. 

• Mission lifetime; to be useful, the sensor network  
must be operational for weeks or even months without 
human intervention. This is closely related to the 
starting energy parameter; greater energy efficiency 
may be necessary if the required lifetime is very long. 

5.2.1 Effect of starting energy 

As expected, the benefit of adaptivity is most prominent 
when the system is constrained for energy, as seen in 
Figures 3 (a and b). Our SAT scheme conserves energy by 
reducing its wake fraction when it believes that the outside 
environment is benign, while the MDP scheme tries to make 
an informed decision based on event characteristics and 
projections into the future. 

The fraction of dead nodes at the end of the mission in 
Figure 3(b) is a good indicator that the adaptive schemes 
manage to conserve energy more effectively than the static 
scheme or PEAS. The performance benefits of the adaptive 
schemes are best seen in the middle portion of Figure 3(a), 
where nodes do not start off with either too little or a great 
deal of energy. The performance benefits of the adaptive 
schemes taper off at higher energy levels because when 
energy is plentiful for the given mission time, there is little 
benefit in conserving energy. However, the region of the 
graph with abundant energy is not very interesting as sensor 
networks do not usually operate in that region. We see that 
PEAS performs worse than our adaptive schemes because  
it does not look to conserve energy by adapting itself  
according to event arrival patterns: Once nodes wake up, 
they stay awake till they die. SAT’s benefits reduce 
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somewhat when we look at missed events only because it  
is by nature parsimonious with energy. The ELECTION 
scheme should ideally have a performance curve similar to 
our simple scheme. The reason why that is not the case is 
that ELECTION is very aggressive in reducing the sleep 
cycle initially, while our simple adaptive scheme increases 
the wake fraction gradually according to event arrival 
patterns. Hence the energy benefit of ELECTION’s adaptive 
approach is reduced by false alarms and one-off events.  
For this reason, we confine ourselves in the following 
sections to comparing our schemes to the static and the 
PEAS schemes only. 

Figure 3 Effect of starting energy 

 
(a) Effect of starting energy on cost 

 
(b) Effect of starting energy on node survival 

5.2.2 Effect of node density 

Increased node density translates to an increased probability 
that some node will see an event. Hence the performance of 
all schemes initially improves with increasing node density. 
However, false alarms also increase for the same reason, 
and overall cost starts increasing after a point. This increase 
is lowest in our SAT because it is very effective in keeping 
out false alarms, the price being more missed events 
compared to the MDP. To see the effect of MDP parameters 
(especially that of minimum wake-up probability on false 
alarms), see Subsection 5.2.9. Since there is localised  

learning in our adaptive schemes, the density of nodes  
required by both to match (or better) the performance of the 
static scheme is significantly lower, as shown in Figure 4(a). 
Figure 4(b) shows that initially, the fraction of dead nodes 
increases with increasing node densities. This is because, at 
such low densities, even if nodes might see an event, they 
will not be able to communicate to the base station. Since 
there is little communication (which forms the bulk of 
energy consumption) taking place, not many nodes die out. 
We see that performance is very poor at such densities.  
For our SAT, this is due to the wake-up probability of  
a node being high during periods of increased activity, 
improving the chances of seeing and reporting the event. 

Figure 4 Effect of node density 

 
(a) Effect of node density on cost 

 
(b) Effect of node density on node survival 

5.2.3 Effect of detection threshold 

The base station detection threshold M plays an important 
role in striking a balance between missed events and false 
alarms. A threshold of M = 1 (Figure 5a) leads to a very 
high rate of false alarms. A threshold of M = 2 provides a 
balance; it cuts down completely on false alarms caused by 
internal noise and at the same time keeps missed events and 
false alarms low. A threshold of M = 3 (Figure 5b) increases 
the missed event rate without contributing much towards 
reducing false alarms compared to M = 2. 
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Figure 5 Effect of detection threshold on cost 

 
(a) Low Threshold 

 
(b) High Threshold 

5.2.4 Effect of mission time 
We show in Figures 6 (a and b) the performance of each 
scheme throughout its lifetime. Nodes die off much slower 
in the adaptive scheme, thus maintaining a superior level  
of performance throughout. The SAT scheme achieves this 
by waking up minimally, while the MDP scheme cuts  
out inefficient wake cycles. The MDP scheme takes into 
account the residual mission time, hence we see a higher 
rate of node deaths towards the end of the mission. 

5.2.5 Effect of node distribution 
In almost all of our simulations, we used a uniform spatial 
distribution for the nodes’ locations. This obviously has an 
effect on node and system lifetime because nodes near the base 
station have to report the events they see as well as forward 
reports seen by nodes on the periphery (Xue and Ganz, 2006). 
To see just how much of an effect this has, we distributed 
nodes such that the node densities decrease exponentially with 
a factor of 0.5 from the centre (density function of distance 
from base station given by 0.5e0.5x). We see in Figure 7 that  
 
 
 
 

performance improved substantially, especially that of PEAS, 
in comparison to SAT. The MDP scheme’s performance also 
improved as the effect of routing, which is not factored into the 
equations, is mitigated. 

Figure 6 Effect of mission time 

 
(a) Effect of mission time on cost 

 
(b) Effect of mission time on node survival 

Figure 7 Effect of node distribution density 

 



98 S. Sundaresan et al.  

5.2.6 Effect of cost function 
Depending on the application, more weight may be accorded 
to missed events or to false alarms. Figure 8 shows the cost 
when missed events and false alarms are weighted in different 
proportions. We see that the MDP scheme is very good at 
reducing missed events because it is able to predict and adapt 
quickly to changing environmental conditions. SAT is very 
good at reducing false alarms because it errs more on the side 
of caution, reducing the wake fraction at the very first cycle 
with no events. 

Figure 8 Effect of cost weights 

 

5.2.7 Sensitivity to initial setting 
The performance of the non-adaptive algorithms is heavily 
dependent on the initial settings, as seen in Figures 9 (a and b). 

By contrast, the adaptive algorithms are less sensitive to 
these initial settings, as they learn with time and eventually 
settle on some steady optimal state. In the static scheme, 
setting the wake fraction below the optimum value means 
that many events are missed, while setting it above the 
optimum level means that the nodes die off sooner. 

5.2.8 Effect of step size 
For our SAT scheme, the step sizes δinc and δdec determine 
how fast the scheme adapts. The effect of the step size can 
be seen in Figure 10. We see that large step sizes are not 
very good as they are wasteful of energy. Step sizes that are 
too large increase the vulnerability to false alarms. We see 
good performance in the low to medium range of step sizes. 
Step size zero is essentially the static scheme. 

5.2.9 Effect of MDP parameters 

The main parameters of our MDP-based algorithm are  
the wake-up probabilities for the next cycle included in the 
action set A. When selecting the set A, a balance has to be 
struck between conservatism and aggressiveness (low vs. 
high wake-up probabilities). The effect of selecting the 
action set is shown in Figure 11 for 100 nodes. We see that  
 
 
 

good results can be achieved by the wake-up probability set 
{0.1, 0.2, 0.7, 0.8, 0.9}, which gives nodes the opportunity 
to be conservative when they want to but also allows them 
to quickly move to an aggressive state. We also notice that 
middling probabilities do not affect performance. 

Figure 9 Effect of starting wake fraction on cost 

 
(a) Energy 150 

 
(b) Energy 100 

Figure 10 Effect of step size on the Simple Adaptive scheme 
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5.2.10 Size of look-up table for MDP 

As mentioned before, to implement our MDP technique, the 
intensive calculations must be performed offline. The node is 
then provided with a look-up table which determines the 
optimal decision (i.e. the wake-up probability in the next cycle) 
for the given state and residual mission time. Since in most 
sensor networks a node has limited memory, the size of this  
look-up table is an important consideration. Initial table sizes 
might be of the order of a few megabytes, depending on  
the mission time and the energy levels. We have seen from 
experiments (Table 2) that compressing the table to a few 
hundred kilobytes by using coarser granularity in time and 
energy states only results in a very small degradation in 
performance. The ‘Compression Factor (T, E)’ column denotes 
the total table compression and the compression applied  
to the time states (T) and the energy states (E). To a large  
extent, compression in either dimension does not greatly  
affect performance because actions taken by the node depend 
mostly on the perceived state of the environment (which is  
not compressed). However, performance does degrade at very 
heavy compression. Higher capacity storage is now possible in 
sensor networks (Mathur et al., 2006), hence table sizes of a 
few hundred kilobytes or even a few megabytes are now 
feasible, and will become more so as technology advances. 

Figure 11 Effect of MDP wake-up probabilities 

 

Table 2 Effect of table compression 

Starting energy 100, total nodes 100 
Compression factor (T, E) Expected cost 
1 (1, 1) 709 
100 (100, 1) 711 
500 (500, 1) 720 
1250 (1250, 1) 720 
2500 (2500, 1) 800 
10 (1, 10) 711 
100 (1, 100) 711 
12500 (1250, 100) 711 
25000 (2500, 100) 800 

6 Conclusion 

We have presented two adaptive schemes for managing  
duty-cycling in an event-detection sensor network under energy 
constraints. Our techniques significantly improve performance 
as well as energy efficiency over current schemes. The strength 
of our schemes lies in their ability to adapt to the characteristics  
of the monitored event without any specialised additions to 
hardware. The decision process for the node is very simple, and 
can be extended to suit the application. Key to the performance 
of our schemes is the duration of the environmental states;  
each state has to last long enough for learning to take place. 
Extensive simulation experiments showed that both the simple 
adaptive and the more complicated MDP schemes are effective 
in trading off the need to detect events against the need to 
remain viable through the duration of the mission. Future work 
in this domain could include system implementation to verify 
simulation results. It would also be interesting to see how MDP 
can be used in cases where energy harvesting is possible. 
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